
LLNL-TR-401150

FY07 LDRD Final Report
Catalyzing the Adoption of
Software Components

T. G. W. Epperly, G. K. Kumfert, T. Panas, D. J.
Quinlan

February 8, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

FY07 LDRD Final Report
Catalyzing the Adoption of Software Components

LDRD Project Tracking Code: 05-ERD-012

Thomas Epperly, PI
Gary Kumfert
Thomas Panas
Daniel Quinlan

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

05-ERD-012
February 11, 2008

 Software component technology has revolutionized software engineering for standard business-
oriented software, enabling codes to be larger, more modular, scalable, robust, and amendable to
change. Our objective was to make these benefits available to laboratory scientific codes through
research and development in technology to automatically transform legacy software from its current
form to a form using software component technology.

Despite budget reductions and early project termination, this project managed to produce useful results
and software analysis technology that is being used by laboratory coding groups. In particular, coding
groups are using our software analysis and metrics to understand the strengths and weaknesses of their
current software architecture. Furthermore, some of the tools initially developed by this LDRD are
being used by laboratory coding teams to find violations of coding standards, potential security flaws,
and black-listed programming constructs. Finally, the software analysis and visualization technology
from this project formed the basis for a new LDRD on software security. (07-ERD-057 Software
Security Analysis).

Our technical approach and accomplishments are covered in the three refereed publications that follow
this introduction. The first publication [Quinlan04] covers the motivation for automatically
transforming software to a component-based architecture, summarizes our overall technical approach,
and presents some of our early accomplishments. Our research covered a variety of clustering
techniques to identify candidates for component interfaces including spring-embedders (connection
based) and K-means (feature based).

The second and third publications [Panas07a,Panas07b] discuss new work in whole program
visualization. These papers also indirectly show the various types of software analysis and metrics we
developed for use in identifying component interfaces. By making our analysis available to developers
in an easy to use graphical user interface, we provided coding groups with a valuable tool to get a high-
level understanding of their software and identify areas where the design and architecture can be
improved. For example, the analysis and visualization techniques developed by this project were
applied to the source code for ROSE, the language analysis and transformation tool used by the project.
The tool identified the unparser as a particularly complex part, and on that basis, the unparser was
refactored to be easier to maintain and extend.

References

[1] Panas, T., D. Quinlan, and R. Vuduc. Analyzing and Visualizing Whole Program Architectures.
ICSE Workshop on Aerospace Software Engineering (AeroSE), Minneapolis, MN, May 21-22,
2007. Also available as UCRL-PROC-231453.

[2] Panas, T., T. G. W. Epperly, D. J. Quinlan, A. Sæbjørsen, and R. Vuduc. Communicating
Software Architecture using a Single-View Visualization. 12th IEEE Int. Conference on
Engineering of Complex Computer Systems, Auckland, New Zealand, July 11-14, 2007. Also
available as UCRL-CONF-227293.

[3] Quinlan, D., Q. Yi, G. Kumfert, T. Epperly, T. Dahlgren, M. Schordan, and B. White. Toward
the Automated Generation of Components from Existing Source Code. Second Workshop on
Productivity and Performance in High-End Computing, San Francisco, CA, February 13, 2005.
Also available as UCRL-CONF-208403.

