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1 Introduction

All of the work conducted under the auspices of DE-FC02-01ER25473 was
characterized by exceptionally close collaboration with researchers at the
Lawrence Berkeley National Laboratory (LBNL). This included having one
of my graduate students - Sarah Williams - spend the summer working
with Dr. Ann Almgren a staff scientist in the Center for Computational
Sciences and Engineering (CCSE) which is a part of the National Energy
Research Supercomputer Center (NERSC) at LBNL. As a result of this
visit Sarah decided to work on a problem suggested by Dr. John Bell the
head of CCSE for her PhD thesis, which she finished in June 2007. Writing
a PhD thesis while working at one of the University of California (UC)
managed DOE laboratories is a long established tradition at the University
of California and I have always encouraged my students to consider doing
this. For example, in 2000 one of my graduate students - Matthew Williams
- finished his PhD thesis while working with Dr. Douglas Kothe at the Los
Alamos National Laboratory (LANL). Matt is now a staff scientist in the
Diagnostic Applications Group in the Applied Physics Division at LANL.
Another one of my graduate students - Christopher Algieri - who was
partially supported with funds from DE-FC02-01ER25473 wrote am MS
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Thesis that analyzed and extended work published by Dr. Phil Colella and
his colleagues in 1998. Dr. Colella is the head of the Applied Numerical
Algorithms Group (ANAG) in the National Energy Research Supercom-
puter Center at LBNL and is the lead PI for the APDEC ISIC which was
comprised of several National Laboratory research groups and at least five
University PI’s at five different universities. Chris Algieri is now employed
as a staff member in Dr. Bill Collins’ research group at LBNL developing
computational models for climate change research. Bill Collins was recently
hired at LBNL to start and be the Head of the Climate Science Department
in the Earth Sciences Division at LBNL. Prior to this he had been a Deputy
Section Head at the National Center for Atmospheric Research in Colorado.
My understanding is that Chris Algieri is the first person that Bill hired
after coming to LBNL. The plan is that Chris Algieri will finish his PhD
thesis while employed as a staff scientist in Bill’s group.

Both Sarah and Chris were supported in part with funds from DE-FC02-
01ER25473. In Sarah’s case she received support both while at U.C.!Davis
(UCD) taking classes and writing an MS thesis and during some of the time
she was living in Berkeley, working at LBNL and finishing her PhD thesis. In
Chris’ case he was at U.C. Davis during the entire time he received support
from DE-FC02-01ER25473. More specific details of their work are included
in the report below.

Finally my own research conducted under the auspices of DE-FC02-
01ER25473 either involved direct collaboration with researchers at LBNL
- Phil Colella and Peter Schwartz who is a member of Phil’s Applied Nu-
merical Algorithms Group - or was on problems that are closely related
to research that has been and continues to be conducted by researchers at
LBNL. Specific details of this work can be found below.

Finally, I would like to note that the work conducted by my students and
me under the auspices of this contract is closely related to work that I have
performed with funding from my DOE MICS contract DE-FC02-03ER25579
“Development of High-Order Accurate Interface Tracking Algorithms and
Improved Constitutive Models for Problems in Continuum Mechanics with
Applications to Jetting” and with my CoPI on that grant Professor Greg
Miller of the Department of Applied Science at UCD. In theory I tried to use
funds from the SciDAC grant DE-FC02-01ER25473 to support work that
directly involved implementing algorithms developed by my research group
at U.C. Davis in software that was developed and is maintained by my
SciDAC CoPI’s at LBNL. For example, see the work reported in Sections 2
and 4 below. However, since there is considerable lead time spent developing
such algorithms before they are ready to be implemented in lab codes, (e.g.,
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as in section 4) or research plans and goals change (e.g., as in sections 2 and 3,
I have supported each member of my research group partially with funds
from the SciDAC APDEC ISIC DE-FC02-01ER25473 and partially with
funds from my DOE MICS grant DE-FC02-03ER25579. This has resulted
in a significant overlap of projects areas that are funded by both grants.

2 Development of a Fast Multipole Method-based
Poisson Solver with Applications to Approxi-
mating Solutions of the Incompressible Euler
and Navier-Stokes Equations

Under my guidance Sarah Williams implemented an algorithm for approxi-
mating solutions of the Poisson equation

Ap=f (1)

that is based on the Fast Multipole Method (FMM) [14]. Williams’ work is
based on previous work by Greengard and his collaborators [10, 13].

The Poisson equation (1) is ubiquitous in science and engineering and
the numerical solution of the Poisson equation is often (almost always!)
the most expensive and least robust part of numerical algorithms used in
science and engineering applications. In particular, in a projection method
for approximating solutions of the incompressible Euler or incompressible
Navier-Stokes equations one must solve a version of (1) one or more times
per timestep. The original projection method is due to Chorin [8] and much
of the development of modern, high-order versions of these methods is due
to Phil Colella and John Bell and their coworkers at LBNL (e.g., [2, 3, 4, 6]).

Typically these researchers use some form of iterative Poisson solver
(e.g., MultiGrid (MG) or PreConditioned Conjugate Gradient (PCCG)) in
their projection methods. However, for some problems iterativemethods can
take an unreasonably large number of iterations to converge, or even fail to
converge. The goal of Sarah’s work was to develop a direct rather than
iterative solver that is guaranteed to produce an accurate approximation to
the solution of (1) in a fized amount of time that can can be determined a
priori, even when iterative methods fail.

In Sarah’s Masters thesis [27] she describes her implementation of the
algorithm and compared the efficiency of this algorithm to the efficiency of
MG on a class of test problems she devised.
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Sarah spent the summer of 2005 working with Dr. Ann Almgren in the
Center for Computational Sciences and Engineering (CCSE) at LBNL im-
plementing her method in the FORTRAN 90 software infrastructure that
CCSE researchers have developed and examining the performance of this
method on problems for which the MultiGrid solver that CCSE researchers
typically use in their projection method either fails, or uses an unusually
large number of iterations. This work is reported on in the following LBNL
Technical Report [29].

3 Numerical Methods for the Stochastic Landau-
Lifshitz Navier-Stokes Equations

By the end of her stay at LBNL in the summer of 2006 working with Dr.
Almgren and interacting with Dr. Almgren’s coworkers at CCSE Sarah de-
cided that she wanted to change the direction of her research for her PhD
thesis. She liked the research environment at LBNL and elected to stay
there and work on a topic suggested by Dr. John Bell, namely the develop-
ment of numerical methods for the stochastic Landau-Lifshitz Navier-Stokes
Equations. Under the guidance of Dr. Bell and his collaborator Professor
Alejandro L. Garcia from San Jose State University Sarah wrote a PhD
thesis entitled ” Algorithm refinement for the stochastic Navier-Stokes equa-
tions” that was filed in June 2007 [28]. During the first year of her work
on her PhD thesis (i.e.; Academic Year 2005-2006) I supported Sarah with
funds from both DE-FC02-03ER25579 and DE-FC02-01ER25473. During
her second and final year at LBNL, she was supported with a Disserta-
tion Year Fellowship from the University of California, Davis and a $10,000
scholarship known as a PEO Scholarship. Sarah is currently a Postdoc-
toral Research Associate in Applied Mathematics at UNC Chapel Hill. The
following publications have resulted from her work ([7, 26]).

4 Analysis of algorithms for tracking material in-
terfaces that are second-order accurate in time

Under my guidance Chris Algieri completed an MS thesis in December 2005
in which he examined algorithms for tracking the motion of a material in-
terface that are second-order accurate in time [1]. This is currently an
extremely active area of research In particular, our ANAG colleagues at
LBNL have recently published several papers in this area (e.g., [9, 19, 24]).
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In his work Algieri studied the conditions under which an algorithm that
is based on a second-order accurate stencil of the spatial derivatives fails to
be second-order accurate in time when used with standard second-order
accurate time stepping algorithms such as Crank-Nicholson. This problem
was first noticed by Johansen and Colella in [18]. Their solution involved
using a more stable time stepping algorithm due to Twizell, Gumbell and
Arigu [25]. In his MS thesis [1] Chris studied algorithms for numerically
analyzing the stability of operators that are based on second-order spacial
stencils and determined criteria for deciding when a method will be second-
order accurate in time. Chris’ work focused on the numerical solution of
the Stefan problem; i.e., the heat equation with an interface at temperature
T = 0 at which the material in question solidifies.

5 Development and Analysis of the High-Order
Accurate Volume-of-Fluid Interface Reconstruc-
tion Methods

During the funding period covered by DE-FC02-01ER25473 I revised and
published a paper in which my former PhD student James Pilliod and I de-
veloped a new class of second-order accurate volume-of-fluid (VOF) interface
reconstruction algorithms [22].! We called the simplest and most efficient
of these second-order accurate interface reconstruction algorithms the “Ef-
ficient Least Squares VOF Interface Reconstruction Algorithm” (ELVIRA).
Some researchers in this area now refer to any VOF interface reconstruction
algorithm that uses the same basic idea as belonging to the ELVIRA class
or family of algorithms.

In any numerical method for modeling the motion of the interface be-
tween two materials one generally needs two distinct algorithms. First one
must have a numerical representation of the interface itself at some fixed
moment in time. A method for doing this is called an interface reconstruc-
tion algorithm. Then, if the interface is moving in time, one must also have
an algorithm for tracking or advecting the interface in time. In [22] Pilliod
and I also introduced a new second-order accurate volume-of-fluid advection
algorithm that was based on ideas developed by John Bell and his coauthors
in [5].

LAll of Pilliod’s work predated the period covered by DE-FC02-01ER25473. After
finishing his PhD thesis Pilliod spent several years as a PostDoc in Phil Colella’s group at
LBNL and then took a job in the ”dot.com” industry. However I was partially supported
by DE-FC02-01ER25473 while I was revising [22] for publication.
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Volume-of-fluid interface tracking algorithms are important for a variety
of reasons. From DOE’s - and the nation’s - point of view perhaps the most
important reason is that most - if not all - of the “production” codes that are
used by scientists at the Los Alamos National Laboratory and the Lawrence
Livermore National Laboratory to model the movement of a large number of
distinct materials are based on some version of a volume-of-fluid algorithm.
For example, there are codes that can model dozens of different materials in
which each material is tracked by keeping a record of the volume fraction in
each cell that is occupied by that material. There are competing interface
tracking methods - most notably the level set method - but to the best of
my knowledge there are currently no production codes that can model the
movement of a large number of distinct materials that are based on some
version of the level set method, or any method other than some version of a
volume-of-fluid method.

In all of the work with Pilliod in [22] we demonstrated that our algo-
rithms were second-order accurate by making multiple computations of a
given problem on successively refined grids, each grid a factor of two finer
than the grid which we had used in the previous computation. This allowed
us to compute the convergence rate and hence the accuracy of the algorithm
for that particular problem. However, except in certain limited instances, we
did not offer a proof that any of our algorithms were second-order accurate.

Recently, in collaboration with Professor Greg Miller of the Department
of Applied Science at U.C. Davis, I have proven that the ELVIRA family
of interface reconstruction algorithms are second-order accurate [20]. This
work was partially supported by DE-FC02-01ER25473.

There are several other interesting and important results in [20]. First,
we prove that a VOF interface reconstruction algorithm is second-order ac-
curate provided that

1. The volume of each material in the cell is exact.

2. The slope of the line that one uses to represent the interface in the cell
is first-order accurate.

A corollary of this theorem is that if the slope of the line that represents
the interface in the cell is less than first-order accurate (i.e., zeroth-order
accurate), then the linear representation of the interface in the cell is first-
order accurate. This implies that SLIC [21] - which is probably the best
known and most widely used VOF method - is first-order accurate. This
fact has been demonstrated numerous times in convergence rate studies
(e.g., in [22]), but to the best of my knowledge has never been proven. One
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reason it is important to understand the accuracy of SLIC and volume-of-
fluid interface reconstruction algorithms similar to SLIC, is that they are
widely used to model problems in which one of the materials breaks up into
very small pieces in which the volume of the individual pieces is on the
order of the volume of a computational cell; i.e., the volume of the drops
or pieces of one or more of the materials being modeled is on the order of
(Az)? where Ax represents the local grid spacing. For example, in [15] my
coauthors and I used this algorithm (SLIC) and in [16] and [23] we used a
hybrid ELVIRA-SLIC algorithm in which we used a second-order accurate
ELVIRA algorithm except when the volume of one of the materials being
tracked approached (Az)3, in which case we reverted to SLIC.

A second important corollary of the work in [20] is that our proof that
certain VOF interface reconstruction methods are second-order accurate
contains a constant that relates the error to the local curvature k of the
interface in such a way that if the grid spacing Ax is too large as com-
pared to the radius of curvature R = 1/k, then the observed convergence
rate will be first-order rather than second-order. In other words, we have
found a criterion for predicting when the computation of the interface will
be underresolved, namely when

1
Az >> 6r (2)

The phenomenon of an underresolved volume-of-fluid computation of
an interface is observed and discussed in e.g., [22]. One important way in
which one can use (2) is as a refinement criterion when one is using a block
structured adaptive mesh refinement method to model the motion of an
interface. In this case one can compute an approximation to the curvature
of the interface in each cell and then apply equation (2) in each cell to
determine if the computation is underresolved in that cell. Cells in which
the interface is found to be underresolved are tagged for refinement.

Finally I'd like to note that as computational models are increasingly be-
ing used for major public policy decisions (e.g., whether to build a peripheral
canal in California, how high and strong levees must be in order to protect
housing in California’s Central Valley under worst case scenario conditions,
etc.), having objective criteria for when a computation is well-resolved as
opposed to underresolved is an increasingly important issue.

Professor Greg Miller and I have submitted [20] for publication and have
received the reports of three referees. We are currently revising the paper
and expect it to be published soon.
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6 Analysis of Two Competing Methods for Mod-
eling Problems in which the Motion of the In-
terface Depends on the Normal Derivative

In some problems involving the motion of the interface between two mate-
rials the speed of the interface depends on conditions at the interface itself.
The classic example is the Stefan problem, which is a model for the solid-
ification or melting of some material such as water and ice. In the Stefan
problem the speed of the interface is proportional to the jump in the deriva-
tive of the temperature normal to the interface

s=C I (3)
Here s represents the speed of the front, T' the temperature of the water
(say), n is the unit normal to the front and C' is a constant that depends on
the thermodynamic properties of the material being modeled.
The Stefan problem is usually posed as follows. Given initial conditions
at some time ¢ = 0 the problem is to:

1. Determine the location of the interface between water and ice at each
time ¢t > 0.

2. Determine the temperature 1" at each point x and time ¢t > 0.

In a numerical method to solve the Stefan problem in which the front is
being tracked with some interface tracking method one needs an accurate
approximation to the speed of the front in order accurately model the motion
of the front. Since by equation (3) the speed of the front depends on the
normal derivative of the temperature at the front, it is apparent that in
order to accurately model the location of the front in time, one must first
have an accurate numerical approximation to the normal derivative of the
temperature at the front. In his PhD thesis [17] Hans Johansen proposed a
method for doing this that results in a second-order accurate approximation
to the normal derivative at the front. I will refer to this method as Colella
and Johansen’s (CJ) method. Their work is published in [18] and [19].

The price that one pays to achieve second-order accuracy of the normal
derivative in CJ’s method is that their finite difference stencil leads to a
non-symmetric matrix A, where A is the numerical approximation to the
Laplace operator A that appears in the heat equation

oT

5 = QAT (4)
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that must be solved in order to update the temperature 7" in time. In order
to obtain a second-order accurate approximation to the temperature T' as it
evolves in time (e.g., with Crank-Nicholson) one must solve systems of the
form

Az =b. (5)

Since the numerical solution of (5) is typically easier to implement and
faster when A is symmetric, some researchers have sought alternatives to
CJ’s method.

In particular, in [12] the authors propose an alternative approximation
to the normal derivative that results in a symmetric matrix A. I will refer
to their method as Gibou and Fedkiw’s (GF’s) method. In [12] the authors
demonstrate with numerical examples that their method yields second-order
accurate solutions to the static (time independent) problem (1) with bound-
ary conditions given on the normal derivative of the solution at the bound-
ary; i.e., the Poisson problem with Neumann boundary conditions.

They then present examples of numerical solutions to the Stefan prob-
lem using their symmetric discretization at the interface which demonstrate
that their algorithm is only first-order accurate when one uses their approx-
imation the normal derivative at the interface

s=C o (6)
to compute the speed of the interface at each time step. However, the
authors offer no explanation for this decrease in accuracy when their method
is used to compute solutions of the Stefan problem. In a later paper [11]
Gibou and Fedkiw present a fourth-order accurate version of their algorithm
and demonstrate that it yields third order accuracy when they use it to
compute several examples of the Stefan problem. However, again they offer
no explanation for the decrease in accuracy when one uses their algorithm
to compute the speed of the interface.

I have recently completed an analysis of Gibou and Fedkiw’s original
algorithm from [12] in which I prove that their discretization of the normal
derivative of the solution at the interface is first-order accurate not second-
order accurate. My analysis is based on the analysis Johansen used in his
PhD thesis [17] to prove that the CJ discretization yields a second-order
accurate approximation to the normal derivative of the solution to the Ste-
fan problem and hence to the speed of the moving interface in the Stefan
problem.

Although the problem that both Johansen and I consider is the simplest
case, namely the 1D version of the Stefan problem (where the interface is
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reduced to a point) it still has implications for discretizing the Stefan prob-
lem and two and three dimensions. For example, if one had a discretization
of the normal derivative that was second-order accurate in two or three di-
mensions, then it must also be second-order accurate when one uses it to
model the 1D Stefan problem embedded in two or three dimensions. Hence
one is forced to conclude that the GF algorithm will be first-order accurate
when one uses it to model the Stefan problem in any dimension. Further-
more, given that there are a limited number of symmetric discretizations of
the normal derivative at the interface, one may also conclude that in order
to construct a second-order accurate finite difference solution of the Stefan
problem, one must necessarily solve a non-symmetric system of equations of
the form (5).

This has implications for a variety of other important problems in fluid
mechanics and computational physics that involve the movement of an in-
terface between two materials. For example, the computation of the solution
to the Euler or Navier-Stokes equations with two fluids with surface tension
at the moving interface between these materials involves the computation of
the normal to the interface and the jump in the value of the pressure at the
interface. Arguments similar to the one I have just described are likely to
show that one must solve a non-symmetric system of the form (5) in order
to obtain second-order accurate computations of this problem. Just as with
the Stefan problem, this problem is ubiquitous in science and industry.

Since at the present time, “state-of-the-art” algorithms for modeling
many important problems in science and industry are at best second-order
accurate, the analysis that I have just described can serve as a simple guide
for researchers to use in determining when their computational model may
be second-order accurate and when it has no possibility of being better than
first order accurate.

The work described above was done during the 2005-2006 Academic
Year with partial support from DE-FC02-01ER25473. I am currently in the
process of writing it up for publication.

7 Development of a second-order accurate method
for modeling solutions of the Stokes equation
with material interfaces

In collaboration with Peter Schwartz and Phil Colella of the Applied Nu-
merical Algorithms Group (ANAG) at the Lawrence Berkeley National Lab-
oratory (LBNL) I have been developing a second-order accurate method for

10
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modeling solutions of the Stokes equations for problems that contain one
or more moving inclusions across which the fluid properties (e.g., density
and viscosity) may change. Problems with these features occur in geophysi-
cal models of the Earth’s structure between the Core-Mantle Boundary and
the surface of the earth and in a variety of biological models, such as the
movement of very small creatures in a fluid (e.g., ‘swimming’ microbes or
bacteria). The goal of this work is to design and develop an algorithm that
will be implemented in the EBChombo software infrastructure that is being
developed by ANAG researchers at LBNL.

My intention is for the resulting software to be a computational tool for
of modeling these problems that is capable of handling arbitrary boundary
geometries with adaptive mesh refinement that would be freely available to
the general scientific community. Software that is based on block structured
adaptive mesh refinement and state-of-art algorithms for tracking the inter-
face between two materials such as described in some of the previous sec-
tions of this report does not, for example, exist in the geophysics community.
Some of the geophysical applications of this work has been in collaboration
with Professor Louise Kellogg of the U.C. Davis Geology Department and
Professor Michael Manga of the U.C. Berkeley Geophysics Department.

My current goal is to implement the algorithm in the EBChombo soft-
ware library during the summer of 2008 and have a paper describing the
algorithm ready for publication by November 2008.
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