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1 Introduction

Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally
developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature.
To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found
their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes
leading to “alternating-zone” (red-black mode) errors. Tom extended their scheme to couple the
sub-meshes with appropriate chosen artificial diffusion and thereby solved the “alternating-zone”
problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable
to use a scheme that does not require the artificial diffusion but still able to avoid both numerical
diffusion and the “alternating-zone” problem. In this document we present such a scheme.

2 Corner-Centered Variables

Without loss of generality, let’s assume we are solving the diffusion equation for heat conduction:

Cv
∂T

∂t
= ∇ · D∇T − σT + Sext, (2.1)

where T is the temperature, Cv is the heat capacity per volume, D is the diffusion coefficient, σ
is the absorption coefficient, and Sext is the external heat source. In a hydrodynamic code these
variables are zone-centered quantities. In order to make use of node-centered diffusion solver, the
heat-conduction package keeps its state in the corners, since corners are contained in zones and
each corner is uniquely associated with a node that is a vertex of the containing zone. The initial
state of heat-conduction package for time step n + 1 is T n

C , i.e., the final corner temperature after
the heat-conduction package was advanced in time step n. Any change in the zonal temperature
TZ between the end of heat-conduction at time step n and the beginning of heat-conduction at
time step n + 1 due to other packages such as hydro and ALE is treated as heat source; therefore,
the zonal heat source to the heat-conduction package is:

SZ =
Cv

∆t

[

T
(n+ 1

2
)

Z − < T n
C >

Z

]

+ Sext,Z , (2.2)
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where Sext,Z is the zonal heat source that has not been taken into account in the computation

of T
(n+ 1

2
)

Z and < ... >
Z

is the zonal average of a corner-centered variable weighted by the corner

volume. The intermediate corner temperature T
(n+ 1

2
)

C is then updated as follows:

T
(n+ 1

2
)

C =

{

T n
C + SZ∆t , for SZ ≥ 0,

αT n
C , for SZ < 0,

(2.3)

α = 1 +
SZ∆t

< T n
C >

Z

. (2.4)

It is evident from Eq. (2.3) that T
(n+ 1

2
)

C satisfies the following energy conservation relation:

Cv < T
(n+ 1

2
)

C >
Z
= CvT

(n+ 1
2
)

Z + Sext,Z∆t. (2.5)

3 Solving Corner Variables Using Node-Centered Diffusion Solvers

The diffusion-absorption equation for each corner with implicit finite-difference in time is

Cv,iT
(n+1)
C,i − ∆t

[

∇c · D∇cT
(n+1)
C,i

]

= Cv,iT
(n+ 1

2
)

C,i − ∆t σiT
(n+1)
C,i , (3.6)

where, Cv,i is the heat capacity per volume of the zone containing the corner. Although, the
differential operator ∇c for the corner is not explicitly defined, we postulate that the nodal averaged
operator

∇ · D∇T
(n+1)
N ≡

∑

i=c1,c2,···
Vi∇c · D∇cT

(n+1)
C,i

∑

i=c1,c2,···
Vi

(3.7)

can be approximated by a nodal discretization. In order to use node-centered diffusion solver, we
have introduced nodal temperatures:

T k
N ≡

∑

i=c1,c2,···
Cv,iViT

k
C,i

∑

i=c1,c2,···
Cv,iVi

, k = (n +
1

2
) or (n + 1). (3.8)

Here,
∑

i=c1,c2,···
stands for summation over all the corners surrounding the node and Vi is the volume

of a given corner. Volume-weighted average of Eq. (3.6) gives the nodal equation

< Cv >
N

T
(n+1)
N − ∆t

[

∇ · D∇T
(n+1)
N

]

= < Cv >
N

T
(n+ 1

2
)

N − ∆tσ
N

T
(n+1)
N , (3.9)

< Cv >
N

=

∑

i=c1,c2,···
Cv,iVi

∑

i=c1,c2,···
Vi

. (3.10)

σ
N

≡

< Cv >
N

∑

i=c1,c2,···
ViσiT

(n+1)
C,i

∑

i=c1,c2,···
ViCv,iT

(n+1)
C,i

. (3.11)
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Notice that, the calculation of σ
N

requires knowledge of the relative amplitudes of corner variables

T
(n+1)
C,i for a given node. Since the absorption coefficient is most important in the non-diffusive limit

(D = 0), we assume that T
(n+1)
C,i for the corners surrounding a particular node are proportional to

the non-diffusive solution (TND
C,i ) of Eq. (3.6):

TND
C,i =

T
(n+ 1

2
)

C,i

1 + ηi
, (3.12)

ηi =
σi∆t

Cv,i
. (3.13)

The nodal absorption coefficient σ
N

can then be approximated by

σ
N

≈

< Cv >
N

∑

i=c1,c2,···

ViσiT
(n+ 1

2
)

C,i

1+ηi

∑

i=c1,c2,···

ViCv,iT
(n+ 1

2
)

C,i

1+ηi

=

∑

i=c1,c2,···

ViσiT
(n+ 1

2
)

C,i

1+ηi

T̂N
∑

i=c1,c2,···
Vi

, (3.14)

T̂N =

∑

i=c1,c2,···
ViCv,i

T
(n+1

2
)

C,i

1+ηi

∑

i=c1,c2,···
ViCv,i

. (3.15)

After solving the nodal equation (3.9) for the new nodal temperature T
(n+1)
N , the corner tempera-

tures are then updated as follows

T
′(n+1)
C,i =















T
(n+ 1

2 )

C,i

1+ηi
+ T

(n+1)
N − T̂N , for T

(n+1)
N ≥ T̂N ,

T
(n+1)
N

T̂N

T
(n+ 1

2
)

C,i

1+ηi
, for T

(n+1)
N < T̂N .

(3.16)

It is evident that T ′

C,i defined in Eq. (3.16) satisfies the following equation

∑

i=c1,c2,···

ViCv,iT
′(n+1)
C,i = T

(n+1)
N

∑

i=c1,c2,···

ViCv,i. (3.17)

Furthermore, in the non-diffusive limit (D = 0), solution of Eq. (3.9) is

T
(n+1)
N =

< Cv >
N

T
(n+ 1

2
)

N

< Cv >
N

+∆tσ
N

, (3.18)

which can be shown from Eqs. (3.8) and (3.14) equal to T̂n defined in Eq. (3.15). Hence, T
′(n+1)
C,i

reduces to the non-diffusive limit in Eq. (3.12).

If the heat capacity-weighted average of T
′(n+1)
C were to be used as the final zonal temperature

of time step n + 1, when the diffusion coefficient is non-zero, the present scheme would suffer the
same “alternating-zone” errors as the scheme by Shestakov et al. To eliminate the “alternating-

zone” errors, T
′(n+1)
C is relaxed through a sub-nodal temperature equilibration process as described

in Sec. (4).
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4 Sub-Nodal Temperature Equilibration

We postulate that within a nodal control volume, the corner temperature of each corner satisfies
the following equation

Cv,i
dTC,i

dt
= −µi(TC,i − T̃ ) − σi[TC,i − T

′(n+1)
C,i ] + QC,i, (4.19)

µi = Di/L
2
i , (4.20)

where Li is the scale length of corner i and QC,i = Cv,i[T
′(n+1)
C,i − T n

C,i]/∆t is the heat source taking
into account all the processes, including diffusion, that cause the change in the corner temperature

so far, from T n
C,i to T

′(n+1)
C,i . For energy conservation, the reference temperature T̃ must satisfy

T̃
∑

i=c1,c2,···

Viµi =
∑

i=c1,c2,···

Vi[(µi + σi)TC,i − σiT
′(n+1)
C,i ]. (4.21)

With implicit finite-difference in time, Eqs. (4.19) and (4.21) reduce to

(Cv,i + σi∆t + µi∆t)T
(n+1)
C,i = (Cv,i + σi∆t)T

′(n+1)
C,i + µi∆tT̃ , (4.22)

T̃ =

∑

i=c1,c2,···
Vi[(µi + σi)T

(n+1)
C,i − σiT

′(n+1)
C,i ]

∑

i=c1,c2,···
Viµi

. (4.23)

Substituting Eq. (4.22) into Eq. (4.23), we eliminate the unknowns T
(n+1)
C,i and obtain the expres-

sion for T̃

T̃ =

∑

i=c1,c2,···
Vi

Cv,iµi∆t T
′(n+1)
C,i

Cv,i+(σi+µi)∆t

∑

i=c1,c2,···
Vi

Cv,iµi∆t
Cv,i+(σi+µi)∆t

. (4.24)

Eqs. (4.22) and (4.24) together give the final corner temperature T
(n+1)
C,i . The final zonal tempera-

ture of time step n + 1 is the heat capacity-weighted average of T
(n+1)
C,i .

5 Numerical Results

A one-dimensional heat-conduction test problem was set up to test the algorithm. The mesh was
a 1-cm cube with 1 zone in the x and y directions and 20 equally sized zones in the z direction.
The initial temperature profile was a spike with the temperature of 100 keV for the zone with the
smallest z-coordinate and 0 for the rest of the zones. Reflecting boundary condition was applied at
all the boundaries. The heat capacity per volume was Cv = 5.0 jerks · keV −1 cm−3, the diffusion
coefficient was D = 1.25 jerks · keV −1 cm−1 sh−1, and there was no absorption. Shown in Fig. 1
are the temperature profiles at the end of 20 cycles with 5×10−3sh time step (t = 0.1sh) calculated
using 4 different methods:
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1. Curve A (red dotted curve): Analytical result

T (z, t) = 100 keV
2∆z

√

4πDt/Cv
exp

(

−
z2Cv

4Dt

)

,

where ∆z = 0.05cm is the zone width in the z-direction.

2. Curve B (blue solid curve): Current algorithm with sub-nodal equilibration.

3. Curve C (green dashed curve): Current algorithm without sub-nodal equilibration.

4. Curve D (black dotted-dashed curve): In every cycle, interpolate the zonal temperatures to
the nodes, solving the nodal temperatures with the nodal diffusion solver, and interpolate the
nodal temperatures back to the zones.

Comparing curves A and B in Fig. 1, it is evident that the result from the current algorithm with
the sub-nodal equilibration is in excellent agreement with the analytical result. The “alternating-
zone” error can be clearly seen in curve C, at the two leftmost zones, where there was a steep gradient
in the initial temperature profile. The usage of the corner variables in the current algorithm, even
without the sub-nodal equilibration, produces a smooth temperature profile in zones where the
gradient of the initial temperature is 0. In contrast, Tom Kaiser [1] showed that using the scheme
by Shestakov et al. the “alternating-zone” error spread out to zones that had zero gradient in initial
temperature. Finally, Curve D shows that interpolation between the zonal temperatures and the
nodal temperature every cycle is too diffusive.

Another test problem examined the capability of the current algorithm to preserve the spherical
symmetry of the impulse response on Kershaw’s “z-mesh” in 2D-RZ geometry. The geometry of
the test problem was a 1-cm square in the r-z coordinate system (see Fig. 2). The lower boundary
of the problem was on the z-axis. Reflecting boundary condition was applied at all the boundaries.
The heat capacity per volume was Cv = 5.0 jerks · keV −1 cm−3, the diffusion coefficient was
D = 0.75 jerks · keV −1 cm−1 sh−1, and there was no absorption. The initial temperature profile
was a spike with the temperature of 100 keV for the zone located at the the lower-left corner and
0 for the rest of the zones. The time step for each cycle is 2 × 10−3sh. Shown in Figs. 2 and
3 are the contour plots of the temperatures at cycle 100 (t = 0.2sh) and cycle 200 (t = 0.4sh),
respectively, using VisIt (http://www.llnl.gov/visit/). To better quantify the degree of deviation
from the spherical symmetry, the “lineout” mode in VisIt was used to trace the temperature as a
function of distance from origin (lower-left corner). Shown in Figs. 4 and 5 are the “lineout” plots
at cycle 100 and cycle 200, respectively, for three angles, 0◦ (z-axis), 90◦ (r-axis), and 45◦. The
curves in Figs. 4 and 5 are:

1. Curve A (black solid curve): 0◦.

2. Curve B (red solid curve): 90◦.

3. Curve C (blue solid curve): 45◦.

4. Curve D (green dotted curve): analytical solution

T (d, t) = 100 keV
2V0

(4πDt/Cv)3/2
exp

(

−
d2Cv

4Dt

)

,
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where d is the distance from the origin and V0 = π × 10−6cm3 is the volume of the zone at
the lower-left corner.

The jaggedness of the “lineout” curves is expected, because both Kull and VisIt treat the temper-
ature as a spatially uniform value within each zone. The importance point is that the “lineout”
curves do not deviate much from the analytical solution. The 45◦ curves on both Figs. 4 and 5 do
not monotonically decrease. The inversion of the slope is caused by the interaction between the
“lineout” operator and the severe skewness of the “z-mesh”. As the “lineout” operator traverses
from the origin along the 45◦-line, it may intercept a zone centered at a larger distance from the
origin before it intercepts another zone centered at a smaller distance, resulting in an inversion of
the slope. For a similar reason, the contours in Figs. 2 and 3 also show some jaggedness but in a
much lesser level.
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Figure 1: Temperature (in keV ) vs. z (in cm) at the end of 20 cycles (t = 2.0× 10−2sh) calculated
with 4 different methods.
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Figure 2: Contour plot of the temperature (in keV ) at cycle 100 for the “z-mesh” test problem.
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Figure 3: Contour plot of the temperature (in keV ) at cycle 200 for the “z-mesh” test problem.



10

0.00 0.50 1.00

0.00e+00

5.00e-04

1.00e-03

1.50e-03

2.00e-03

2.50e-03

A

A

A

A

A
A

B

B

B

B

B
B

C

C

C

C
C C

D

D

D

D
D D

Figure 4: “Lineout” curves and the analytical solution, temperature (in keV ) vs. d (in cm), at
cycle 100 for the “z-mesh” test problem.
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Figure 5: “Lineout” curves and the analytical solution, temperature (in keV ) vs. d (in cm), at
cycle 200 for the “z-mesh” test problem.


