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ABSTRACT
First-order reliability methodology (FORM) is used to
develop reliability-based design factors for deterministic
analyses of stress corrosion cracking. The basic elements of
FORM as applied 10 structural reliability problems are reviewed
and then employed specifically to stress corrosion cracking
evaluations. Failure due to stress corrosion cracking is defined
as crack initiation followed by crack growth to a critical depth.
The stress corrosion cracking process is thus represented in
terms of a crack initiation time model and a crack growth rate
model, with the crack growth rate integrated from the initiation
time to the time at which the crack grows to its critical depth.
Both models are described by log-normal statistical distribution
functions. A procedure is developed to evaluate design factors
" that are applied to the mean values of the crack initiation time
and the crack growth rate for specified temperature and stress
conditions. The design factors, which depend on the standard
deviations of the statistical distributions, are related to a target
reliability, which is inversely related to an acceptable
probability of failure. The design factors are not fixed, but are
evaluated on a case-to-case basis for each application. The use
of these design factors in a deterministic analysis assures that
the target reliability will be attained and the corresponding
acceptable probability of failure will not be exceeded. An
example problem illustrates use of this procedure.

INTRODUCTION

Deterministic design-basis structural evaluations require
the use of data that are often subject to considerable uncertainty.
In some cases, the use of extreme bounding values for the
relevant input parameters can lead to overly conservative resuits
without any knowledge of the risk or, conversely, the reliability
inherent in the use of those bounds. An approach that is gaining

worldwide acceptance utilizes structural reliability methods to
account for these urcertainties. Such methods allow for the
calculation of design factors applied to the individual input
variables that accommodate the uncertainties of the variables,
which are characterized by statistical distribution functions, and
an acceptable level of risk.- Such methodology has been
endorsed for the evaluation of flaws by the British Standards
Institution in BS 7910 (1999) and the American Petroleum
Institute in API 579 (2000). An ASME Boiler and Pressure
Vessel Code Nuclear Code Case that deals with flaw evaluation
also uses this methodology, which is commonly referred to as
the "partial safety factor" treatment. The basis for the Code
Case is discussed by Bloom (2000).

Typical stress corrosion cracking (SCC) design analysis
procedures are based on statistical models for the crack
initiation time and the crack growth rate. Both models are
expressed in terms of log-normal distribution functions. In
deterministic analyses, the design-basis SCC initiation time and
crack growth rate values are traditionally established as fixed
statistical bounds. For example, the design-basis SCC crack

“initiation time can be specified as the one-sided 90 percent

lower bound of the initiation time model, while the design-basis
crack growth rate, can be identified as the one-sided 95 percent
upper bound of the SCC growth rate model. This typical set of
bounds is referred to as "90/95 bounds”.

Design-basis input parameters, such as those obtained from
the fixed 90/95 bounds, can be expressed in terms of design
factors applied to the mean values of the parameters (i.e., the 50
percent bounds). The specification of such design parameters
presumes a small, but finite, risk of failure. Increasing the
design factors is aimed at decreasing the probability of failure.
A set of fixed SCC design factors, therefore, implies an
acceptable probability of failure.  Although this failure



probability "is not considered explicitly in a traditional
deterministic analysis, its existence should be recognized.
Furthermore, the acceptable failure probability implied by a set
of fixed design factors is not fixed but depends on the details of
the problem being evaluated. Implementation of reliability-
based design principles, on the other hand, assures that an
acceptable level of risk is not exceeded. This is accomplished
by relating the design factors directly to a target structural
reliability and the statistics of the input variables.

STRUCTURAL RELIABILITY METHODS

Haldar and Mahadevan (1995) give a rather complete
summary of structural first-order and second-order reliability
methods. The basis of such methods is the fundamental
structural design criterion that requires a structure to have
strength sufficient to resist its loading. Stated in its simplest
terms, this means that the resistance, R, should exceed the
loading, S. Defining a function z=R ~ S, z < 0 indicates
failure while z > O designates no failure. The function z is
commonly referred to as a “performance function” since the
greater its value, the better the performance of the structure.
Suppose that several of the variables that contribute to the
performance function through the resistance, the loading, or
both are associated with uncertainties and thus need to be
treated as random variables, while the other variables are
assumed to be fixed, known quantities not subject to
uncertainty. Consider a structural system defined by n such
random variables x;, i=1,2,3,...,n. Assume these variables to be
both statistically independent and normally distributed. The
performance function z, can then be expressed as a function of
the x;. Consider further the corresponding standard normal
variables x;/ = (x; - w)/c;, where J; and o; are the mean and
standard deviation, respectively, of the x; variable, so that

z= g(xl'r le» x3l:'-~) xn') (l)

For a structure under prescribed loading, a surface defined
by z = O can be constructed in n-dimensional space with the x;’
as the coordinates. The surface z = 0 is termed the limit
surface. Values of the x;’ coordinates that result in a negative
value of z indicate failure, while z > O characterizes no failure.
This is illustrated in Fig. 1 in two-dimensional space (n=2).
The limit curve z = 0 in Fig. 1 represents the locus of all
combinations of the random variables x;’ and x,’ that result in
imminent failure.
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Figure 1 - Schematic of Limit Curve and
Reliability Index

As discussed by Haldar and Mahadevan (1995), the
performance function z in multi-dimensional space is expressed
as a normally distributed function of the x;’ variables, with first-
order approximations of the mean and variance as follows:

. = £(0,0,0,...,0) 2

’ 2
o= 2[%(0,0,0,...,0)] )

i=1

The cumulative distribution function for the normal
variable z is given by:

Hm=¢(?;i] @)
Z

If the limit surface is linear, the probability of failure py, is
represented by F(0), which is the area under the distribution
curve for which z < 0. Therefore,

ol Pz
m—¢[ m} 5)

Letting B = /0, be the reliability index, the probability of
failure can be expressed simply as:

pr=®(p)=1-d(B) (6



If the limit surface is nonlinear, as is generally the case,
first-order reliability methods (FORM) are used to obtain a
linear approximation to the limit surface at the point on the
surface that is closest to the origin. Using FORM, B is the
distance from the origin to this point whose coordinates are
denoted by x;'*, i =1, 2, ..., n. Figure 1 illustrates this for two-
dimensional space in which the limit surface is a curve. An
iterative calculational algorithm is employed to determine § and
. an estimate of py is obtained by using this value of B in Eq. (6).
The coordinates x;"* are related to p by x;"* = - o;* B, where o;*
are the direction cosines.

Figure 1 shows that the smaller the reliability index B, the
closer is the limit curve to the origin and the larger is the failure
region. Thus, the position of the limit surface relative to the
origin as characterized by P is a measure of the reliability of the
system. Note that the origin represents the mean values of all of
the random variables; i.e., x;’ = 0 (or x; = ;).

All points that constitute a limit surface correspond to the
same level of reliability. The point on the surface closest to the
origin (represented by the x;'*), however, represents the
combination of variables x;* = y; + x;"* o;, in closest proximity
to the mean values. It is thus the optimum point for design
since it represents the most probable failure point. Defining the
design factor y;, for the variable x; as the ratio of the optimum
design variable to the mean value of the variable, y; = x;*/l,

Yi=1+x™* o/ =1-a*pCOV, Q)

where COV, = oy/W; is the coefficient of variation of the variable
Xi.

STRUCTURAL RELIABILITY METHODS APPLIED TO
STRESS CORROSION CRACKING

init f Fal

The first step in applying structural reliability methods is to
define failure. Stress corrosion cracking failure is defined as
crack growth to a specified critical depth. (This is a departure
from the standard definition of the loading equa! to the
resistance.) Therefore, failure occurs when the time tcgrm,
required to grow a crack to its critical depth is less than the
duration of the evaluation period, designated as tgop. Hence,
the performance function z, is:

Z = tcRrrr - teop ®

terir 1S tﬁe sum of two time periods: (1) the time to crack
initiation, designated as t;, and (2) the time period t;, from crack
initiation to growth of the crack to the critical depth. Therefore,

trr =L+t ®

The SCC model presumes that the initiation time t;, and the
crack growth rate da/dt, are uncorrelated random variables
described by log-normal distribution functions; all other input

variables to an SCC evaluation are assumed to be known, fixed
quantities.

Crack Initiation Time Model and Design Factor

The SCC initiation time model is represented as a log-
normal distribution function in the form:

t = A; (6/0,)" exp(Q/RT) exp[N(0,SD))] (10
where

t; = crack initiation time, days

A; =mean crack initiation time coefficient, days

o; = surface stress at crack initiation site, ksi

O, = reference stress, ksi

A = stress exponent

Q:; = crack initiation activation energy, kcal/mol

R = gas constant, 0.001987 kcal/mol-K

T = exposure temperature, K

N = normally distributed correlation error with mean =0 and
standard deviation = SD;

The log-normal distribution for t; can be expressed in terms
of a standard normal distribution as follows:

=1 exp(SDi Xl') (1)

to = A (crilco)" exp(Q/RT) is the mean value of the
initiation time for the specified stress and temperature levels
and x,’ is the standard normal variable associated with the
initiation time model. The natural log of the initiation time
coefficient is considered to be normally distributed so that the
value of the coefficient A;"“, that is used for design calculations
is given by:

A® = A, exp(SD; x,") (12)

Suppose for example that a fixed one-sided 90 percent
lower bound were applied to the SCC initiation time model to
establish a design-basis initiation time. From a normal
distribution table, the 10" percentile of the normal distribution
function corresponds to the standard normal variable
xi’ =-1.282. The design-basis crack initiation time coefficient

- corresponding to this bound, therefore, is related to the mean

value of the coefficient A;, by:
A% = A, exp(-1.282 SD;) 13)

The quantity "exp(-1.282 SD;)" represents the design factor
applied to the crack initiation time coefficient for the fixed 90
percent bound. In reliability-based design, however, x;” is not
fixed. From Egq. (12), the general expression for the design
factor DF;, on crack initiation time is given by:

DF‘. = Aides/A; = CXP(SDi X]') (14)

The design factor DF;, is always less than one.



Crack Growth Rate Model and Design Factor
The SCC growth rate model is a log-normal distribution
function given by:

da/dt = A, (K¢ Ko)" exp(-Q¢/RT) exp(N(0,SDy)] 15)
where

da/dt = crack growth rate, inches/day

A;  =mean crack growth rate coefficient, inches/day

K; = applied stress intensity factor, ksiVin

K, = reference stress intensity factor, ksiVin

n = stress intensity factor exponent

Q; = crack growth rate activation energy, kcal/mol

R = gas constant, 0.001987 kcal/mol-K

T = exposure temperature, K

N = normally distributed correlation error with mean = 0

and standard deviation = SD,

The time period t,, from crack initiation to growth of the
crack to its critical depth, is determined by integrating Eq. (15)
from the initiation time t; to the critical crack depth time tegmr-
is defined somewhat arbitrarily as the time when a crack has
incubated and grown to an average depth of 0.010 inch, while
terrr is the time when the crack grows to its critical depth acgr-
The critical crack depth is determined by the criteria established
to define failure.

The integration of Eq. (15) results in an expression for tg in
the form:

tg = tgo €Xp(-SD; X;") (16)

tgo is the mean value of the crack growth period and x,’ is
the standard normal variable associated with the SCC growth
rate model. The natural log of the crack growth rate coefficient
is considered to be normally distributed so that the value of the
coefficient A,“‘, that is used for design calculations is given by:

A = Ay exp(SD; ;") an -

Consider, as an example, a fixed one-sided 95 percent
upper bound applied to the SCC growth rate model. The 95"
percentile corresponds to the standard normal variable
X’ =+1.645. The design-basis crack growth rate coefficient
corresponding to this bound, therefore, is related to the mean
value of the coefficient A,, by:

A = A, exp(+1.645 SD;) (18)

The quantity "exp(+1.645 SD,)" represents the design
factor applied to the crack growth rate coefficient for the 95
percent bound. The variable x,", however, is not fixed when
using reliability-based design. From Eq. (17), the general
expression for the design factor DF,, on crack growth rate is
given by:

DF, = A,**/A, = exp(SD; x;") (19)
The design factor DF;, is always greater than one.

Synth
Models

The expressions for the crack initiation time t, and the
subsequent period of crack growth to the critical depth t;, given
by Egs. (11) and (16), respectively, are log-normal distributions
that depend on the standard deviations for the respective models
and the bounds selected for design calculations. The
development of design factors based on structural reliability
methodology requires the synthesis of these distributions.
Although some of the other input parameters necessary to
determine t; and t; may be associated with uncertainties, they
are assumed to be known, fixed quantities.

Egs. (11) and (16) are substituted into Eq. (9) to give the
following equation for the total time required to grow a crack to
its critical depth:

of Crack Initiation and Crack Growth Rate

tertr = tio €Xp(SD; X,") + tg exp(-SD; x7") (20)

Note that tcgpr evaluated for design calculations depends on
the bounds chosen for both the crack initiation time and crack
growth rate models as well as the standard deviations associated
with the models. The best-estimate value of tcgyy is obtained by
setting x;” = X" = 0, while the design factors are implemented
by specifying the values of x,” (x,” < 0) and x,’ (x;" > 0).

Relationghip of Specifi
Reliability and Pr Hlity of Fallure

We now wish to determine the probability of failure when,
for a specified set of design factors characterized in terms of x,’
and x,’, the critical crack depth time tcgrpr, is equal to the
exposure time tggp. This is the failure probability if failure
calculated deterministically using these design factors were to
occur precisely at the end of the evaluation period. Since tcprr
depends on the set of bounds chosen for the crack initiation
time and the crack growth rate (i.e., on x;” and x;), the failure
probability is tied to the selected design factors.

Substituting Eq. (20) into Eq. (8) for the performance
function 2:

o St ral

z=g(X), X2') = 4o eXp(SD; X1) + tyo exp(-SD, X2) - teop  (21)

2z is expressed as a function g(x,’, x;") of the two standard
normal variables x,” and x,". This shows that a structure under
specified temperature and stress conditions can be subject to
imminent failure at a specified exposure time tgop, for any
number of combinations of the crack initiation time and crack
growth rate coefficients that result in z = 0. These combinations
all produce the same failure time, tegry. This is illustrated by
the limit curve shown in Fig. 1.



From Eq. (21), the limit curve defining imminent failure
depends on the best-estimate crack initiation time, the best-
estimate time period from crack initiation to growth to the
critical crack depth, the standard deviations of the crack
initiation time and crack growth rate models, and the duration
of the evaluation period (exposure time). The limit curve not
only defines the combinations of crack initiation time and crack
growth rate coefficients that result in failure at a specified
exposure time, but also provides a measure of the reliability of
the system under the specified conditions of temperature and
stress. The reliability is measured by the proximity of the limit
curve to the origin (x,’, x2") = (0, 0). The closer the limit curve
to the origin, the larger the failure region (z < 0) and, therefore,
the probability of failure. (A limit curve passing through the
origin would be a best-estimate limit curve associated with a
failure probability of 0.5.) The reliability of the system is

- characterized by the shortest distance B, from the origin (0, 0)
to the limit curve at point (X;"¥, x,'*).

For a structure subject to specified temperature and stress
conditions, a set of design coefficients will result in failure at
some exposure time tgop, that results in z= 0. Thus, the
specified design conditions are associated with a specific level
of reliability; i.e., the reliability index B, and, from Eq. (6), a
corresponding failure probability p;. This ties the selected
design factors to the reliability of the component for the
specified conditions.

Conversely, for a specified reliability B, the most likely or
most probable set of design coefficients is the one that is in
closest proximity to the set of best-estimate coefficients. The
optimum set corresponds to the point (x)'*, x;'*) on the limit
curve that is closest to the origin (0, 0), which from Eq. (20)
represents the best-estimate, or most likely, set of conditions for
failure. Note, however, that this set is unique and needs to be
determined on an individual basis for a structure subject to
specified temperature and stress conditions since the limit curve
depends on these conditions.

RELIABILITY-BASED CRACK INITIATION TIME AND
CRACK GROWTH RATE DESIGN COEFFICIENTS

The development of reliability-based crack initiation time
and crack growth rate design coefficients is predicated on the
specification of a target reliability index B that is associated
with an acceptable level of risk expressed in terms of a
probability of failure in accordance with Eq. (6). Once the
target reliability is established, the design factors and design
coefficients are developed.

Evolution of Design Factors and Design Coefficients

The limit curve can be expressed in a dimensionless form
as 2’ = 0, where 2’ = 2/t,,, so that:

Z 5= ti/tgo €Xp(SD; X1) + exp(-SDy X5) - tropltyy =0 (22)

The optimum crack initiation time and crack growth rate
design factors and the resulting design coefficients are
calculated by observing from Eq. (22) and Fig. 1 that, for the
target reliability index Br, the limit curve is uniquely
determined from the following three parameters:

o the standard deviation SD,, of the log-normal crack
initiation time model;

e the standard deviation SD,, of the log-normal crack
growth rate model; and

o the ratio t,/t , of the best-estimate time to crack
initiation to the best-estimate crack growth time from initiation
to failure.

The term tgop/ty, assumes whatever value is required to
achieve a distance f = Py from the origin to the limit curve.
Therefore, the optimum design factors from the reliability-based
procedure depend on the particular application. The ratio ti/ty
is determined on an individual basis for an SCC problem by
calculating the best-estimate times.

The following procedure establishes a general set of design
factor curves:

1. For a specified target reliability B, construct limit
curves for a wide range of ratios ti/t;,. To cover all possible
contingencies, curves have been developed for the range 0.001
< tofty, < 1000. A very low ratio signifies relatively early
initiation (t;,/t,, = O corresponds to an assumption of initiation
at time zero, which is the case for a known, pre-existing crack),
while a very high ratio indicates that the crack initiaton time -
comprises the bulk of the time to failure. The limit curves are
constructed using an iterative procedure with the ratio tgop/ty,
varied until B = Py (see Fig. 1).

2. For each value of the ratio t,,/ty,, determine the most
likely, or optimum, set of standard normal variables. This set is
defined by the point (x,'*, x,"*) on the limit curve that is closest
to the origin (0, 0). This point is at a distance By from the
origin. Generate curves of X;"* Vs. i/t and x2™* vs. Lo/t

3. Determine the bounds associated with the optimum
normal variables. The optimum normal variable x,"* governs
the optimum lower bound on the crack initiation time model,
while the variable x,"* controls the optimum upper bound on the
crack growth rate model. The bounds are determined by the
probabilities p(x,"*) and p(x,"*) from a normal probability table.
For example, the set (x,"*, x,"*) = (-1.282, +1.645) results in
p(x,"*) = 0.10 and p(x,"*) = 0.95. The former represents the
one-sided 90 percent lower bound on the crack initiation time
mode!, while the latter corresponds to the one-sided 95 percent
upper bound on the crack growth rate model. Generate curves

of p(x1'*) vs. tio/tg and p(X2™*) VS. tio/teo.



4. Evaluate the optimum design factors for crack initiation
time and crack growth rate from Egs. (14) and (19),
respectively. That is,

DF; = exp(SD; x,"¥) 23)

DF, = exp(SD; x;'*) (24)

Generate curves of DF; vs. ti/ty, and DF; vs. to/tg.

The most likely, or optimum, crack initiation time and
crack growth rate design coefficients are determined for a
specified value of t,/t,, by:

Aides = Ai DF, (25)
A = A, DF, (26)
X le R ity- B s and Design

Factors

Figure 2 displays plots of the optimum standard variables
x,"* and x,’* as functions of the best-estimate ratio of crack
initiation time to crack growth time t,)/ty, for a target reliability
Br = 1.875 and standard deviations SD; = 2.096 and
SD, =0.701. From Eq. (6), a target reliability Br = 1.875
corresponds to an acceptable level of risk p; = 0.03. Figure 3
gives plots of the corresponding optimum bounds on the crack
initiation time and crack growth rate models. Figures 4 and 5
show piots of the optimum design factors DF;, and DF,,
respectively, for Br = 1.875.
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Figure 2 ~ Optimum Crack Initiation Time and
Crack Growth Rate Standard Normal Variables

Figure 2 shows that the optimum standard normal variables
xi"* and x,’*, associated with the crack initiation time model
and the crack growth rate model, respectively, depend quite
strongly on the best-estimate time to crack initiation relative to
the crack growth time from initiation to failure. The set of

optimum normal variables for Br = 1.875 varies between the
limits (x;*, x,”*) = (0.0, 1.875) when to/t;; — 0 and
(x1"*, x2"*) = (-1.875, 0.0) as t/t;, = . From Fig. 3, the
corresponding limiting values of the optimum bounds are
p(xi*) = 0.5, p(x’*) = 0970 when toftg, — 0, and
p(x,"*) = 0.030, p(x2"*) = 0.5 as t,/ty, —> oo,
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Figure 3 — Optimum Crack Initiation Time and
Crack Growth Rate Bounds

The t;/ty, — O limits show that if the crack initiation time is
very small and the time to failure consists almost entirely of
growth of the crack to its critical depth, the optimum bound on
the initiation time model approaches the 50 percent bound (i.e.,
the best-estimate initiation time is optimum), while the optimum
upper bound on the crack growth rate model approaches 97
percent.

The t;o/ty, — o Jimits, on the other hand, indicate that if the
time to failure consists almost entirely of the time to crack
initiation with growth of the crack to its critical depth occurring
very quickly, the optimum lower bound on the crack initiation
time model approaches 97 percent [p(x,"*)=0.030] for
Br=1.875. The optimum bound on the crack growth rate
model approaches the 50 percent best-estimate bound.

If the best-estimate total time to failure were evenly split
between the time to crack initiation and the growth time from
initiation to failure (i.e., toftg; = 1), the optimum initiation
time/growth rate bounds are 87.4/93.1. Use of these bounds
under these conditions ensure that the target reliability
Br = 1.875 is maintained and the corresponding acceptable level
of risk is not exceeded.

The optimum bounds on the crack initiation time and crack
growth rate models are not fixed quantities, but are functions of
the best-estimate ratio of the time to crack initiation to the time
period from initiation to growth of the crack to its critical depth.
This process assures that the target reliability is attained in all
cases, and that the most likely design-basis initiation and failure
times corresponding to the target reliability are calculated.
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Figure 5 — Optimum Crack Growth Rate
Design Factor

Figure 4 shows that the design factor DF;, applied to the
best-estimate crack initiation time coefficient varies from 1.0 at
tiofteo = 0 to 0.020 for large values of tip/ty,. Hence, when the
best-estimate time to crack initiation is very short relative to the
total time to failure, the initiation time design factor approaches
unity as a result of the decreased importance of crack initiation
relative to crack growth. The limiting case would be the
analysis of a pre-existing stress corrosion crack for which only a
crack growth calculation would be conducted. At the other
extreme, the design factor on the crack initiation time is quite
significant if the total time to failure consists mostly of the time
to initiation and crack growth to the critical crack depth occurs
relatively quickly.

Figure 5 shows that the design factor DF;, applied to the
best-estimate crack growth rate coefficient varies from the
asymptotic value 3.722 as t;/ty, — 0 to 1.0 for large values of
ti/teo- When the bulk of the total time to failure consists of the
time to initiation and crack growth to the critical crack depth
occurs quickly, the crack growth rate design factor approaches
unity as a result of the decreased importance of crack growth
relative to crack initiation. At the other extreme, the design
factor on crack growth rate is relatively large if the total time to
failure consists mostly of crack growth.

ILLUSTRATIVE APPLICATIONS

The curves in Fig. 2 are used to determine the optimum set
of standard normal variables (x,’*, x,'*) for the target reliability
Br = 1.875 and standard deviations SD; = 2.096 and
SD, =0.701. The corresponding optimum bounds on crack
initiation time and crack growth rate, p(x,*) and p(xy’*),
respectively, are plotted in Fig. 3, while Figs. 4 and 5 show
plots of the design factors DF; and DF;, respectively, applied to
the best-estimate values of the crack initiation time and crack

-growth rate coefficients. The steps necessary to determine the

reliability-based design factors are:

I. Perform a best-estimate calculation to determine the
crack initiation time t,, the crack growth time tg,, and the ratio
lig/tgo.

2. From the x;"* vs. ti/ty, and x;"* vs. t/t,, curves plotted
in Fig. 2, determine x,"* and x,’* for the best-estimate ratio
tio/ty, calculated in Step 1.

3. From either the p(X'*) vs. tiftg and p(x2™*) vs. Gioftg
curves plotted in Fig. 3 or a normal probability table, determine
p(x;"*) and p(x,"*) for the best-estimate ratio t,,/t,, calculated in
Step 1. This is an optional step that establishes the statistical
bounds and thus serves to provide some insight into the results.

4. Determine DF,; and DF,; for the best-estimate ratio to/tg
calculated in Step 1. DF; is evaluated from either the design
factor curve for crack initiation time DF; vs. t;o/ty, plotted in Fig.
4 or Eq. (23), while DF, is determined either from the Fig. 5
curve for crack growth rate DF; vs. t,,/t,, or Eq. (24).

Table 1 gives the results of these calculations for two
illustrative problems. Problem 1 illustrates the generation of
reliability-based design factors for a case in which the total time
to failure calculated on a best-estimate basis consists mostly of
the time to initiation and crack growth to the critical crack depth
occurs relatively quickly. Problem 2, on the other hand, applies
to the case of the best-estimate total time to failure split rather
eveniy between the time to crack initiation and the growth time
from initiation to failure.



Table 1. Design Factor Results for
{llustrative Problems

Problem 1 2
tig (days) 30,970 4,650
teo (days) 5,390 4,960
Loftes 5.746 0.938
x,’* -1.540 -1.128
X * 1.069 1.498
p(x,'%) 0.062 0.130
p(x3'™) 0.858 0.933
DF, 0.040 0.094
DF, 2.116 2.858
t; (days) 1,230 440
t, (days) 2,550 1,570
ti+t. (days) 3,780 2,010

The information given in Table 1 leads to the following
?bservations on the application of statistical bounds for the two
problems:

Problem 1. The calculated best-estimate ratio
ioftyo=5.746. The best-estimate total time to failure is

omprised mostly of the time to crack initiation; the crack
owth time period from initiation to failure is relatively short.

The importance of crack initiation relative to crack growth is

Elnhanced in this case and the optimum lower, bound applied to
¢ initiation time model, therefore, is more stringent. The
ptimum lower bound on the initiation time model is 93.8
ercent [p(x,"*) = 0.062], while the optimum upper bound on
e crack growth rate model is 85.8 percent.

The design factors applied to the best-estimate crack
initiation time and crack growth rate depend strongly on the
}'espective variances of these variables. The relatively high
standard deviation of the crack initiation time distribution
function produces a design-basis crack initiation time that for
his case is a factor of 25 lower than the best-estimate crack
nitiation time. The design-basis crack growth time, however, is
Ionly a factor of 2.1 lower than the best-estimate crack growth
time. This illustrates the influence of the statistics of the
individual input variables on the calculated design factors.

Problem 2. The best-estimate crack initiation time is
slightly less than the crack growth to failure time, so that the

|i‘atio o/t = 0.938. Hence, the importance of crack growth is
on a par with that of crack initiation. The result is an optimum
lower bound of 87.0 percent on the initiation time model and an
optimum upper bound of 93.3 percent on the crack growth rate

Inodel.

! As with Problem 1, the relatively high variance associated
with the crack initiation time model yields a design-basis crack
initiation time that is much less than the best-estimate time,
although in this case the factor is 10.6. The design-basis crack

;growth time is a factor of 3.2 lower than the best-estimate crack
i

4
i

growth time. The results of this problem illustrate the effects of
both the input variable statistics and the best-estimate crack
growth time relative to the crack initiation time.

General Observation. These problems demonstrate that
the design-basis crack initiation time and crack growth rate
design factors and coefficients obtained using reliability-based
methodology are not fixed as they are in the traditional
deterministic procedures.  Rather, for a specified target
reliability, they are influenced by the relative contributions to
the time to failure of the initiation time and the time from crack
initiation to growth to the critical depth, as well as by the
statistics of the input variables.

CONCLUSIONS .

1. First-order reliability methodology is a valuable tool for
relating design factors used in deterministic structural analysis
to the structural reliability expressed in terms of a reliability
index. This approach utilizes the statistics of the key input
parameters and aids in the performance and interpretation of
the results of sensitivity studies. The reliability methods are
used to determine an optimum set of design factors or statistical
bounds corresponding to a specified reliability index. These
bounds are the most probable values of the input parameters
associated with the failure mechanism of the structure under
specified loading and temperature conditions.

2. Methodology is in place to relate design factors used in
deterministic evaluations of stress corrosion cracking to a
specified level of risk. The level of risk is characterized by a
probability of failure that is inversely related to the reliability
index. The statistics of the input parameters to which design
factors are assigned (in this case, the crack intiation time and
the crack growth rate) enable the effects of each parameter on
the reliability index or the risk to be determined. A set of
design factors implies an acceptable level of risk and an
acknowledgement that the probability of failure, although small,
is finite.

3. Crack initiation time and crack growth rate design
factors applied to the respective models are developed using
reliability-based methods to assure that in all cases and under
any conditions of temperature, stress, and geometry, a known,
acceptable level of risk is assured. The statistical bounds used
to generate the design factors, however, are not fixed. They are
problem-dependent and determined specifically for each
application.

4. A target reliability index related to an acceptable
probability of failure must be specified in order to develop
reliability-based design factors.

5. For a specified target reliability, design factors on crack
initiation time and crack growth rate are determined from (1)
the standard deviation of the log-normal crack initiation time
model, (2) the standard deviation of the log-normal crack
growth rate model, and (3) a best-estimate calculation of the



ratio of the crack initiation time to the time from initiation to
growth of the crack to a critical depth that defines failure.

6. Implementation of the reliability-based procedure
requires two sets of calculations: (1) best-estimate calculations
to determine the ratio of crack initiation time to crack growth
time and thus the design factors, and (2) design-basis
calculations to determine crack initiation time and failure time
using the computed design factors.
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