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Abstract

A new method for the solution of the damped Burgers’ equation is described. The
marker method relies on the definition of a convective field associated with the underlying
partial differential equation; the information about the approximate solution is associated
with the response of an ensemble of markers to this convective field. Some key aspects of
the method, such as the selection of the shape function and the initial loading, are discussed
in some details. The marker method is applicable to a general class of nonlinear dispersive
partial differential equations.

1 Introduction

Marker methods have been used for a long time in various disciplines (e.g plasma physics,
astrophysics, etc.) to give numerical solution of purely convective problems [7,8]. Marker
methods, sometime called particle methods, have been successfully applied to various phys-

~ ical problems such as the dynamics of galaxies [1], the properties of ionic microcrystals [2],
the anomalous diffusion [3] and the resonant effects in Langmuir modes [5] in plasmas and
the electron flow in semiconductors [4]. The interested reader can consult the review paper
of Dawson [6] and references therein.

In these methods an ensemble of markers (or ‘superparticles’) is used to approximate
the solution; the region of interest covered by the markers defines the phase space asso-
ciated with the solution. Each marker is represented through its weight and position in
phase space. The markers are advanced in time according to the characteristics (‘equations
of motion’) of the underlying partial differential equation (PDE) associated with the prob-
lem. Marker methods are particularly useful for collisionless problems [7-9,12]. However,
in many applications of interest (e.g turbulent plasmas), diffusive processes can be impor-
tant. Marker methods usually include diffusive effects in a perturbative fashion [10,11]:
in the first step, the markers are evolved in phase space according to the collisionless (z.e.
purely convective) dynamics; in the second step, diffusive effects are included by a ran-
domization of the markers’ weights and/or positions according to a prescribed probability
distribution. Although this method agrees with physical intuition, it is, from the numerical
point of view, quite noisy and possibly inaccurate. The marker method presented in this
paper allows for the simultancous treatment of convective and diffusive effects.



The main idea behind the marker method for the solution of a given PDE is to rewrite it
as a conservation equation with a generalized convective velocity. In general (even in linear
cases), the generalized convective velocity depends on the solution of the PDE itself. Each
marker, which carries the information of the solution of the PDE through its weight and
its position, is advanced in time using a Lagrangian scheme. The generalized convective
velocity mentioned earlier is computed through the information contained in the ensemble
of markers and through the so-called shape function.

As it will become apparent in the next sections, the marker method can actually be ap-
plied to solve a more general class of PDEs that are encountered commonly in physical and
engineering sciences.

The marker method, unlike the finite difference and the finite element methods, does not
rely on the concept of a grid (of course one can, if needed, reconstruct the solution on
a fixed grid through the collective information associated with the markers). Increased
resolution can be achieved in a natural way by locally increasing the number of markers
and/or modifying the initial loading of the markers. Unlike the finite difference method,
the marker method can be trivially extended to multi-dimensional problems.

This paper is organized as follows; in section 2, the marker method is described in the
context of the solution of a one-dimensional linear diffusion equation. The shape function,
which is involved in the evaluation of the approximate solution, is analyzed in some detail
and a numerical example is presented. The marker method is applied to the nonlinear (un-
damped) Burgers’ equation [14] in section 3. The damped Burgers’s equation is discussed
in section 4. Concluding remarks are given in section 5.

2 Marker Method

The purpose of this paper is to present a new numerical method for the solution of the
nonlinear damped Burgers’ equation given by
of of _ & f
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with initial conditions f(z,0) = fo(z) and p and v are positive constants. However since
exact solutions to the standard form of Burgers’ equation [14]
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are known, we have found instructive to consider a numerical study of this equation first.
As mentioned in the Introduction, particle methods are usually applied to purely con-
vective problems [i.e. by neglecting the right-hand side in Eq.(1)]. Therefore, the new
aspect of the marker method is best described in the context of a simple example: the
linear diffusion equation which is a limiting case of Eq.(1). An analysis of the smoothing
approximation obtained through the shape function, which represents a crucial aspect of
the method, is also discussed in this section. A specific numerical application of the marker

method to the case of a one-dimensional linear diffusion equation is given.

2.1 Basic Idea

For illustrative purposes, we describe the marker method for one-dimensional problems
(as mentioned in the Introduction, the generalization to multi-dimensional problems is



straightforward). We consider an ensemble of N markers. Each marker k is defined through
its position zx and its weight Wj. The solution of a given one-dimensional PDE is found
by allowing the set {(zx, Wi);k=1,---, N} to evolve in time according to a generalized
nonlinear convective velocity. The generalized convective velocity usually depends on the
solution itself and a form of convolution of the approximate solution with a shape function
is required.

Consider the one-dimensional diffusion equation
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subject to the initial condition fo(z) = f(z,0). The main idea behind the marker method
is to write Eq.(3) as a (nonlinear) conservation equation
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For clarity, f(x,t) is used to denote the exact solution of Eq.(3) whereas F'(z, t) represents
its approximation. The function f can be approximated by an ensemble of markers (or
‘superparticles’) where each marker j has an associated weight, W}, and a time-dependent
position, z;(t). As in standard particle methods, such an approximation can be written in
terms of delta functions [7, 8]

N
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j=1

where §(z) is the usual Kronecker delta function; the hat notation indicates that the rep-
resentation is singular. For example, 1/ ﬁ(:z:, t) can be singular in region where f(z,t) is
nonzero; furthermore, the ratio of delta functions is not defined. Substituting the dis-
crete representation (6) in Eq.(4) yields the characteristics associated with the generalized
velocity V

dej/dt = V(z;(t),t)
LEJ(O) = xoj

}jzl,...,N (7)

As noted above, V' « OF /0x/ F is not well defined. As in conventional particle methods,
a smoothed version of F is obtained by taking the convolution of Eq.(6) with a shape
function

. N
F(z,t) = (se x ﬁ) (2,8) = 3 W;Se(e —25) , (8)
j=1

where S¢(z) = S(z/€)/e and [ Sdz = 1; € is termed the support parameter. Using repre-
sentation (8) in the trajectory equations, Eq.(7), one gets




where a prime denotes a derivative with respect to the argument and the initial positions
are 2;(0) = zoj. Note that the weights in Eq.(9) do not vary in time; in particular, if all
the weights are initially equal, then all the information about the approximation F(z, )
is contained in the marker positions. The equations of motion (9) can be integrated us-
ing standard ordinary differential equation (ODE) techniques, such as the Runge-Kutta
method [18], as used in this paper.

Before considering a numerical illustration of the marker method, several observations
are in order. Clearly the accuracy of the marker method depends crucially on the shape
function and its support parameter, € (see next section). The number of markers, the
method of integration of the equations of motion, the initial loading of the ensemble
{(zk, Wi);k=1,---, N} and the time step of integration are parameters that also influence
the accuracy of the marker method. In some sense, the positions of the markers define a
moving grid as far as the approximate solution is concerned. Of course one can reconstruct
the approximate solution F' on a fixed grid {Xg;9 =1,---, Ny} at time ¢ by invoking the
representation (8):

N
Fylt) = F(Xg1) = 3 WiS(X, — (1))
j=1

The marker method can be easily generalized to nonlinear dispersive PDEs such as the
Korteweg de Vries (KdV) equation [13] and Burgers’ equation. For example, the KdV
equation [13]
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can be written as a nonlinear conservation equation [Eq.(4)] with a generalized velocity
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as it can be verified by direct substitution. Therefore the marker method is very versatile in
its applications, whereas conventional (e.g. finite difference) methods usually require sub-
stantial modifications to account for additional nonlinear or dispersive terms, for example.
This is illustrated in section 3 where the marker method is shown to be easily generalized
to the case of the nonlinear Burgers’ equation.

V(z,t) = 3f(z,t) +

2.2 Analysis of the Smoothing Approximation and Initial
Loading

As mentioned in the previous section, the accuracy of the marker method depends crucially
“on the properties of the smoothed PDE’s approximate solution. Therefore it is important
to study the impact of the shape function and its support parameter € on test functions.
As it will become apparent below, the accuracy of the smoothing approximation is also
related to the initial loading of the markers. The smoothed approximation of the exact
solution f(z) is given by

N
F(z) = Z W;Sc(z — ;) (10)
j=1



where Sc(z) = S(x/€)/e and the shape function S(z) with finite support satisfies the
normalization condition
1
/ S(x)dzx =
-1

and S(z) = 0 for |z| > 1. In some cases, there are advantages in using shape functions with
infinite support, in which case the normalization condition is of the form jj;o Sdx = 1.
Apart from the actual form of the shape function, there is some freedom in selecting the
value of the support parameter e. However one can estimate an appropriate value for ¢
based on the following considerations. For illustrative purposes, consider a simulation with
N markers that are initially distributed uniformly in the interval z € [—L, L]; therefore,
at t = 0, the average distance between markers is h = 2L/N. If the support parameter
is such that ¢ < h, then S (z; — xx) o< S((z; — zx)/€) = 0 for all markers j # k; this
implies that the position of each marker will be independent of the positions of the other
markers at least at ¢ = 0. We conclude that the support parameter must be larger than
the average distance between markers, at least in the average sense. In addition, the value
of €, which is akin to a grid spacing in the finite difference method, must be chosen such as
to accurately resolve the spatial scale length of f(z). In summary, if A denotes the (known
or estimated) spatial scale length of f(z) and h is the average distance between markers,
the support parameter, €, must satisfy the following inequality

h€eg .

There is some freedom in selecting a shape function. Typically one requires some smooth-
ness properties and/or ease of computation (for example, a Gaussian shape function is
smoother than a hat shape function, but it is computationally more demanding to evalu-
ate). Below is a set of shape functions that are defined on the interval [-1, +1]:

Si(z) = % (gate function)

So(z) = 1—|z| (hat function)

S3(z) = —Z (1—z?) (quadratic polynomial)

Se(z) = % (1 —2%? (quartic polynomial) (11)
Ss(z) = p(l—|z|)e” @ (hat/Gaussian shape function)

Se(z) = B(l—z ) —a? (quartic polynomial/Gaussian shape function)

where p = (v/merf(1)+1/e —1)"" and g = 2/ (3 erf(1) — 1/e) are constants of normaliza-
tion, and erf(z) denotes the error function

2 T
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The second factor that affects the approximation of f(xz) is the initial distribution of the
position of the markers and their associated weights (refered to as the initial loading). There
are two basic approaches to the initialization of the ensemble {(z;, W;); j=1,---,N}. In
the first approach, the markers are uniformly distributed in space. Using the approximation
of

/f(x)d:c ~ Zf(a:j)A:v
7



where Az is the distance between two consecutive markers, and noting that [see Eq.(6)]
/ Fdz=>"W;,
J
it follows that
W; = f(z;)Az
zTj1 —z; = Ax=const.

For the case of a uniform loading we have the relation of Az = h. In the second approach,
each marker has the same weight, but the spatial distribution of the markers is not uniform.

+00
If there are N markers, the marker weight is then W; = /N whereo = [ fdz. In order to
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determine the spatial distribution of the markers, it is convenient to introduce the variable
o Lo fla)is
J2 fz)da
which, by construction, is a positive-definite quan’'™ - in the unit interval. A uniform

distribution in &, that is & = (j — 1 )/N (Vj), yield

o =0 ((f2 ey 5 )

W, =

(12)
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where g~! denotes the inverse of g(z) = [*__ f(2/)d2’. As anumerical illustration, consider
the function

2

f(z) = ze™,

in the interval « € [0, zg], zo > 0. The initialization based on a set of uniformly distributed
z; yields

z; = (j—1/2)h,
W, = zjeih,

where h = zo/N. Alternatively, one can demand that each marker carries an equal weight;
following the procedure described above [Eq.(12)] one obtains

= (T )

1

Fig. 1 shows the smoothed approximation of f(z) for a uniform spatial loading (dotted
line) and a nonuniform spatial loading (dashed line) using a quadratic shape function
with support parameter ¢ = 0.1 for a set of N = 32 markers. The plain line represents
the exact function. For the same parameters, the quartic shape function, which satisfies
S'(z = £1) = 0, yields a better approximation (Fig. 2). Further improvement (Fig. 3) can
be achieved using the shape function based on a quartic polynomial and a Gaussian function
[S(z) = Ss(z); see Eq.(11)]. Of course, in all the above cases, smoother approximations



can be obtained by increasing the number of markers N. Another parameter affecting the
quality of the approximation is the support parameter, e. Fig. 4 is the same as Fig. 2
except that the support parameter has been doubled (¢ = 0.2). Clearly a much better
agreement between the approximated functions and the exact function is found. If the
support parameter is further increased the smoothing effect of S(z) becomes too important
and the quality of the approximated function degrades.

2.3 Numerical Example for the Linear Diffusion Equation

In this section, we apply the marker method for the diffusion equation, Eq.(3), with initial
conditions

I

Pl = 1<t 4

= 0;|z|>1

The solution of the diffusion equation, Eq.(3), with initial conditions (14) is easily found
using Laplace transforms

1 +00

fot) = = | fol@)exp(~(z—&)/41)dg
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where, as before, erf(z) is the error function with argument z. As mentioned in the previous
section, there is some freedom in the choice of the shape function S(z). Here we consider
a shape function with infinite support (superGaussian)

2
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The equations of motion (9) have been integrated using a second-order Runge-Kutta
method with a fixed time step. The approximate solution has been reconstructed on a
moving grid defined by the marker positions x(¢t) = {z;(t); j=1,---, N}. Note that one
can determine the approximate solution on a fixed, prescribed grid; however this approach
involves the shape function (or some other form of interpolation) that further reduces the

—T

S7(z) (15)

accuracy of the numerical scheme. Fig.(5) shows the exact solutions (plain line: ¢ = 2.0;
dotted line: ¢t = 4.0) and the approximate solutions (triangles: ¢t = 2.0; squares: ¢t = 4.0)
of the diffusion equation for a set of NV = 100 markers. The initial condition is the square
profile of Eq.(14). The shape function is a superGaussian [Eq.(15)]; other parameters are
At =0.01, ¢ = 1/3 and L = 14.0. We note the excellent agreement of the approximate
solution with the exact solutions. As it can be expected, slight errors do appear when
F'+— 0 although their magnitude are small.

Although not shown here, we have noted that the use of a certain shape functions with
finite support can sometime lead to a clustering effect in the marker position, that is the
solution appears to display an additional scale length associated with the support param-
eter. In general, the use of shape function with infinite support appear to improve the
accuracy of the approximate solution.

3 Marker Method for Burgers’ Equation

In this section, we apply the marker method to the solution of the nonlinear Burgers
equation. Following the methodology presented in the previous section, the nonlinear



Burgers equation can be written as a nonlinear conservation equation

af 0 _
o o V=0
where
_f _nof
V_2 f oz (16)

It is interesting to note that the nonlinear term in Burgers’ equation appears as a linear
term in the convective velocity [first term in Eq.(16)] whereas the linear term in Eq.(2),
which accounts for the diffusive process, is represented as a nonlinear term in f [second term
in Eq.(16)]. Before presenting numerical results pertaining to the full nonlinear Burgers’
equation, we consider the ‘wave breaking’ effect associated with the quasilinear case [ = 0
in Eq.(2)]

of of
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with initial condition f(z,0) = fo(z). The presence of the diffusive term in the original
Burgers’ equation prevents the solution from becoming multiple valued. The exact solution
of Eq.(17) is

fz,t) = folz = ft) . (18)

The explicit solution of Eq.(18) for f amounts to a root finding problem. In this paper
the bisection method [18] has been used to solve Eq.(18). In the present case, the initial
condition was chosen as fo(z) = sech?z. The solution of the quasilinear problem (17)
provides a simple theoretical description of a shock wave. The time at which the shock
forms may be estimated by identifying it with the earliest time, t., at which the profile
f(z,t) becomes vertical, that is, the time at which 0f/dz = oo for some point on the curve.
From Eq.(18) we have the general relation

fo

o1 —
0f/ox L+tf)

where a prime denotes a differentiation with respect to the argument. For the specific
initial profile of fo(z) = sech®z, we have folz) = —2sech?z tanhz. On using the largest
negative value of this expression (namely ., = —4v/3/9) to obtain the earliest time, we
find ¢, = 1.299. Fig.6 shows the the initial profile (thick plain line) and the exact solutions
at t = 0.4,0.8,1.2 are shown by thin plain lines. The shape function used is a superGaus-
sian with infinite support. The symbols represents the approximate solutions based on the
markers’ positions. We note that the marker method is able to capture the transition just
before the wave breaking phenomenon very accurately; the algorithm fails around ¢ ~ 1.3
in good agreement with our estimate for the critical time t.,. We would like to point out
that the complexity of the algorithin for this nonlinear quasilinear problem is the same as
that of the linear diffusion equation discussed in the previous section. This is in contrast
with finite difference methods for which the linear diffusion equation and the nonlinear
quaslinear problem (17) would require different algorithms.

Having considered the limit cases of Eq.(2), we now present a numerical example for the
full nonlinear Burgers’ equation. Given the initial profile of

fol@) = f(2,0)= 5 (4~ dtanh(z/N) ,



where p, A and X are constants, the exact solution of Burgers’s equation is (see Appendix)

2a eutaz—ax +b e/,ntbz—bx +e eutCZ«m:

flz,t) =2u : (19)

9 ehta?—az + eHtb?—bx + ebtc?—cz
where a = A/2\, b = a+ 2/) and ¢ = a — 2/\. Fig.7 shows the exact (thin plain lines)
and approximate (symbols) solutions at ¢ = 0, ¢ = 100 and ¢ = 200. The simulation has
been carried out with N = 256 markers (with an initial uniform spatial distribution) and
a time step of integration At = 0.1. Other parameters are: A = 4.0, A = 7.0 and p = 0.1.
We note that the marker method is able to capture the steepening of the front with a very
good accuracy.

4 Marker Method for the Damped Burgers’ Equa-
tion
In this section, we apply the marker method to the damped Burgers’ equation

of of o f
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where v > 0 is a constant. This equation has been used in fluid mechanics to model
diffusive waves subjected to dissipation [15]. The introduction of a (linear) damping term
[first term on the righ-hand side of Eq.(20)] does modify the marker method in a subtle
way. For example, consider the simpler equation of
of
= 21
=g, (21)
which, given an initial profile fo(z) = f(z,0), admits the exact solution of f(z,t) =
e V! fo(z). The marker method can be applied to Eq.(21); the convective velocity is given
by

v T
V=— / F(z' t)d' . (22)
FJ
The main difference with the previous examples is that the convective velocity now depends

on the approximation solution and its integral. Using the super-Gaussian shape function
S(z) = (3/2 — x%)e~*"/ /7, the explicit form of the convective velocity reads

;Wﬂﬂ(%)
V(z,t) = ve m (23)
where z; = zj(z) = (r — z;)/e and
vie)= [ 8@ = 5 L+ smaert(fa)] + 5 <=

Here sgn(z) is the sign of z. The difficulty with the marker method in this case is due to the
behavior of the convective velocity for > 1. For example, if the initial profile is a localized
Gaussian, fy(z) = e%°, the convective velocity, Eq.(22), for large positive z becomes
exponentially large, V ~ ¢®*. In constrast, the convective velocity associated with the
diffusion equation (9f/0t = 0%f/ 8:1:2), for the same initial profile, increases linearly with



z. Fig.8 shows the approximate and exact solutions of Eq.(21) based on a set of N = 256
markers; the initial profile was chosen as fo(z) = sech®z. Although the approximate
solution is in excellent agreement with the exact solution for x < 0, this is clearly not the
case for z > 1. The convective velocity for z > 1 becomes very large and the tail of F(z,1)
for large x becomes ‘depleted’ of its markers. It is worth noting that the tail of F' does not
contain useful information since F' goes to zero there. The singular behavior for z > 1 can
be alleviated by introducing a threshold in the initial condition

fo(z) = & + sech?z |

where § > 0. Subtracting e “*§ from the numerical solution then yields F(z,t). Fig.9 is
the same as Fig.8 except that a non-zero threshold § = 1.0 has been used. For clarity the
factor e !§ has not been substracted from the numerical solution. Clearly the approximate
solution is now in excellent agreement with the exact solution.

The convective velocity associated with the damped Burgers’s equation, Eq.(20) can be
written as

F(d' t)ds’
P LoF J,; (2, t)dz
2 For 7 F k
or, in explicit form, as
. L 2 WiS(%) > Wih(z))
_ L ooy L j
V=g 2WiSE) - g ey (24)
J 7 ;

where z; = (z — z;)/e and a prime denotes a derivative with respect to the argument.
There is no known exact solution of the damped Burgers’ equation. However accurate
approximate solutions to Eq.(20) do exist. For example, Malfliet developed the so-called
tanh method [16,17] to solve certain dispersive equations such as the damped Burgers’
equation. He showed that the approximate solution of Eq.(20) can be written as [17]

fla,t) > 2ce™ (1= €) [L +as(t)€3(1+ &) +as(t)°(1+€) +ar(ET (L +&) +-- ], (25)

where ¢ = tanh [¢(z — (2¢/v)(1 — e7*))] and

1
a’3(t) = 3 (e—ut - 1) )
3
as(t) = —6—61—6—2 (ve™ + Bc?e™?! — 40c%e™"" + 32¢7) .

Here 1/c is a constant which plays the role of a characteristic wavelength. Fig.10 shows the
approximate solution of the damped Burgers’s equation using the marker method (sym-
bols). The plain lines represent the approximate analytical solution given by Eq.(25). The
parameters are: v = 0.05, ¢ = 1.0, At = 0.01, § = 1/10 (threshold) and support parameter
e = vh. We note a satisfactory agreement between the numerical and analytical solutions.

An important aspect of the method is its convergence with the number of markers. For
the purpose of studying the convergence of the marker method, we define the L? norm of
the algebraic error as

M 1/2

U(t§ N) = |0z Z (f(mk(t>> t) - Fk)Q ) (26)



where x(t) is the position of the marker at time ¢, M is the total number of markers that
satisfies Xpin < Zk < Xmax and 62 = (Xmax — Xmin) /M; here Xpin and Xpax are free
parameters. Fig.11 shows the L? norm of the error at t = 0.5 as a function of the number
of markers; other parameters are: v = 0.05, ¢ = 1.0, At = 0.01, § = 1/10 (threshold),
€ = Vh, Xmin = —Xmax = —4.0. Note that f(z,t) used in Eq.(26), and defined in Eq.(25),
is mot the exact solution. Therefore o must remain finite as N + co. Inspection of Fig.11
shows that about 100 markers are sufficient to obtain a relatively accurate solution for
the parameters given above. Note that for N approximately greater than about 100 one
cannot, infer the convergence of the method since the exact analytical solution is not known.
In order to address the convergence of the marker method with an arbitrary number of
markers N we return to the linear diffusion equation discussed in Section 2.3. Fig.12 shows
the L? norm of the algebraic error as a function of the number of markers for the linear
diffusion equation at t = 4 with a square initial profile [Eq.(14)]. Other parameters are:
At =0.01,e =1/3, L =14.0, X1pin = —Xmax = —6.0. The number of markers has been
varied over 3 orders of magnitude. For interme-‘ate to large values of N the L? norm of
the error is approximately given by o = ogN~  (for small values of N the convergence
rate is (as can be expected) larger).

5 Conclusions

In this paper we have introduced the marker method for the solution of the damped Burg-
ers’ equation. The main idea behind the marker method is to rewrite a given PDE as a
conservation equation. A set of markers is then advanced in time (Lagrangian scheme)
according to a generalized convective velocity associated with the conservation equation
(which itself is an alternative (but exact) form of the original PDE). The information about
the approximate solution can be obtained through a convolution of the markers’ weights
and positions with a shape function. In this paper, we have addressed several aspects of
the marker method such as the choice of the shape function and the initial loading of the
markers. It has been demonstrated that the marker method yields accurate solutions of
the standard Burgers’ equation and the damped Burgers’ equation. The main advantages
of the marker method are its ease of implementation, flexibility and accuracy. Further, the
marker method is naturally applicable to PDEs which solutions display one or more shocks
since the method is Lagrangian in nature. The marker method is a useful complement
to other numerical methods for the solution of PDEs such as the finite difference and the
finite element methods.
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Appendix: Analytical Solution of Burgers’ Equa-

tion
The nonlinear Burgers’ equation is

of , ,of _ Of
ot +f8$ ~Hog2

where p > 0 is the diffusion coefficient. It is easy to show that the function

0z, t) = exp (—2—1@ / f(m,t)da:) ,

satisfies the diffusion equation

00 0%0

ot Pog?

(28)

Therefore a simple prescription for solving Burgers’ equation, Eq.(27), is (given an initial

profile fo(z) = f(z,0))
e determine 6(z,0) = exp (— [ fo(x)dz/2p);
e obtain (z,t) by solving the diffusion equation (28); and
e determine f(z,t) from f(z,t) = —2u00/0x/6.

Consider the following initial profile
fol@) = f(2,0) = £ (A - 4tanh(z/N)) -
Using the relation of [ tanhzdz = In(cosh z) + C, we obtain

0(z,0) = 6 exp(—Az/2)) cosh?(z/)\) ,

(29)

where § = exp(Azg/ 2)\)sech?(zg/\) and zq are constants. The solution of the diffusion

equation, Eq.(28), is

O t) = [ Gl 0, 0)de

—0

where

_ 1 (z - &)
G(f T, t) - /_w47l'ﬂt €xXp (“‘ 4/141; )

is the Green’s function. After some algebra one obtains

~

9(1}, t) = Z (Qeutaz—a:r + eﬂ'tbz—br n elJ«tCZ—Cﬂ?) ,

where a = A/2\, b=a+2/Xand c=a —2/) and
o w
O(x,t) Ox

2aeuta2~az + beutb2~bz + Ce/J,tCZ*CQZ

f(:l?,t) =

= 2u

2ehta?—ax + elith?—bzx + elitct—cz
For the special case A = 0 (see Eq.(29)), Eq.(30) simplifies to

4u sinh(2z/)\)
t)=—-H
f@) A cosh(2x/\) + e~ 4ut/2?

(30)
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Figure 1: Approximation of the function f(z) = ze™*" (plain line) based on a set of N = 32
markers. The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The
shape function is a quadratic polynomial [S(z) = S3(z); see Eq.(11)] with parameter € = 0.1.
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Figure 2: Approximation of the function f(z) = ze™*" (plain line) based on a set of N = 32
markers. The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The
shape function is a quartic polynomial [S(z) = Ss(z); see Eq.(11)] with parameter e = 0.1.
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Figure 3: Approximation of the function f(xz) = ze™®" (plain line) based on a set of N = 32
markers. The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The
shape function is a based on a quartic polynomial and a Gaussian function [S(z) = Ss(x); see
Eq.(11)] with parameter € = 0.1.
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Figure 4: Approximation of the function f(z) = ze™*" (plain line) based on a set of N = 32
markers. The dotted (dashed) line is for the case of uniform (nonuniform) spatial loading. The
shape function is a quartic polynomial [S(z) = Sy(x); see Eq.(11)] with parameter € = 0.2.
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Figure 5: Exact (plain line: ¢ = 2.0; dotted line: ¢ = 4.0) and approximate (triangles: ¢t = 2.0;
squares: ¢t = 4.0)) solutions of the diffusion equation based on a set of N = 100 markers. The
initial condition is a square profile, Eq.(14). The shape function is a superGaussian [Eq.(15)].
Other parameters are: At =0.01, e =1/3 and L = 14.0.
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Figure 6: Exact (thin plain lines) and approximate (diamonds: ¢ = 0.4, triangles: ¢t = 0.8
and squares: t = 1.2) solution of the quasilinear equation 0f/0t + fOf/0x = 0 with initial
condition f(z,0) = sech’z (thick plain line). The number of markers is N = 128, the time step
is At = 0.001 and the support parameter is € = V/A.
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Figure 7: Exact (thin plain lines) and approximate (squares: ¢ = 0.0, diamonds: ¢t = 100 and
triangles: ¢ = 200) solution of the nonlinear Burgers equation with initial conditions given by
Eq.(19). The parameters are: pu = 0.1, A = 7.0 and A = 4.0. The number of markers used is
N = 256 and the time step of integration is At = 0.1.
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Figure 8 Approximate solution (squares: ¢t = 0.0; diamonds: ¢ = 0.1; triangles: ¢ = 0.2) and
exact solution (thin plain lines) of the equation 0f /0t +v9df/0z = 0. A set of N = 256 markers
were uniformly distributed in the interval x € [—L, L] with L = 6.0. The damping parameter is
v =2>.0.
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Figure 9: Same as in Fig.8 for a non-zero threshold of § = 1.0.
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Figure 10: Approximate marker solution (squares: t = 0.0; diamonds: ¢ = 0.25; triangles:
t = 0.5) and approximate analytical solution (thin plain lines) of the damped Burgers’ equation
for a set of N = 256 markers. The parameters are: v = 0.05,¢ = 1.0, At = 0.01 and 6 = 0.1.
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Figure 11: L? norm of the error at t = 0.5 for the damped Burgers’ equation as a function of
the number markers. The parameters are: v = 0.05,c = 1.0, At = 0.01 and 0 = 0.1.
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Figure 12: L? norm of the error at t = 4.0 for the diffusion equation as a function of the number
of markers. The initial profile is given by Eq.(14). The parameters are: At = 0.01, ¢ = 1/3,
L =14.
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