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Introduction 
 
This note presents the technical basis for a proposed strain-rate and temperature 
independent fatigue design curve for austenitic stainless steels. 
 
Statistical Model 
 
Fatigue data on austenitic stainless steels in LWR environments were obtained from 
References 1-15.  Data obtained from sensitized material and tested in high oxygen water 
were excluded from the database.  The remaining fatigue data (383 failure points) were fit 
to the following empirical model using nonlinear least squares: 
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  is the strain amplitude (in/in)aε  
 max  is the maximum stress in the cycle (ksi)σ  
  E is the elastic modulus (ksi)
  4

0 9.068 10xε −=
  2.097b = −

  0.109      for wrought steels and welds
0.0286    for cast steels

P
P

=
=

  149.0    in PWR water
383.7    in BWR water

k
k

=
=

 ( )exp      (Zener-Hollomon parameter)QZ RTε=  

     is the strain rate (in/in/s)ε  



  35,170 cal/molQ =
      is the absolute temperature (K)T
      is the gas constant (1.987 cal/mol-K)R
  0.2233m = −
 
A plot comparing the observed and predicted cycles to failure is shown in Figure 1.  
Predicted lives were generally within a factor of two of the measured fatigue life.  Figure 2 
shows a plot of the residuals (i.e., the difference between the observed and predicted 
values) versus the predicted fatigue life.  As shown in this plot, there is no systematic 
variation of the residuals with predicted life.  Further, the assumption of constant variance 
with fatigue life inherent in least squares estimation is validated.  Figures 3-6 show plots of 
the residuals versus the independent variables (e.g., temperature, strain rate, etc.).  As 
shown in these plots, there is no significant systematic bias in the residuals with changes 
in any of the independent variables. 
 
In developing the model, data scatter was not assumed constant with fatigue life, but 
instead was assumed to change (increase) with increasing fatigue life.  The increasing 
data scatter with fatigue life was modeled using the Box-Cox transformation (Reference 
16).  The variation in data scatter with fatigue life determined from the data is shown in 
Figure 7.  Data scatter, defined as the difference between the median curve and the 5% 
one-sided lower prediction limit, varies from a factor on approximately 1.4 on life at a 
median fatigue life of ten cycles to a factor of approximately 2.4 on life at a median fatigue 
life of 107 cycles. 
 
Development of Lower Bound, Mean Stress Corrected Fatigue Curve 
 
Since calculating the temperature and strain rate in any given transient is difficult, a lower 
bound curve applicable to all transients was developed from Equation (1) assuming a 
temperature of 600°F and a strain rate of 10-6 in/in/s.  This temperature and strain rate is 
expected to provide conservative fatigue life predictions for the vast majority of transients.  
The choices made for these parameters are discussed in the next section.  The proposed 
curve was developed assuming wrought material behavior in low oxygen water and is 
appropriate for use in the design of pressure vessel and piping components.  Examination 
of Equation (1) indicates that welded stainless steel is expected to provide longer fatigue 
lives for a given stress and strain amplitude.  Cast stainless steel also provides better 
fatigue performance, except at high temperatures and very low strain rates.  
Consequently, assuming wrought material behavior is conservative for both welded and 
cast austenitic stainless steels.  Equation (1) predicts that the fatigue strength in high 
oxygen (BWR) water is slightly better than in low oxygen (PWR) water and so assuming a 
low oxygen water environment is also conservative. 
 
The Smith-Watson-Topper (SWT) parameter was used in correcting for the maximum 
effect of mean stress.  The ASME Boiler & Pressure Vessel Code Criteria Document 
(Reference 17) recommends use of either the modified Goodman approach or the 
Peterson cubic equation method for mean stress adjustment of the fatigue curve.  
However, the SWT parameter was used instead for the reasons discussed in References 
18 and 19.  The exponents in the SWT parameter (i.e., 0.3 and 0.7 in Equation (1)) were 
determined from tests, in air, performed using both zero and positive mean strains.  In 
correcting for the maximum effect of mean stress, the maximum stress was constrained to 
be at least equal to the cyclic yield strength (38 ksi) at 600°F for a strain rate of 10-6 
in/in/s. 



 
The stress amplitude (ksi) can be estimated from the following equation: 
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The effect of the mean stress correction on the lower bound curve is shown in Figure 8.  
At 106 cycles, the correction is less than a factor of 20% on the strain amplitude. 
 
Design Curve Development 
 
For application to design of nuclear power plant components, it is difficult to accurately 
establish operating temperature and strain-rate conditions for every anticipated and 
unanticipated operating transient in a given plant.  Coupled with the ASME B&PV Section 
III (NB-3222.4(e)(5)) requirement to superimpose stress cycles of various origins that 
produce a total stress difference range greater than the stress ranges of the individual 
cycles makes it very desirable to have temperature and strain rate independent fatigue 
curves. 
 
For these reasons, fatigue design curves are developed for the conditions of 600°F and 
low strain rate (10-6 in/in/s).  These assumptions are somewhat arbitrary but are judged to 
reasonably account for temperature and strain rate effects in the design stages of Section 
III components.  The benefits of this approach are a simpler design procedure and a plant 
that is not strain-rate dependent and can be safely operated within the temperature range 
applicable to ASME B&PV Section III construction. 
 
Using these assumed conditions, the fatigue data are compared to the lower bound curve 
in Figure 9.  All the data at low strain amplitudes are from tests at relatively high strain 
rates, whereas the lower bound curve shown in the figures is for a low strain rate (10-6 
in/in/s).  The large apparent margin at low strain amplitudes is due to the lack of data at 
both low strain amplitudes and low strain rates.  The Equation (1) model assumes that the 
effect of water environments is the same at both high and low strain amplitudes. 
 
Proposed Design Curve  
 
A proposed fatigue design curve was developed from the lower bound curve by applying a 
factor of five on cycles.  The factor of five on cycles is meant to account for surface finish, 
size effects, and variable amplitude loading effects (the effects of water environment and 
data scatter are already accounted for by the lower bound curve).  The proposed design 
curve is compared to the current ASME design curve in the table below and in Figure 10. 



 

Cycles Stress 
Amplitude (ksi) ASME (ksi) 

10 276 708 
20 199 512 
50 132 345 

100 98.5 261 
200 72.5 201 
500 51.5 148 

1000 41.7 119 
2000 35.2 97 
5000 29.7 76 

10000 27.0 64 
20000 25.1 55.5 
50000 23.5 46.3 

100000 22.7 40.8 
200000 22.1 35.9 
500000 21.6 31.0 

1000000 21.4 28.3 
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Figure 1  Observed versus predicted cycles to failure. 
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Figure 2  Residuals versus predicted fatigue life.  The best-fit line to the data is 
shown. 
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Figure 3  Residuals versus the Zener-Hollomon parameter.  The best-fit line to the 
data is shown. 
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Figure 4  Residuals versus test temperature.  The best-fit line to the data is shown. 
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Figure 5  Residuals versus strain rate.  The best-fit line to the data is shown. 
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Figure 6  Residuals versus water oxygen level.  The best-fit line to the data is 
shown. 
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Figure 7  Factor on life needed to account for data scatter (i.e., the difference 
between the median and lower bound curve). 
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Figure 8  Lower bound curves for wrought steels in low oxygen water at 600°F and 
a strain rate of 10-6 s-1. 
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Figure 9  Fatigue data on wrought steels in low oxygen water compared to the lower 
bound (600°F, 10-6 s-1) curve. 
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Figure 10  Comparison of the potential design curve to the ASME design curve. 
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