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1 Significance, Background Information, and Technical
Approach

1.1 Identification and Significance of the Problem or Opportunity,
and Technical Approach

The effort by the fusion community to model reactor plasmas is complicated by multi-scale
physics. The modeling of long wavelength, low frequency instabilities from the core to the
edge of a tokamak fusion device has traditionally been modeled using the magnetohydrody-
namics (MHD) equations. This model exhibits magnetic Alfven waves on a sub-microsecond
timescale and global instability phenomena on a 10 milliseconds timescale, giving a timescale
ratio that can exceed 10° . The typical instability in tokamak devices have narrow radial
perturbations compared to the direction parallel to the background magnetic field, giving a
spatial scale ratio that can exceed 10* . These disparate scale lengths require accurate tempo-
ral and spatial discretization. The severity of these computational constraints only increase
when the model is more accurately expanded to incorporate additional physics, known as
the extended MHD model [1]. High-order finite element representations have demonstrated
to be effective for the spatial discretization. Implicit time stepping is a necessity to avoid
small time-steps. As a result of these spatial and temporal discretizations, the matrices for
the implicit time advance are ill-conditioned (order of 10° or greater). The use of efficient
parallelized preconditioners and iterative linear solvers are necessary as greater than 70% of
the computation is frequently spent in solving the linear matrix that results.

The Office of Science is investing considerable resources in its National Leadership Fa-
cilities and plan to have a petascale system online by 2008. The new systems offer many
opportunities, but also many challenges, especially for initial-value codes like those that
solve the extended MHD system. To enable the codes in the Office of Fusion Energy Sci-
ences (OFES) Center for Extended MHD Modeling (CEMM) SciDAC project to fully exploit
the new systems, solvers that can scale to the petascale are needed.

Multigrid linear solvers have demonstrated scaling to the petascale on elliptic operators.
Application of multigrid to the operators used in extended MHD, is still an open research
topic. The Center for Applied Scientific Computing (CASC) library of high performance
preconditioners (HYPRE) is a project that has optimized the parallel performance of these
types of methods, thus is a natural candidate for the exploration of implementation and
validation for petascale performance. This project will also require development of the
multigrid approach on dispersive operators.

This proposed project will improve existing multigrid linear solver libraries applied to the
extended MHD system to work efficiently on petascale computers. This improved library
will enable the extended MHD simulation codes to efficiently use petascale computers. By
providing this capability to the CEMM project, we will enable the fusion community to
make greater use of existing investments in computational development and achieve greater
physics fidelity in the modeling of instabilities in tokamak plasmas. The success of the CEMM
project will improve the scientific community’s confidence in the International Thermonuclear
Experimental Reactor (ITER) project. The goal of this project will be achieved by closely
interacting with the domain scientists of the CEMM SciDACs project, such as Dr. Scott
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Kruger of Tech-X Corporation , and the computational mathematics group at Front Range
Scientific Computations, Inc. led by Drs. Marian Brezina, Steve McCormick and Tom
Manteuffel.

1.1.1 Background Information: Extended MHD Modeling of Fusion Plasmas

Magnetohydrodynamic equations are widely used to model plasmas, including laboratory
and space plasmas. By integrating the particle distribution function; which is a function
of space, velocity, and time; over all velocity space, a reduction in dimensionality results in
a significant simplification of the description, and a concomitant savings in computational
cost. Formal derivations of fluid equations result in equations that are more accurate than
the more familiar MHD equations. These fluid equations are known as the extended MHD
equations, and are summarized in Appendix A, along with a discussion of how they differ
from the normal resistive MHD equations.

The standard resistive MHD equa-
tions have three fundamental waves
that are anisotropic in nature. For
magnetized plasmas, these waves are
much faster than the instabilities that
are of interest. To model the slow
growing instabilities, implicit methods
have long been used in the fusion com-
munity [2, 3]. The extended MHD
equations add terms that make the
implicit methods even more challeng-
ing by adding dispersive waves to the
normal modes, and highly anisotropic
thermal diffusion. The implicit scheme
used by the NIMROD code [4] for the
full extended MHD equations is dis-
cussed in Appendix A. The NIM-
ROD code is one of the codes under

the Center for Extended MHD Model-
ing (CEMM) SciDAC. The other code Figure 1: NIMROD uses high-order finite elements

in the CEMM SciDAC is the M3D in the poloidal plane, and a pseudo-spectral dis-
code [5].  Unlike NIMROD which Ccretization for the toroidal direction. The M3D
uses a primitive variable representa- code differs by using unstructured elements in the
tion, the M3D uses a potential repre- Poloidal plane and high-order finite differences in the

sentation for the vector fields which of- toroidal direction.

fers certain advantages in representing

the longitudinal and solenoidal compo-

nents. The matrix operators will have many similarities however. Another similarity between
the two codes is that they use different discretization schemes for the toroidal and poloidal
directions as seen in Fig. 1. The reason for the different discretization schemes in the toroidal
direction is that tokamak simulations typically have the symmetric part of the magnetic field
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energies at least an order of magnitude larger than the non-symmetric components of the
evolution. The difference between the two directions has many implications for the matrix
inversion routines used by the codes.

For example, earlier versions of the extended MHD codes always assumed that just sym-
metric parts of the density and resistivity were needed, and were not evolved. In the case of
NIMROD, this meant that no Fourier transforms were needed when solving the matrix equa-
tions, resulting in a significant computational savings. As the capability of the code has been
extended to include the full three-dimensional variations of these quantities, the approximate
two-dimensional nature of the quantities has been used to construct preconditioners for the
full three-dimensional solves. As we discuss the operators below, we will discuss both the
two-dimensional (or perhaps more aptly, linear in the toroidal direction) operators, as well
as the full three-dimensional operators. This will help explain the workplan in this Phase II.

As detailed in Appendix A, the time advance has several matrix operators for advancing
the time discretization scheme. The first operator we wish to consider is the resistive diffusion
operator which is used in the magnetic field advance:

Dyi(AB) = ¥ x (iﬁ . AB) | 1)

Ho
where 7 is the resistivity and can be a function of the temperature (n ~ 7~%2). When the
resistivity is a function of the three-dimensional temperature, then the toroidally-averaged re-
sistivity is used in constructing the two-dimensional preconditioner. The equivalent Courant-
Friedrich-Lewy (CFL) number for this operator (n/uoAt/(Az)? is typically of order unity.
Another operator that is always used in the magnetic field advance is the divergence cleaning
operator

Dusnp(AB) = ﬁ(ndwﬁ : Aé). 2)

This operator can be done as an operator split from the resistive operator as discussed in the
Phase I accomplishments (Sect. 1.3.3). Because kg5 is a constant, this operator is always
two dimensional.

The ideal MHD wave operator is always used as it is required to handle the stiffness of
the anisotropic MHD waves. This semi-implicit operator is in the velocity advance and has
the form:

Ligeat(AV) = %[ﬁxéxﬁx(AVxé)—éxﬁx[ﬁx(AVxB)H
0

S L o 5 o
-V [AV-Vp—I—ng-AV] (3)

The waves that this operator acts on are non-dispersive (w ~ k). With this operator, the
NIMROD code can take time steps with CFL numbers on the order of 10° [4]. The large CFL
numbers puts large off-diagonal terms into the matrix making them ill-conditioned; however,
the resultant matrix operator has the advantage of being Hermitian positive definite.

The first operator that we wish to consider that is beyond the normal resistive MHD
model is the operator required for anisotropic heat conduction:

Dinermat(AT) = V - ((KH — ki1)bb - VAT, + kb x VAT, + HNATQ) (4)

3
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Operator | Physics Eqn. Properties 3 Dimensional?
Dyes Resistive Diffusion | B HPD If n ~ T3/2
DaivB Divergence Cleaner B HPD No
Lideal MHD Waves v HPD If n is modeled as 3D
Dihermal Anisotropic T, HPD and Always
Thermal Diffusion Non-Symmetric
L oohistler Whistler Waves B Non-Symmetric Always

Table 1: A summary of the five main operators in the extended MHD time advance.

The first and last terms are symmetric, but the middle term is non-symmetric, and as a result
is not always included (it has a minor physical effect compared to the other terms). Also,
the temperature dependence of the first diffusion coefficient (k) ~ T°/2) can be important in
some simulations, and this also increases the difficulty of the numerical solve (and accuracy
of the time advance). It is more common to have constant coefficients with the correct
ratios of parallel to perpendicular diffusion. For tokamak simulations, this ratio is large:
k| /K1 > 108, Because of the high anisotropy, the three-dimensional nature of the bb dyad
must always be used in this operator for accuracy, and the two-dimensional preconditioner
is just the toroidally-averaged version of the full operator.

The next wave operator is in the magnetic field advance and handles the Whistler waves:

I B 2 Lo , .
Lonisien(AB) = ¥ x — [(v x Bﬂ+1/2> « AB + (v x AB) x BJ“/?] (5)
ne
Whistler waves are dispersive (w ~ k?) and are the fastest waves in the system when this
term is included in the equations. The resultant matrices are non-symmetric.

1.1.2 Background Information: Properties of Operators

In resistive MHD, the diffusive operator, D,.,, and the ideal MHD operator, L;geq, present
the greatest challenge to the development of efficient resistive MHD simulations. The specific
features of these operators are their isotropic and anisotropic curl-curl components. The dif-
fusive operator, D, ., is in effect a variation on the 3D eddy current formulation of Maxwell’s
equations [6]. An enormous amount of research has gone into developing solution methods
(both discretization approaches and iterative solution approaches) for such systems in order
to properly treat the curl-curl components [6, 7, 8]. Unfortunately, in resistive MHD, the
historically challenging curl-curl component is present in three of the operators under con-
sideration, with the additional complication that two of them have anisotropic forms of the
curl-curl operator.

The difficulty of the curl-curl operator is based on the richness of its nullspace, which
presents tremendous complexity when designing optimal multilevel solvers. For systems with
a dominant curl-curl operator, its eigenspace consists of a number of eigenvectors in the near
nullspace of the curl-curl operator. Furthermore, these components can be highly oscillatory
even though their eigenvalue is relatively small in the eigenspectrum.
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Multilevel solution methods like HYPRE’s BoomerAMG and Trilinos’ ML depend on the
assumption that highly oscillatory components have relatively large eigenvalues, such as is
found with diffusion operators. When combined in a discretization with a mass matrix from
an implicit time step, both D,., and L;4. lead to a subspace of oscillatory eigenvectors with
eigenvalues near one. Furthermore, L£;4. can be highly anisotropic due to the anisotropic
nature of magnetic field, B. All of these features are problematic in the context of multilevel
solvers that rely on oscillatory eigenvectors having large relative eigenvalue. For this reason, a
significant effort from the applied mathematics community has gone into properly discretizing
these equations and especially focusing on the components in the nullspace of the curl-curl
operator [9, 10].

Even with the problems presented by D,..s and L;4.q;, the problems induced by moving to
extended MHD present another set of related challenges. Two operators are required when
moving to extended MHD, Dipermar and Lypisuer- The anisotropic thermal diffusion operator
is well-known to be highly anisotropic achieving anisotropies on the order of 10'°. While the
anisotropies are troublesome, the applied mathematics community has extensive experience
in providing optimal multilevel solution methods for strongly anisotropic diffusion problems.
However, Dipermar has the additional complexity of being non-symmetric. Non-symmetric
operators have notoriously been troublesome to solve efficiently because there is not a clear
delineation between smooth components (with low relative eigenvalue) and oscillatory com-
ponents (with high relative eigenvalue). An understanding of the eigenspectrum is helpful to
properly solve these systems efficiently. The last operator, L, pister, again presents problems
as a result of its rich nullspace, and in addition, the operator is non-symmetric resulting in
the difficulty of developing optimal solution methods.

Lastly, we note the divergence cleaner that is applied to enforce the divergence-free con-
dition on the magnetic field. Although Dy;,p is not required by the physics, it is required by
the discretization approach presented in Appendix A. Besides enforcing the divergence-free
condition on B , this operator that is added to both D,..s and L p;ster improves the condition
number of the entire system for AB by raising the eigenvalue of those oscillatory nullspace
components of the curl-curl operator. Ideally, if k4,5 is of the same order as the coefficient
on the curl-curl operator, then the entire operator resembles a vector mass matrix plus a
vector Lapalacian operator. Realistically, k4,5 is not the same order as the coefficient, so in
certain case we cannot expect to receive much as much help from Dy;, 5. Then, in that case,
the oscillatory nullspace components of the curl-curl operator still have an eigenvalue near
one, leading to difficulties in developing efficient multilevel solvers.

1.1.3 Background Information: Current linear solver usage in NIMROD

From the beginning of the NIMROD project, it has always used and maintained it’s own
“home-grown” linear solvers. Initially, this was a conjugate gradient method for the matrices
arising from the finite-element plane only (the “two-dimensional” matrices discussed earlier).
Comparisons with other iterative solvers at that time showed that NIMROD'’s solver was
more efficient because the global line averaging preconditioner was more effective [11]. A
substantial increase in performance (~ 4 — 5) was obtained when, in collaboration with
the TOPS SciDAC, SuperLU [12] was used for these two-dimensional matrices. Currently,
SuperLLU remains the workhorse for the production level code, even though it tends to scale
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poorly for our largest problems.

The development of three-dimensional solves greatly extended NIMROD'’s capability for
including additional physics. The matrix free three-dimensional solves uses conjugate gra-
dient for the symmetric matrices, and GMRES for non-symmetric matrices, because con-
structing the full three-dimensional matrix for SuperLU would be prohibitive. Currently,
all of the preconditioning uses the two-dimensional versions of the three-dimensional opera-
tors. Because of the lack in toroidal variation of the solutions of many of our problems, this
works well for many problems. For the non-symmetric matrices, this approach has been less
effective and other methods are being explored.

One of the disadvantages of using home-grown solvers from the beginning of the project
is that the data structures were not designed for interoperability with external packages,
but rather were designed for making the finite element operations easier. For example, the
two-dimensional matrices which are formed are not in a single contiguous array, but rather
are in four separate arrays corresponding to different basis functions of the high-order finite
elements. This has been a significant barrier to easily interfacing to the external packages.

1.1.4 Technical Approach

This proposed project will improve existing multigrid linear solver libraries for the extended
MHD system to work efficiently on petascale computers. In this Phase I, we explored existing
HYPRE solver packages applied to the D,., and Dy;,p operators in NIMROD, one of the
large, parallel extended MHD codes of the CEMM project. The Phase I also consisted of
establishing the protocol for validation of the petascale scaling of different HYPRE solvers
within NIMROD. In Phase II, we will develop these multi-level solvers for the other extended
MHD matrix operators discussed earlier. This work will be beneficial for the other CEMM
extended MHD code, M3D. M3D currently uses HYPRE via the petsc interface and uses
quite similar operators as NIMROD. Thus, any insight into increasing multigrid applicability
for extended MHD will benifit both codes. At the successful completion of the SBIR process,
we will deliver the capability for longer extended MHD simulations with less computational
cost on petascale computers. This will provide the CEMM project the ability to model the
ITER device more accurately. This will help efforts within ASCR for implementation of their
valuable mathematical libraries to an active OFES plasma simulation community:.

1.2 Anticipated Public Benefits

At the successful completion of the entire SBIR proposal, we will enable the HYPRE multi-
grid mathematical library solver for extended magnetohydrodynamic equations that works
efficiently in the proposed petascale computers. This capability will allow the codes of the
CEMM project to simulate the complicated components of fusion plasmas in a reasonable
amount of time. We will contribute to the efficacy of multigrid methods for high performance
computing. For example, the climate modeling community uses semi-implicit operators on
high-order finite elements [13], and their operators share many similarities. For further
benefits please refer to the separate Commercialization pdf.
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1.3 Degree to which Phase I has Demonstrated Technical Feasi-
bility
Objective 1: Implemented the HYPRE solver and preconditioner package into NIMROD
via PETSc as the interface.

Objective 2: Provided initial metrics to establish the efficiency of currently available and
future solvers.

Objective 3: Explored initial analysis necessary for development of dedicated multigrid
course-grid correction for the extended MHD equations.

We have achieved the Phase I objectives by carrying out the tasks proposed in the Phase I.
The research results for the Phase I project have well-demonstrated the technical feasibility
of successfully carrying out the overall project objectives. These results are discussed in
detail below.

1.3.1 Task 1: Implemented HYPRE Solvers In NIMROD Via PETSc

PETSc offers a suite of preconditioners that can be applied to facilitate the convergence of
linear solves for extended MHD. Efficient linear solves of poloidal plane problems in NIMROD
are the key to success of large simulations that will allow to understand the physics at very fine
spatial resolutions. Multilevel methods, in which coarse grids are used to accelerate fine-grid
convergence to solution, offer the best promise in attaining both fast linear convergence and
good parallel performance. The downside of these methods is the implementation complexity,
which slows down their widespread acceptance. The first task in the Phase I was to enable
the NIMROD code to use the PETSc interface to allow access the capability to use multilevel
methods.

We completed this Phase I task successfully. The PETSc framework requires users to
determine use of real or complex primitive data types upon build of the package. To further
restrict users, external multigrid packages such as HYPRE only possesses real data type
interfaces in PETSc. It is possible to write the D,.; and Dy;,p operators in terms of only
real matrices and solve for the real and complex parts of the solution vectors individually.
This results in a saving in memory storage for these matrices, and NIMROD takes advantage
of this. Because these operators share many similarities of the other operators, we used just
these two operators in our prototype implementation of the PETSc interface. Many of the
difficulties in dealing with the NIMROD data structures was learned in doing this step.

Until the success of this task, NIMROD used only the SuperLLU (parallel or sequential)
for preconditioning within its own home-grown conjugate-gradient and GMRES solvers for
the matrix-free portion of the three-dimensional matrices. The reason that the homegrown
solvers are used instead of standard packages is due to the complicated data structures
that are used within the NIMROD code to handle the finite-element quadratures and the
pseudo-spectral discretization. The data structures were created to make the discretization
calculations simple, and by writing their own solvers, the difficulty of using an external
package was avoided.
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As mentioned earlier, the only external package NIMROD used was SuperLLU. Prior expe-
riences indicated that significant performance advantages can be gained strictly by creating
an efficient interface to external packages, but that ultimately overall performance requires
an intimate understanding of the discretization and data structures. This was true for the
conjugate gradient solvers, and is especially true for implementing multigrid methods as
presented in the background section. To test the implementation we compared the PETSc
interface versus the original use of the distributed SuperLU_Dist interface, which stores
groups of rows local to a processor for memory efficiency. Processor scaling tests were per-
formed on the NERSC leadership machine Bassi. All cases are weak scaling where by the
problem size (ie. number of unknowns) increases proportionally to the increase of number
of processors. The simulation was run for 100 timesteps for each case in order to suppress
start up computational costs from dominating any timing results. The scaling studies ceased
at 256 processors because Bassi, as a leadership class machine, is heavily used for scientific
applications with a limited 888 processors available to all users. Requests for simulations
using greater than 256 processors were delayed in the queuing system indefinitely. There
are current efforts to continue these scaling studies and the Phase II tasks on Franklin, a
NERSC Cray XT4 system with 19,320 processor cores available for scientific applications.
The NIMROD project has been awarded the Scaling Reimbursement Program on Franklin.

IPM timing
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Figure 2: A comparison between direct access to the SuperLU library and via the PETSc
interface shows no efficiency loss due to interface

Figure 2 displays the comparison of timings for running NIMROD with direct access
to the SuperLU_Dist library and a custom build of PETSc that is linked to the same Su-
perLU_Dist library. This graph conveys the minimal overhead for using the PETSc interface.
The discrepancy for the 256 processor timing is well within timing discrepancies that can
be observed by running the same simulation at different daily start times. The lack of weak
scaling demonstrated by this graph is because the number of unknowns for the scaling study
was too small. This results in simulations with large communication compared to computa-
tion. The reason for using the insufficient unknowns is because of initial difficulties with an
mpi_allreduce operation that was present in the original implementation of the SuperLLU
interface. This limitation has been fixed by Dr. C. Sovinec. We will improve this scaling
study when we progress with scaling studies and proposed Phase II tasks on Franklin. The
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graph reinforces the conclusion that users should expect almost no computational overhead
for using the PETSc interface. This task was accomplished as a result of collaborations with
Dr. Sovinec, Dr. Kruger, and the PETSc team.

1.3.2 Task 2: Established Metrics For the Efficiency of Solvers

We completed this Phase I task successfully. The first goal of this task was to establish
an appropriate collection of benchmark problems that isolate specific difficulties associated
different complicated operators within extended MHD modeled in NIMROD, such as the
anisotropic thermal diffusion operator (Eqn 1). The most intensive of benchmark cases
should posses sufficiently stiff and anisotropic features which resemble current laboratory
plasmas.

The first case is a slow growing (2, 1) “tearing mode” problem, used to benchmark both
temporal and spatial discretization of NIMROD [4]. This instability grows much more slowly
than the fundamental wave speed. Using NIMROD’s L;4e; operator, wave CFL numbers
of 5 x 10° were obtained. This problem also used anisotropic heat conduction, and the
accuracy of high-order elements was proven for this experimentally-relevant problem. In
the published work, the Whistler terms were not used. By varying model parameters and
thermal conduction coefficients, we can isolate the individual operators.

The second case is the toroidal Edge Localized Mode (ELM) case being used as a bench-
mark problem testing the extended MHD model within NIMROD [14]. This problem is a
fast growing instability, and the time step is much more restricted due to the large, generated
flows. The wave CFL number in this is approximately 500. The problem also has a large
toroidal variation in the linear instabilities, which results in broad nonlinear spectrum. This
case stresses the three-dimensional solves; i.e., the two-dimensional preconditioners are less
effective for this problem. To get the linear instability spectrum correct, two-fluid terms
are important, and improving the ability to invert L pisuer is important. This extremely
challenging case will provide insight to the multigrid community for further development
of coarsening schemes. These two problems will allow a systematic approach to developing
existing mathematical packages to help NIMROD approach petscale performance.

The second goal was to provide a common base of metrics that convey application behav-
ior with regards to achieving petscale performance. Weak scaling for performance analysis
is the chosen method for testing parallel behavior. A necessary requirement for scalability
for an iterative solver is as the set of unknowns grows proportionally to the set of proces-
sors, the number of iterations should remain the same. This demonstrates that the solver’s
preconditioner is insensitive to the discretization size, ie. iteration count does not depend on
element size-h.

The purpose of an iterative solver is to achieve some convergence to a solution. This
convergence criteria can be stated as the

|| Ae]]

< tol., 6
Az ©)

where tol. is a specified tolerance that usually set by experience of the domain computational
scientist to observe the desired phenomena. So efficiency of the preconditioning technique
can be quantified by measuring the amount of computational effort for a desired accuracy.

9
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Usually, computational effort is accounted for by number of relative residuals calculated,
which is the number of Krylov iterations needed for the desired convergence.

Of course, simulation wall-clock-time to completion is another metric for comparing ef-
ficacy of different linear solver methods. In our case, this will reflect efficiency for different
preconditioner methods. The last metric we are considering to help us judge the effective-
ness of the preconditioning method is to understand its parallel performance with regards
to communication. So analyzing Message Passage Interface (MPI) activity with portable
profiling tools such as as Integrated Performance Monitoring (IPM) or Cray PAT will be
necessary.

The collection of the above three metrics will allow for a sound comparison between pre-
conditioning techniques. This will aid in the effort to scale solvers that will allow NIMROD
to achieve petascale performance.

1.3.3 Task 3: Provided Initial Analysis Of Multigrid Capability For Extended
MHD

We completed this Phase I task successfully. We used the first benchmark case of the nonlin-
ear toroidal tearing mode with no anisotropic heat conduction and other model restrictions
such there was no variation and dependence in the toroidal direction with no 2-fluid ef-
fects. This results in all implicit solves being restricted to 2D poloidal planes for symmetric
positive-definite operators. We used only 2 Fourier modes to limit influence due to calcula-
tions over these modes. Furthermore, the restriction of real data type by PETSc and HYPRE
forced this Phase 1 activity to only address 3 matrix equations associated with (1) the fi-
nite element stiffness matrix (2) the resistive MHD operator D,..; and (3) use of the Dgy;,p
operator of divergence cleaning. Task 1 of the proposed Phase II is to alleviate this restric-
tion. We performed comparisons on NERSC’s Bassi machine between using BoomerAMG
and SuperLLU_Dist as the preconditioner to NIMROD’s internal conjugate-gradient solver.
All results are preformed as weak scaling measurements. Figure 3 demonstrates the new

IPM timing
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—&—PETSc Boomeramg only

Wallclock time (sec)

SuperlU_Dist
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Figure 3: Default BoomerAMG requires 2 times the wall clock time till end of simulation
as compared to SuperLU_Dist.

capability of NIMROD to use HYPRE’s BoomerAMG as a preconditioner for the NIMROD

10
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internal conjugate-gradient linear solver via the PETSc interface. This initial implementa-
tion of BoomerAMG used defaults for all available PETSc tuning parameters. Suggestions
via conversations with R. Falgout may increase performance of BoomerAMG for this overall
wall clock time scaling [15].

Iterations at time step 50

~#=BMHD
~#-DivB

~#—FE Mass Matrix

300

Number of processors

Figure 4: Grid size insensitivity is demonstrated by elliptic problem with mass matrix oper-
ator.

Computational work versus accuracy is a desired metric to aid in fair comparisons between
preconditioning methods. This may also be used to judge effectiveness of one preconditioning
method for different matrix equations. Figure 4 demonstrates “out of the box” BoomerAMG
does not fit within the requirement of insensitivity to grid size for the equations with By;gp &~
Dyes and Dy;,p operators. The scaling study was done using the Dgy;,p operator splitting
to allow for specific analysis of the D,..s operator. The lack of grid size insensitivity for the
D,.s operator is due to the difficulties associated with AMG applied to the curl-curl operator
as discussed in Sect. 1.1.2. Default BoomerAMG does show grid-size insensitivity when
preconditioning the iterative solver for the finite element stiffness (mass matrix) equation,
which is expected. The results are with a common tolerance of 1072, which is suggested by
domain scientists as necessary convergence to observe needed pertabative phenomena. These
results suggest improvements of preconditioning implementation can and should be made.

The three tasks performed in the Phase 1 project have proven the feasibility of imple-
menting the HYPRE solvers via the PETSc framework withing the cutting edge extended
magnetohydrodynamic simulation code NIMROD. Metrics and test cases for proper com-
parison of preconditioning methods have been established. The Phase II project tasks will
provide further understanding of multigrid’s current treatment of the curl-curl operator. This
knowledge will be implemented to further develop NIMROD'’s preconditioners to achieve lin-
ear solvers that work efficiently on petscale computers.
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A Summary of the extended MHD equations and dis-
cretization schemes

Formal derivations of fluid equations are derived by taking velocity moments of the kinetic
equation [16]. For magnetized plasmas, the minimal derivation of fluid equations requires
moments to be taken for the kinetic equations for two-species, an ion and electron species,
to allow for the plasma to be approximately neutral. By transforming to the center-of-mass
coordinate system, the single fluid form of the two-fluid equations can be written in terms
of evolution equations for density, n, flow, ‘7, current, j, and species temperature, T,:

dn [
a—FTLV'V—O, (7)
dv L. .
mmd—‘t/:—Vp—i—JxB—V I, (8)
T Lo 1 [0 = (oo s
EFE+VxB=nJ+—|-Vp.+JxB-V-I1I, — A\VJ=J , (9
TV g +ne[ petJx v }+eow§€ @t+v< ) (9)
AT, Do - -
nt == (- 1) (WY Vot V- o+ T s Vo =0 = Qul | (10)

where the total time derivative, d/dt = 0/0t + V - V. Here E and B are the electric and
magnetic fields ,uof =V x B. (., represents collisional energy exchange. These equations,
in conjunction with Maxwell’s equations, are not closed because the viscous stress tensors,
I1,, and the conductive heat flows, ¢, are not specified. Specifically, truncating the infinite
hierarchy of fluid moment equations with the above set requires specification of II, and
dn [17, 18].

Neglecting the underlined terms gives the (resistive) magnetohydrodynamic (MHD) equa-
tions. Including the underlined terms, gives the extended MHD equations, and includes
many important physical effects beyond the usual MHD equations. The focus of the Center
for Extended Magnetohydrodynamic Modeling (CEMM) modeling is to develop numerical
algorithms for this set of equations, and apply them to problems of relevance to the Office
of Fusion Energy Sciences. The additional terms in the extended MHD equations have re-
quired significant development of algorithms and experience beyond the more familar MHD
equations, because they fundamentally change the nature of the solutions. Here, we briefly
discuss the important physical effects that are given by the extended MHD terms, but will
not discuss the the stress tensor terms, as those operators are not considered in this proposal.

In the generalized Ohm’s law, Eq. (9), the first two underlined terms are known as the
two-fluid terms, and are usually the main difference between the MHD equations and the
extended MHD equations. The J x B term in particular gives rise to the Whister wave,
which becomes the fastest wave in the system. This wave is also dispersive, and is typically
the most difficult term to treat implicitly. Often in resistive MHD), the resistivity is treated
as a constant, but the resistivity actually varies strongly with temperature: n ~ T%/2 [16].
Including this temperature dependence has been important for many simulations [19, 20],
and is a key part of the capabilities of the extended MHD codes.
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The most commonly used closure for the heat flux, is the anisotropic diffusion closure of
Braginskii [16]. This closure may be written as:

Ja = —K,”f)f) . Ta — K',/\f) X ﬁTa - /iJ_ﬁJ_Ta (11)

where b = B / ]é |. The anisotropic diffusion coefficients are temperature dependent. The
first coefficient is the largest and the last is the smallest. The ratio of these two coeffients
is k| /kL > 10'° or greater. Thus, the temperature wants to rapidly equilibrate along the
dynamically evolving magnetic field. The difficulty of resolving this anisotropy has lead to
the adoption of high-order finite elements by the extended MHD community [4, 21, 22],
where the spectral convergence allows one to converge at these ratios.

Given this background, we now present the discretization scheme used by the NIMROD
code. We note that the M3D-C1 code uses a potential representation for the magnetic
and velocity fields, but the temporal discretization scheme has many similarities to the
NIMROD'’s [21]. NIMROD uses a semi-implicit /fully implicit scheme, with the velocity field
staggered a half-step with respect to the other fields. The full scheme is [14]:

. AV 1oy = 1 o = ; - - oo
mn? /2 =~ SV VAV + oAV vw] — LIV2(AV) + V - TH(AV)
U2 B G () 4 mand Y2V 9T (12)
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The last term in this equation is used to diffuse divergence errors out of the system
because NIMROD does not have a manifestly divergence-free magnetic field. This scheme
has been shown to produce acceptable levels of error [4]. Here we use the notation of £ to
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denote the implicit wave operators, and D to denote the implicit diffusion operators. The
definitions of these operators are given in the main text, along with a discussion of their
implication for matrix solves.

The code has flexibility in solving these equations, and can turn off the extended MHD
terms. Also, this discretization scheme shows implicit these contributions to the matrices in
the proposal because while they are non-symmetric, they do not present the numerical chal-
lenges of the other operators. Also, when the code is run with only symmetric operators, a
predictor-corrector method can be used for the advection terms to avoid any non-symmetric
linear solves. Finally, we note that there can be a strong coupling among the last three equa-
tions, especially when the diffusivities are temperature dependent. Currently, this handled
by using a simple predictor-corrector method. Newton methods are being investigated for
the numerical accuracy.
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