
 

 

 

 

Advanced Emissions Control Development Program 
 

 

Final Report – April 1, 2001 

 

For work conducted under the “AECDP Amendment” 

June 1, 1999 to March 31, 2001 

 

 

 

Prepared by: 

G. A. Farthing 
G. T. Amrhein 
G. A. Kudlac 

D. A. Yurchison 
McDermott Technology, Inc. 

 
D. K. McDonald 

M. G. Milobowski 
The Babcock & Wilcox Company 

 

 

 

This report contains no proprietary information. 

 

 

McDermott Technology, Inc., Contract Number CRD-1402 

U. S. Department of Energy Cooperative Agreement Number DE-FC22-94PC94251 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 2 of 87 

 

 

 

 

 

 

Legal Notice/Disclaimer 

 
 
This report was prepared by McDermott Technology, Inc. (MTI) pursuant to a Cooperative 
Agreement partially funded by the U.S. Department of Energy, and neither MTI, nor any of its 
subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either: 
 
a)  Makes any warranty or representation, express or implied, with respect to the accuracy, 
completeness, or usefulness of the information contained in this report, or that the use of any 
information, apparatus, method, or process disclosed in this report may not infringe privately-
owned rights; or 
 
b)  Assumes any liabilities with respect to the use of, or for damages resulting from the use of, 
any information, apparatus, method or process disclosed in this report. 
 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the U.S. Department of Energy.  The views and opinions of 
authors expressed, herein, do not necessarily state or reflect those of the U.S. Department of 
Energy. 
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Executive Summary 

 

The objective of the Advanced Emissions Control Development Program (AECDP) has been to 

develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants 

(HAPs), commonly called air toxics,  from coal-fired utility boilers.  Development work initially 

concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride.  Later 

work focused exclusively on the control of mercury emissions.  The appropriateness of this focus 

was recently confirmed when, in December, 2000, the U.S. Environmental Protection Agency 

(EPA) announced its intention to regulate mercury emissions from electric power plants. 

 

Work reported, herein, was performed by McDermott Technology, Inc., (MTI) and the Babcock 

& Wilcox Company (B&W) as an extension, or amendment, to the AECDP.  The original 

AECDP scope of work, completed in July, 1999, was conducted in three phases over a five-year 

period, and was jointly funded by the United States Department of Energy’s National Energy 

Technology Laboratory (DOE), the Ohio Coal Development Office within the Ohio Department 

of Development (OCDO), and B&W.    The additional work conducted under the amendment 

was funded by the DOE, and comprised a more thorough evaluation of mercury control concepts 

developed earlier in the project 

 

Results of Earlier AECDP Work 

Development testing was conducted in B&W’s Clean Environment Development Facility 

(CEDF).  The CEDF is a one-of-a-kind boiler simulator with a rated capacity of 100 MBtu/hr 

(about the equivalent of a 10 MWe power plant).  It simulates a large commercial generating 

station from the coal pile to the stack, and includes a full complement of back-end pollution 

control equipment (electrostatic precipitator, fabric filter, spray dryer, and wet scrubber).  

Extensive benchmarking tests performed at the start of the project verified that CEDF HAP 

emissions are representative of those of commercial coal-fired plants.  

 

Trace metal emissions – with the exception of mercury – were found to be well controlled by 

both the electrostatic precipitator (ESP) and fabric filter.  Particulate-phase mercury was also 

efficiently captured in both the ESP and fabric filter.  However, due to the high volatility of most 
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mercury species, particulate-phase mercury accounted for only a small fraction of the total 

mercury for the coals tested.  Vapor-phase mercury was not captured by either the ESP or the 

fabric filter.  HCl and HF emissions were captured with high efficiency in the wet scrubber (wet 

flue gas desulfurization or wet FGD). 

 

Enhanced control of mercury with the ESP by way of upstream sorbent injection was 

demonstrated using a sorbent of low cost relative to activated carbon.  Carbon injection is a 

commercially-proven technology for the control of mercury emissions from municipal solid 

waste incinerators.  However, application of carbon injection technology to coal-fired utility 

boilers is projected to be expensive due to the low utilization of carbon expected for such 

systems.  Injection of low-cost limestone into the upper furnace of the CEDF provided 45-56 % 

removal of total mercury compared to an 18% baseline removal.  This mercury removal 

performance is similar to that obtained during carbon injection testing in the CEDF. 

 

Initial testing with wet FGD consistently yielded significantly less mercury removal for an 

ESP/wet FGD system as compared to a fabric filter/wet FGD system – even though there was no 

significant difference in mercury removal or speciation across the particulate collectors.  Also, 

elemental mercury concentration increased across the scrubber when the ESP was used 

upstream.  This phenomenon was not observed with the scrubber when operating downstream of 

a fabric filter.  Based on hypothesized mechanisms for these surprising results, three 

enhancement approaches were identified to improve mercury capture in a wet FGD system 

operating downstream of an ESP.  Each of the three approaches significantly improved mercury 

capture across the wet scrubber, and also prevented the increase in elemental mercury.  

 

Results of Current Work 

The B&W enhanced wet FGD and sorbent injection processes have been further evaluated under 

the AECDP amendment.  Preliminary designs based on the application of the processes to 

representative commercial boilers were developed and used to identify design uncertainties, as 

well to quantify the sensitivity of performance and cost on design specifications.  For each 

process this activity included the preparation of a process flow diagram, material balance, major 
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equipment list and budgetary equipment cost estimate.  Based on the preliminary designs, 

budgetary capital and operating costs were also developed.  

 

Enhanced Wet FGD.  Based on testing conducted in the CEDF under the AECDP and other 

projects, the B&W enhanced wet FGD process, alone, provides the means for controlling up to 

90% of the vapor-phase mercury emitted during the combustion of Ohio coals.  There are three 

primary factors that contribute to this success: 

 

• Ohio coals – as well as many other eastern U.S. bituminous coals – exhibit the property 
whereby approximately 70 to 85% of the vapor-phase mercury is emitted in the oxidized 
form (presumably HgCl2). 

 
• A conventional lime/limestone scrubber provides the ability to effectively capture the 

oxidized form of mercury. 
 
• The B&W process prevents the conversion of the captured oxidized mercury in the 

scrubber back to the elemental form, thereby precluding its reemission. 
 

As impressive as these results are, it is unlikely that this approach, alone, will consistently yield 

mercury removal efficiencies in excess of 90% – especially with coals that produce a larger 

percentage of elemental mercury.  One way to address this limitation is to oxidize the elemental 

mercury in the flue gas upstream of the wet FGD system.  A selective catalytic reduction (SCR) 

system – commonly used for the control of NOX emissions – was identified as one potential 

means for accomplishing this. 

 

It has long been known that conventional SCR catalysts have a tendency to oxidize SO2 to SO3.  

Testing was performed under a separate program to determine the extent to which SCR catalysts 

also promote the oxidation of elemental mercury.  During three tests conducted in B&W’s Small 

Boiler Simulator using an Ohio bituminous coal, the average percentage of oxidized mercury in 

the flue gas increased from 50.9% to 93.4% in the presence of the SCR catalyst.  This significant 

result suggests that B&W’s enhanced wet FGD process operating downstream of an SCR system 

should yield high (on the order of 90%) mercury removal efficiencies for a wide variety of coals.  

It should be noted that while every effort was made to ensure that the test conditions closely 

simulated commercial SCR operation, these results must be verified at full scale.  
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The levelized cost for the B&W enhanced wet FGD mercury removal process added to an 

existing wet scrubber is estimated to be about $1,000 per pound of mercury removed.  This cost 

is at least an order of magnitude lower than that for an activated carbon injection system.  More 

significantly, the enhanced wet FGD system – including the costs for the addition of a new wet 

scrubber – can be competitive with activated carbon systems, depending on the mercury 

concentration in the coal and the amount of activated carbon required to meet emission targets.   

 

It is important to note that this cost comparison takes no credit for the SO2, H2SO4, HCl, or HF 

removal benefits of the addition of the scrubber.  Further, the analysis does not take into account 

the potentially significant fuel cost savings made possible by the wet scrubber by enabling the 

utility to switch back to a higher-sulfur, local coal.  An additional benefit of the scrubber 

approach is that no impact on ash utilization or disposal is anticipated.  An activated carbon 

system may well result in higher ash disposal costs due to the presence of the carbon in the fly 

ash.  Furthermore, installation of a spray cooling system and/or an additional fabric filter may be 

required to achieve high removal rates with activated carbon.   

 

The B&W enhanced wet FGD process is expected to provide efficient mercury removal for coals 

that produce a high percentage of oxidized mercury – typically the eastern U.S. bituminous 

coals.  When used in concert with an SCR system, it is expected to yield high mercury removal 

(~90%) on a wide variety of U.S. coals.  Such a system is also capable of removing SO2, NOX, 

H2SO4, HCl, and HF with very high removal efficiencies.  The highly interactive nature of these 

emissions control systems argues strongly for an integrated approach to future emissions control 

regulations for electric utilities. 

 

Sorbent Injection.  Based on testing conducted in the CEDF, limestone injection appears to offer 

a low-cost alternative to activated carbon injection for mercury control at modest levels of 

mercury removal (~50% mercury removal efficiency).  In this regard, limestone injection for 

mercury control appears to be somewhat analogous to limestone injection for SO2 control (a 

process commonly referred to as LIMB).  In each case the limestone injection process offers 

modest removal efficiency at low capital cost, and relatively low operating cost.  For electric 
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utilities, limestone injection for SO2 control has largely been overshadowed by higher efficiency 

processes such as wet scrubbing due to the way in which SO2 regulations have been 

promulgated.  Whether or not low-efficiency, low-cost mercury removal processes find 

commercial application may well also depend on how mercury emissions are regulated. 

 

Preliminary Assessment of Market.  This activity focused on evaluating the existing U.S. coal-

fired utility boiler population with respect to various design parameters (unit size and location, 

coal type, FGD system type, reagent type, extent of mercury oxidation, etc.) to quantify the 

potential impacts of B&W’s control technologies on mercury emissions from U.S. utilities.  The 

estimates are based on a detailed coal-fired utility plant database and mercury removal 

performance data obtained during pilot-scale testing.  

 

Applying limestone injection to the currently-unscrubbed units, and enhanced wet FGD to the 

units with existing wet FGD systems, results in a 50% decrease in the U.S. mercury emissions 

rate, from 54 tons/year to 27 tons/year.  The extreme case of applying the B&W enhanced wet 

FGD process in conjunction with SCR (for oxidation of elemental mercury, as well as NOX 

removal) to all coal-fired units could result in total U.S. mercury emissions of 6.7 tons/year – a 

reduction of nearly 90%.  As pointed out, above, this scenario would also result in dramatic 

reductions in U.S. emissions of SO2, NOX, H2SO4, HCl, and HF, and provide utilities with 

greater flexibility in purchasing coal supplies. 

 

Fate of Mercury.  A key consideration in the commercial viability of any mercury removal 

process is the fate of the captured mercury.  To be an effective control technology, the captured 

mercury must remain sequestered in the solid byproduct.  This is important for both the gypsum 

or sludge produced by the enhanced wet FGD process, and for the spent byproduct produced by 

the sorbent injection process.  In an effort to determine the ultimate fate of mercury contained in 

the solid byproduct, and how the B&W control technologies might affect this fate, conventional 

wet chemistry methods and a new thermal stability technique developed during this project were 

used to characterize the byproduct.   
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Samples from several mercury test campaigns in the CEDF were used in the study, as were 

several samples obtained from two U.S. utilities – one burning an eastern bituminous coal and 

the other burning a blend of western subbituminous coals.  The eastern plant has an ESP 

followed by a wet FGD system to control particulate and SO2 emissions, respectively, although 

the scrubbing process is different than that tested in the CEDF.  This plant provided three 

samples:  an ESP ash, a dewatered wet FGD sludge, and a stabilized sludge that comprised a 

mixture of ESP ash, wet FGD sludge and lime.  The western plant sent only a sample of ESP ash.   

 

Significantly, all samples tested contained too little mercury to exceed Toxicity Characteristic 

Leaching Procedure (TCLP) limits even if all of the mercury had reported to the liquid phase, 

which it did not.  For comparison purposes, human fingernail clippings were found to contain 83 

times more mercury than the wet FGD sludge produced the B&W enhanced wet FGD system.  

Further, no mercury was ever detected in any liquid fraction, suggesting that no soluble form of 

mercury, such as HgCl2, was present in any of the samples.  Thermal stability testing indicated 

that all samples were stable (with respect to mercury content) up to at least 140 C, the 

temperature at which rotary kilns in wallboard plants operate. 

 

Overall, the fate of mercury testing indicated that solid byproducts produced by conventional 

systems, as well as those produced by the B&W enhanced processes, appear to be suitable (with 

respect to mercury content) materials for wallboard and cement manufacture, and for disposal in 

landfills.  
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1.0 Introduction 

 

1.1 Overview 

The primary objective of the Advanced Emissions Control Development Program (AECDP) is to 

develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants 

(HAPs, or air toxics) from coal-fired boilers.  This objective is being met by identifying ways to 

effectively control air toxic emissions through the use of conventional flue gas cleanup 

equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue 

gas desulfurization (wet FGD) systems.  Development work initially concentrated on the capture 

of trace metals, hydrogen chloride, and hydrogen fluoride.  Recent work has focused almost 

exclusively on the control of mercury emissions.   

 

Work reported, herein, was conducted by McDermott Technology, Inc. (MTI), and The Babcock 

& Wilcox Company – a McDermott company (B&W), under an amendment (addition) to the 

original project workscope to permit a more thorough evaluation of mercury control concepts 

developed earlier in the project.  The original workscope was conducted in three phases and was 

completed in July, 1999.  The original three phases were jointly funded by the United States 

Department of Energy’s National Energy Technology Laboratory (DOE), the Ohio Coal 

Development Office within the Ohio Department of Development (OCDO), and B&W.  The 

additional workscope, conducted under the amendment, was funded by DOE.  Detailed 

descriptions of the work completed under Phases I, II, and III are contained in the final reports 

for each of the phases. 

 

1.2 Previous Work 

Phase I (Facility Modification and Benchmarking) was aimed at providing a reliable, 

representative test facility to study air toxics.  A full-flow ESP and partial-flow fabric filter and 

wet FGD system were added to the existing complement of flue gas treatment systems installed 

at the B&W Clean Environment Development Facility (CEDF).  A schematic of the CEDF and 

project test equipment is provided in Figure 1-1.  The CEDF is a unique testing facility with  

a rated capacity of 100 MBtu/hr (about the equivalent of a 10 MWe electric plant).  It simulates a 
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Figure 1-1 – Clean Environment Development Facility 

 

large commercial generating station from the coal pile to the stack.  For the added equipment, the 

general design philosophy was to install systems that would be representative of existing 

commercial systems, yet provide a high degree of flexibility in both operation and configuration.  

Other activities completed in Phase I included equipment verification, air toxics benchmarking 

and the establishment of an emissions database. 

 

Air toxic benchmarking measurements were performed to quantify the air toxics emissions from 

the boiler and back-end flue gas cleanup equipment.  Air toxics emissions were verified through 

comparison of the emissions from the CEDF with the emissions predicted by the trace element 

content of the coal and the draft emission modification factors (EMFs) established by the U.S. 
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Environmental Protection Agency (EPA).  The EMFs were developed using data gathered at a 

number of commercial utility plant sites.  The similarity between the predicted and measured 

emissions indicated that the air toxics emitted from the CEDF are representative of commercial 

units firing bituminous coal.  

 

Three test campaigns were conducted in Phase II (Optimization of Conventional Systems).  The 

first two campaigns were directed at the development of air toxics control strategies based on the 

use of conventional particulate and SO2 control equipment.  Campaign 1 focused on mercury 

speciation measurements, particulate- and vapor-phase trace metal emissions, and fine particulate 

emissions.  Emphasis was placed on characterization of ESP and fabric filter trace element 

emissions control performance.  The control of mercury emissions with a wet FGD system was 

broadly characterized during Campaign 2 under conditions representative of commercial 

scrubber operations.  Campaign 3 provided data on the impacts of coal properties on mercury 

emissions for several Ohio steam coals.  The impact of coal cleaning on mercury emissions was 

investigated through characterization of commercially-cleaned coals and their associated parent 

(uncleaned) coals.  Two advanced measurement systems, a mercury monitor and a Fourier 

transform infrared spectrometry analyzer (FTIR), were also evaluated in Phase II. 

 

Phase III (Advanced Concepts and Coal Comparisons) included investigations of advanced 

emissions control concepts, primarily for the purpose of reducing vapor-phase mercury 

emissions.  Two different approaches were taken to address the two major segments of the coal-

fired utility market: 

 

• Scrubbed systems (primarily wet flue gas desulfurization), which represent about 25% of the 
coal-fired utility market.  The majority of these scrubbed systems comprise an ESP followed 
by a wet scrubber. 

 
• Unscrubbed systems, which represent about 75% of the utility coal market.  The majority of 

these systems comprise an ESP, only. 
 

Mercury species were tracked through the entire coal-utilization process including pre-

combustion, combustion, and post-combustion processes for several Ohio coals.  Commercial 

coal cleaning, which is used on the majority of coals fired east of the Mississippi, provided 
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average mercury emission reductions of 42% compared to the raw coal.  Particulate control 

devices (ESPs and fabric filters) effectively removed the particulate-phase mercury, but the 

particulate-phase mercury was only a small fraction of the total mercury for the coals tested.  

Both the fabric filter and ESP provided negligible control of vapor-phase mercury.  The fabric 

filter, however, did impact the speciation of vapor-phase mercury in the flue, resulting in a 

modest conversion of the elemental mercury to the oxidized form. 

 

Control of mercury by an ESP with upstream sorbent injection was demonstrated during 

Phase III testing.  Testing focused on sorbents of low cost relative to commercial activated 

carbons.  Carbon injection is a commercially-proven technology for the control of mercury 

emissions from municipal solid waste incinerators.  However, application of carbon injection 

technology to coal-fired utility boilers is projected to be expensive due to the low utilization of 

carbon expected for those systems.  One low-cost sorbent (limestone) tested during Phase III 

provided 45 % and 56 % removal of total mercury at two cost-competitive stoichiometries, 

compared to an 18% average removal for baseline conditions with no sorbent injection.  Carbon 

injection likewise provided improved control of mercury by an ESP, removing 56% of the total 

mercury in the flue gas at an activated carbon-to-mercury mass ratio of 9000 to 1. 

 

Phase III testing related to wet FGD systems focused on enhancing control of mercury across 

wet scrubbers when operated downstream of an ESP.  Testing during Phase II had consistently 

indicated less mercury removal for an ESP/wet FGD system as compared to a fabric filter/wet 

FGD system – even though there was no significant difference in mercury removal or speciation 

across the particulate collectors.  Also, elemental mercury levels increased across the scrubber 

when an ESP was used upstream.  Causes for these observations were hypothesized at the 

beginning of Phase III, and proposed methods for enhancing mercury control in the wet scrubber 

were tested.  The hypotheses were based on the belief that the ESP can destroy gas-phase species 

that would otherwise react with the mercury in the scrubber, and thereby sequester the mercury 

in a solid precipitate, preventing the subsequent conversion of the oxidized mercury to the 

elemental form.  Figure 1-2 illustrates the observed conversion of oxidized mercury species to 

the elemental form in a wet scrubber operating downstream of an ESP.  This phenomenon is not  
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Figure 1-2 – Effect of ESP Power on Mercury Removal in Wet Scrubber 

 

observed in the scrubber when operating downstream of a fabric filter.  Figure 1-2 further 

illustrates the fact that the effect is dependent on the operating conditions in the ESP.  

 

Several enhancements were identified to improve control of mercury in a wet FGD system 

downstream of an ESP.  The baseline data used for comparison with the enhancements showed 

46% removal across the scrubber when preceded by an ESP when firing a blend of Ohio 5, 6, & 

7 coals.  Three enhancements were evaluated to determine their potential for eliminating the 

effect of the ESP on mercury control in the scrubber.  All three of the enhancements significantly 

improved mercury control across the wet scrubber and prevented increases in elemental mercury.  

Mercury removal increased to 80, 71, and 73% for the three enhancements, respectively.   

 

1.3 Current Work 

B&W considered the mercury control concepts developed during the original three phases of the 

AECDP, and described in the previous section, to have the potential to permit U.S. utilities to 

reduce mercury emissions from their coal-fired units in a very cost-effective manner.  However, 

at the completion of the Phase III work, there remained a variety of issues that needed to be 

addressed before a detailed commercialization plan could be developed.  Several of these issues 
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were addressed under the contract amendment, and are the subject of this report.  They were 

addressed under two main activities or tasks: Concept Evaluation and Fate of Mercury. 

 

1.3.1 Task 1 – Concept Evaluation 

The objective of this task was to further evaluate the mercury emissions control concepts 

developed under Phase III.  The enhanced wet FGD and limestone injection technologies were 

evaluated both technically and economically for potential application to coal-fired utility boilers.   

 

Engineering Study / Conceptual Design.  Preliminary (conceptual) process designs were 

developed for each of the mercury control concepts.  These designs were based on the 

application of the technologies to representative commercial boilers, and were used to identify 

design uncertainties, as well as to quantify the sensitivity of performance and cost to design 

specifications.  For each concept this activity included the preparation of a process flow diagram, 

material balance, major equipment list and budgetary equipment cost estimate.  Estimated capital 

and operating costs were then developed and compared with other mercury control concepts such 

as activated carbon injection. 

 

Preliminary Assessment of the Market.  This activity was a follow-on to the preliminary boiler 

population study conducted earlier in the AECDP project.  The evaluation included an updated 

utility boiler population survey, an assessment of existing environmental control equipment, and 

the potential for mercury emissions reductions using the B&W concepts.   

 

1.3.2 Task 2 – Fate of Mercury 

A key consideration in the commercial viability of any mercury removal process is the fate of the 

captured mercury.  To be an effective control technology, the captured mercury must remain 

sequestered in the solid byproduct.  This is an important consideration for both the gypsum or 

sludge produced by the enhanced wet FGD process, and for the spent sorbent/flyash byproduct 

produced by the limestone injection process.  Work was done under this subtask to characterize 

the properties and stability of the byproducts produced by the mercury control concepts.  This 

work involved chemical analysis of byproduct materials.  Some of this work made use of 
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samples archived during earlier phases of the project.  Samples collected at representative field 

sites were also evaluated. 
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2.0 Concept Evaluation 

 

2.1 Recent Results from Other B&W Testing Programs 

 

2.1.1 Enhanced Wet Scrubbing 

Development work on the B&W enhanced wet FGD concepts identified during the first three 

phases of the AECDP continued under a separate project entitled “Mercury Control for Coal-

Fired Boilers”.  Project participants included the Ohio Coal Development Office within the Ohio 

Department of Development (under Grant Agreement CDO/D-98-7), Cinergy Corporation, 

B&W, and MTI.  The objective of the project was to develop and optimize B&W’s wet FGD 

mercury removal enhancement technologies to the point where a commercial demonstration 

could be conducted.  Extensive testing was conducted under the project, the results of which are 

detailed in several project milestone reports. 

 

Of particular interest, here, is testing performed in the CEDF using a blend of Ohio 5 & 6 coals.  

This testing was done to evaluate the effectiveness of an alternate reagent – a reagent which 

mimics the chemical behavior of one of the reagents tested during the original AECDP, but 

which is lower in cost and more readily available in commercial quantities.  Four tests were 

conducted with the alternate reagent.  Mercury speciation measurements were performed in 

triplicate according to the Ontario Hydro method at the wet scrubber inlet and outlet for each 

test.  Throughout the test campaign, vapor-phase mercury concentrations at the wet scrubber 

inlet remained steady, averaging 18.5 µg/dscm (micrograms per dry standard cubic meter).  

Mercury speciation at the wet scrubber inlet also remained relatively steady, with approximately 

84% of the mercury reporting as oxidized mercury.  Particulate mercury concentrations at the 

wet scrubber inlet averaged 0.38 µg/dscm, or approximately 2% of the total mercury present in 

the flue gas.  For clarity, the particulate-phase mercury concentrations are not shown in the 

following two figures.   

 

In Figure 2-1, the mercury removal and speciation results for the alternate reagent are compared 

with baseline (no additive) wet scrubber removal and speciation results.  In the figure the feed 
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rate of reagent is reported as a multiple of the reagent feed rate used during the feasibility tests 

performed during the AECDP.  For example, “1X” indicates that the feed rate used was the same 

as that used for the earlier AECDP tests.  The test labeled “1XR” is simply a repeat of the “1X” 

test.  Each set of bars represents the average inlet and outlet gas-phase mercury concentrations 

for a given test.  Each bar is divided to show oxidized and elemental mercury concentrations.  

The numbers above the outlet bars show the average total mercury removals for each test.  The 

error bars represent the maximum and minimum mercury concentrations for each set of triplicate 

measurements. 

 

Figure 2-1 – Mercury Removal and Speciation with Alternate Reagent 

 

As expected, the alternate reagent resulted in significant increases in mercury removal across the 

wet scrubber relative to baseline conditions.  The same data, plotted in a different form in Figure 

2-2, show that while comparable oxidized mercury removals were observed for each of the tests, 

the alternate reagent effectively suppressed the conversion of the captured oxidized mercury to 

the elemental form, thereby preventing its reemission as elemental mercury vapor.  This was, of 
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course, the original objective of B&W’s enhanced wet FGD process.  Somewhat surprisingly, 

elemental mercury removal modestly increased with increasing reagent feed rate, as well.   

 

Figure 2-2 – Oxidized, Elemental and Total Mercury Removal Results 

 

 

The results indicate that the alternate reagent has essentially the same effectiveness in improving 

mercury removal across the wet scrubber as that offered by the original reagent.  The important 

point is that the alternate reagent is lower in cost and more readily available than the original 

reagent, and does not adversely affect either mercury removal performance or scrubber 

operation.   

 

2.1.2 Improved Control of Elemental Mercury 

As described, above, the B&W enhanced wet FGD process provides the means for controlling up 
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• Ohio coals – as well as other eastern U.S. bituminous coals – exhibit the property 
whereby approximately 70 to 85% of the vapor-phase mercury is emitted in the oxidized 
form (presumably HgCl2). 

 
• A conventional lime/limestone scrubber provides the ability to effectively capture the 

oxidized form of mercury. 
 
• The B&W process prevents the conversion of the captured oxidized mercury in the 

scrubber back to the elemental form, thereby precluding its reemission. 
 

As impressive as these results are, it is unlikely that this approach, alone, will yield mercury 

removal efficiencies in excess of 90% for coals that produce a larger percentage of elemental 

mercury.  To achieve this level of control, a way must be found to reduce the emissions of 

elemental mercury.  This problem can be addressed by: 

 

• Decreasing the percentage of elemental mercury, or by 
 
• Capturing the elemental mercury, directly. 

 

While B&W is currently investigating concepts for the direct capture of elemental mercury, the 

focus of the work done under this project was to identify potential means for decreasing the 

fraction of elemental mercury in the flue gas.  Two of the methods identified for effecting the 

oxidation of elemental mercury were subsequently tested under the “Mercury Control for Coal-

Fired Boilers” project.  The first involved the use of a conventional catalyst for the selective 

catalytic reduction (SCR) of NOx.  The second involved injecting a calcium chloride solution 

into the combustion zone of the furnace. 

  

SCR Catalysts.  It has long been recognized that conventional SCR catalysts have a tendency to 

oxidize SO2 to SO3.  Testing was performed under representative SCR conditions to determine 

whether or not the catalysts also promote the oxidation of elemental mercury. 

 

Calcium Chloride Injection.  This approach is based on the empirical observation that western 

coals low in chloride content tend to produce less oxidized mercury than eastern bituminous 

coals that are characteristically higher in chloride content.  This led to the idea of artificially 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 25 of 87 

increasing the chloride content of the coal by, for example, coating the coal with a solution of 

calcium chloride to promote the formation of HgCl2.  

 

All testing was conducted in the Small Boiler Simulator (SBS) while firing an Ohio Mahoning 7 

coal.  For the CaCl2 injection test one set of triplicate Ontario Hydro sampling was conducted.  

An EPA Method 26 sampling procedure was also conducted to quantify the amount of chloride 

present in the flue gas.  No incremental conversion of elemental mercury was observed when 

injecting a calcium chloride solution into the SBS combustion zone.  The amount of calcium 

chloride injected was comparable to a coal containing 3000 ppm chloride. 

 

Mercury speciation results for the tests where the flue gases were exposed to SCR catalyst are 

presented in Figure 2-3.  The flue gases were exposed to the catalyst at typical SCR catalyst 

temperatures (approx. 750 F).  Each bar in the figure represents a single Ontario Hydro sample 

train and is identified either as an SCR train (flue gas has contacted the SCR catalyst) or a 

Reference train (flue gas is untreated).  Each pair of bars represents a simultaneous pair of 

Ontario Hydro sample trains.  The bars are divided to indicate the amount of oxidized and 

elemental mercury present in the flue gas.  The numerical percentage above each bar represents 

the percent of oxidized mercury present in the flue gas.   

 

It can be seen from the data that at typical SCR operating temperatures substantial incremental 

mercury oxidation is achieved.  For the three sets of data the average percentage of oxidized 

mercury increased from 50.9% untreated to 93.4% in the presence of the SCR catalyst.  Further, 

in each set the total mercury present is similar, indicating that the gas-phase mercury is 

remaining in the gas phase (and not, for example, adsorbing onto the catalyst surface).  It should 

be pointed out that while significant effort was expended to ensure that the catalyst conditions 

tested closely simulated commercial conditions, these results must be verified at full scale.  
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Figure 2-3 – Effect of SCR Catalyst on Mercury Speciation 
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2.2 Conceptual Design 

 

2.2.1 Overview 

Preliminary (conceptual) process designs were developed for each of the mercury control 

concepts.  These designs were based on the application of the technologies to representative 

commercial boilers, and were used to identify design uncertainties, as well as to quantify the 

sensitivity of performance and cost to design specifications.  For each concept this activity 

included the preparation of a process flow diagram, material balance, major equipment list and 

budgetary equipment cost estimate.  Estimated capital and operating costs were then developed 

and compared with other mercury control concepts such as activated carbon injection. 

 

2.2.2 Unscrubbed Systems 

Approximately seventy-five percent of today’s coal-fired power plants are not equipped with flue 

gas desulfurization systems.  Most of these plants are equipped only with electrostatic 

precipitators for the control of particulate emissions.  With mercury emissions regulations for the 

electric power industry pending, B&W has been working to develop cost-effective mercury 

capture technologies for this segment of the power plant market. 

 

Activated carbon injection is a method of mercury control that is currently used at municipal 

solid waste (MSW) plants.  It is cost-effective for the control of mercury in MSW plants and 

medical waste combustors.  Its cost-effectiveness for coal-fired power plants is somewhat 

uncertain.  Flue gas mercury concentrations at coal-fired power plants are typically one to two 

orders of magnitude lower than those at waste-to-energy plants, and mercury species found at the 

two types of facilities can also differ significantly.   

 

Preliminary studies on utility flue gas have indicated that carbon injection can be used to remove 

mercury from coal-fired flue gas.  However, significant mercury removal – especially removal of 

elemental mercury – seems to require injection at very high carbon-to-mercury stoichiometries.  

The resultant low utilization of the relatively expensive sorbent may make activated carbon 

injection a very expensive proposition for power plant operators.  In hopes of finding a low-cost 
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alternative to activated carbon, B&W and MTI have evaluated the effectiveness of limestone as a 

mercury removal sorbent.   

 

AECDP Limestone Injection Test Results.  Several tests were conducted during Phase III of the 

AECDP to evaluate the effectiveness of limestone as a mercury removal sorbent.  These tests 

were conducted in B&W’s CEDF.  The limestone chosen for the tests was a high purity (CaCO3 

> 95%) limestone with a mass mean diameter (D43) of 15 microns and a Sauter mean diameter 

(D32) of 5.6 microns.  Two limestone flow rates were tested: 0.35 and 0.04 moles Ca/mole S.  

The flow rates are expressed in moles Ca/mole S for comparison with typical limestone flow 

rates used for SO2 removal.  The limestone flow rates used to target mercury were much lower 

than those used for targeting SO2 (typically in the range of 1.4 – 2.0 moles Ca/mole S).  An 

upper-furnace injection temperature of 2100-2300 F was chosen as the optimum range to calcine 

the limestone (CaCO3) to lime (CaO).  It was assumed that the resulting CaO would be more 

reactive by analogy with results for limestone injection for the removal of SO2.  An ESP 

operating at 350 F was used for particulate control during the limestone injection tests. 

  

Figure 2-4 illustrates results for a limestone feed rate equivalent to 0.04 moles Ca/mole S.  The 

total mercury in the flue gas at the ESP inlet with and without limestone injection is about the 

same.  Limestone injection substantially increases the particulate-phase mercury, which is 

subsequently removed by the ESP – providing an overall mercury removal of 45%.  Without 

limestone injection, baseline mercury removal was about 18% for the coal tested.  A somewhat 

higher mercury removal of 56% was achieved at the higher calcium stoichiometry of 0.35 moles 

Ca/mole S (Figure 2-5).  The mercury removal provided by limestone injection appears to be a 

result of the capture of oxidized mercury onto the particulate phase.  Limestone injection had no 

apparent effect on the elemental mercury. 
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Figure 2-4 – Limestone Injection Mercury Capture at Ca/S = 0.04 mol/mol 

 

 

Figure 2-5 – Limestone Injection Mercury Capture at Ca/S = 0.35 mol/mol 
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System Description.  The conceptual upper-furnace limestone injection system design is sized for 

a 400 MWe power plant burning a high-sulfur bituminous coal.  System mercury removal 

performance is based on the results presented, above, from the AECDP.  A Ca/S stoichiometry of 

0.35 mole Ca / mole S was used for the design.  It should be noted that this may not be the 

optimum limestone feed rate for the system.   Further testing aimed at optimization of the 

limestone system is needed. 

 

Coal Analysis.  The design fuel is a high-sulfur bituminous coal.  A complete fuel analysis is 

listed in Table 2-1. 

 

Table 2-1 – Coal Analysis 

 

Component % by Weight 
Carbon 62.14 
Hydrogen 4.27 
Sulfur 3.40 
Oxygen 7.59 
Nitrogen 1.20 
Moisture (Water) 11.65 
Ash 9.75 
Mercury 0.20 ppm 
Heating Value 11336 Btu/lb 

 

 

System Schematic and Mass Balance.  An overall mass balance for the system is presented in 

Table 2-2.  With a coal mercury content of 0.20 ppm, 0.058 lb/hr mercury is entering the system 

with the coal.  With a system mercury removal of 56%, 0.032 lb/hr mercury would be exiting the 

system in the solid by-product and 0.026 lb/hr mercury would be exiting the system in the flue 

gas.  A schematic diagram of the system is presented in Figure 2-6. 
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Table 2-2 – System Mass Balance 

 

Component Units Coal 

 
Furnace 
before 

Limestone 
Injection 

 

Limestone 
Feed 

Transport 
Air 

Furnace 
Exit 

Temperature F 175 2200 70 225 700 
       
GAS STREAMS   A  B C 
CO2 lb/hr  646,163   650,431 
O2 lb/hr  472,235  232 472,228 
SO2 lb/hr  19,119   18,163 
H2O lb/hr  182,259  13 182,272 
N2 lb/hr  1,810,755  766 1,811,521 
TOTAL GAS FLOW lb/hr 0 3,130,531 0 1,011 3,134,615 
       
SOLIDS STREAMS  1  2  3 
CaCO3 lb/hr   9,709   
CaO lb/hr     4,605 
Inerts lb/hr   405  405 
CaSO4 lb/hr     2,029 
Ash lb/hr  25,435   25,435 
Coal lb/hr 289,670     
TOTAL SOLIDS lb/hr 289,670 25,435 10,114 0 32,474 
       
TOTAL FLOW lb/hr 289,670 3,155,966 10,114 4,050 3,167,089 
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Figure 2-6 – System Schematic 
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Limestone Reagent Transport System.  The sorbent handling system consists of the equipment 

between the limestone silo outlet and the limestone injection bins as listed in Table 2-3.  

Prepared ground sorbent, sized to 100% passing 325 mesh, is purchased from a supplier, 

delivered to the plant and stored in two limestone silos.  Each silo is sized to contain 500 tons or 

the equivalent of 96 hours of full boiler load operation.  The bottom of each silo is equipped with 

a “diamond back” hopper to facilitate uninterrupted flow of the fine powdered solids from the 

silo.  Two isolation gate valves located at the bottom of the hoppers isolate the flow of limestone 

from the silo to a single 43 ton/hr “en masse” transport chain conveyor.  The conveyor delivers 

the limestone to three limestone injection bin(s).  Each of the three bins holds 27 tons of 

limestone which is equivalent to an 8-hour supply at full load.  

 

 

Table 2-3 – Limestone Reagent Transport System Major Equipment List 

 

COMPONENT QUANTITY CAPACITY PER UNIT 
Limestone silo 2 500 ton 
Isolation gate valve 2 10114 lb/hr 
Transport chain conveyor 1 43 ton/hr 
Limestone injection bins 3 27 ton/hr 

 

 

Sorbent Injection System.  The sorbent injection system begins at the bottom of the three 

injection bins and ends at the injection ports on the boiler furnace walls as listed in Table 2-4.  

The isolation gate valves, located at the inlets and outlets of the injection bins, isolate the sorbent 

reagent feed, and allow for maintenance of equipment downstream without interruption of the 

system operation or the need to empty the bin above.  The rate of limestone flow from the 

injection bins is determined by the rate of the three pumps.  Each pump is designed to deliver 2 

tons/hr of the powdered limestone. 

 

Limestone flows from the injection bins to the pneumatic pick-up bottles of the pumps, where 

compressed air is combined with the solids to form a dilute-phase solid transport mixture.  The 

air-transported solids are delivered pneumatically to the injection points.  The pumps isolate the 
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transport lines from the downspout of the injection bins and prevent the transport air from 

fluidizing the sorbent in the bins.  The solids are transported in a dilute phase at a rate of 10 

pounds of solids per pound of air. 

 

The transport air is provided by one of two 100%-flow conveying blowers.  The transport air 

picks up the sorbent from the pumps and delivers it to three distribution bottles located adjacent 

to the front wall of the boiler.  The distribution bottles receive the sorbent from the transport 

lines through one pipe line and distribute it evenly to eight pipes located on top of the bottle.  

The injection lines deliver the limestone to the appropriate temperature zone of the boiler.  The 

feed and distribution lines are made of appropriate material to withstand the erosive action of the 

transported solids. 

 

 

Table 2-4 – Sorbent Injection System Major Equipment List 

 

COMPONENT QUANTITY CAPACITY PER UNIT 

Injection bins isolation inlet gate valves 3 3371 lb/hr 
Injection bins isolation outlet gate valves 3 3371 lb/hr 
Fuller Kinyon pumps 3 2 tons/hr 
Conveying / injection blower 2 225 scfm 
Distribution bottles 3 3371 lb/hr 
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2.2.3 Scrubbed Systems 

System Description.  The conceptual enhanced wet FGD system is sized for a 500 MWe power 

plant burning an eastern U.S. bituminous coal.  System mercury removal performance is based 

on the results presented in Section 2.1.1, above, which presented performance results for the 

“alternate reagent”.  The reagent is delivered by tank truck to the plant as a 25% by weight 

solution in water.  This reagent solution has a density of approximately 10 lbs/gallon, and is 

alkaline with a pH of 9-12.  While this additive is listed as a hazardous substance, it is not listed 

as a carcinogen or potential carcinogen, and no exposure limits have been established by OSHA.  

Gas can evolve from this additive solution as a decomposition product.  Therefore, the tank truck 

is not vented during off-loading, but is kept under positive pressure with plant air.  Tank truck 

unloading personnel are equipped with appropriate respirators and protective clothing. 

 

System Schematic and Mass Balance.  The enhanced wet FGD process comprises such a minor 

addition to a conventional wet scrubber that a detailed mass balance and major equipment list are 

unneeded.  The recommended plant storage for the reagent is a closed vessel having a vent pipe 

equipped with a caustic scrubber. The tank may be fabricated from either plastic or 18-8 stainless 

steel.  To minimize construction and set-up at the plant site, the additive feed/metering system is 

skid-mounted, producing a small footprint.  The skid is connected to the plant water and wet 

FGD absorber recirculation piping.  Stainless steel piping is used to connect the components on 

the skid to the wet FGD system.  

 

Two identical additive injection/metering pumps are mounted on the skid providing 100% 

redundancy.  The pumps are equipped with variable frequency controllers to permit a wide range 

of turndown.  The skid is also equipped with a dilution water connection/control system for 

added flexibility in adjusting additive feed concentration.  A calibration tube is provided 

upstream of the pumps to check pump delivery rates.  A pulsation dampener, having a flexible 

elastomeric bladder/diaphragm and a gas-pressurized upper chamber, is located in the pumps’ 

common discharge line to facilitate a more uniform feed flow.   Also provided are flow meters, 

flow control valves, pressure regulating valve, pressure gauges, and a pressure relief valve.  

Figure 2-7 illustrates the proposed equipment arrangement on the skid.  All equipment, pipe and 
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fittings are fabricated of 316 stainless steel, with elastomeric components suitable for the process 

conditions, where required. 

 

Only minor modifications to the existing (or new) wet FGD equipment is required.  A tie-in at 

the suction of each absorber recirculation pump is required for the introduction of the reagent 

solution.  Recirculation pump hydraulics are used to mix the reagent solution with the recycle 

slurry prior to its discharge through the absorber internal spray nozzles.   

 

No changes to the operation and/or maintenance of the wet FGD system are expected as a result 

of the reagent injection system for mercury removal.  The incremental increases in operation and 

maintenance labor for the reagent solution off-loading, storage and pumping/metering are 

minimal, and should be easily handled by existing plant shift personnel.  Since very small 

amounts of additive solution (approximately 12 gallons/hour for a 500MWe plant) will be 

injected into the scrubber, no impact on by-product (gypsum) quality is anticipated.   
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Figure 2-7 – Enhanced Wet FGD Equipment Schematic 
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2.3 Cost Analysis 

2.3.1 Unscrubbed Systems 

Based on the design described in Section 2.2.2, annual levelized costs were estimated for a 

limestone injection system installed at a 400 MWe coal-fired plant.  The costs were calculated 

based on the total capital requirement, distributed over a 15-year life, plus yearly operating and 

maintenance costs.  EPRI’s (Electric Power Research Institute) TAGTM Technical Assessment 

Guide (EPRI Report P-6587-L) was used as the basis for the calculations.  The starting point for 

the total capital requirement was the installed equipment cost – all other capital costs were 

determined by applying factors to the installed equipment cost.  Included as other 

capital/investment costs were engineering, general facilities, project contingency, process 

contingency, pre-production costs, inventory costs and a one-time licensing fee. 

 

Yearly operating costs included the sorbent (10,100 lbs/hr @ $25/ton delivered), parasitic power 

(168 kW @ $0.067/kW-hr), and incremental ash disposal costs (7,050 lbs/hr @ $20/ton), as well 

as a substantial capital carrying charge. A unit capacity factor of 65% was assumed for the 

calculation of variable operating costs.  Incremental costs for operation, maintenance, and 

supervision were also included as fixed operating costs.  The estimated total levelized cost for 

the system is $2,700,000/yr or $10.40/kW (annual basis).  An assumed mercury removal 

efficiency of 56% yields an incremental mercury removal (relative to the 18% baseline removal) 

cost of about $21,000/lb Hg.  The limestone flow rate for this case corresponds to 0.35 moles 

Ca/mole S in the coal, or about 175,000 lbs/lb Hg. 

 

A similar estimating procedure yielded a mercury removal cost of $17,500/lb Hg for an activated 

carbon injection system.  This estimate assumes an activated carbon cost of $0.53/lb.  Costs for 

the activated carbon itself represent about 70% of the total cost.  The levelized costs for activated 

carbon injection are based on a carbon-to-mercury mass ratio of 9000:1.  When tested in the 

B&W CEDF, this flow rate of carbon yielded a mercury removal efficiency of 56% when firing 

bituminous coal. 

 

The limestone and carbon injection cases illustrated, above, result in similar mercury removal 

efficiencies at similar annual costs.  However,  a second limestone injection test in the CEDF 
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conducted at a limestone flow rate equivalent to a Ca/S molar ratio of 0.04 (or about 20,000 lbs 

limestone/lb Hg) yielded a mercury removal efficiency of 45%.  This results in a significantly 

lower removal cost than the previous cases.  More extensive parametric testing with both 

sorbents would be required to quantify the relative economics over a range of coal types, 

removal efficiencies, and operating conditions. 

 

Limestone injection seems to offer a low-cost alternative to activated carbon injection for 

mercury control at modest levels of mercury removal.  It may be particularly effective where a 

fabric filter is used for particulate control.  A fabric filter provides for more intimate contact 

between the sorbent and flue gases than does an ESP.  Of course this same characteristic of 

fabric filter systems may also improve performance of the activated carbon process. 

 

Limestone injection for mercury control appears to be somewhat analogous to limestone 

injection for SO2 control (a process commonly referred to as LIMB).  In each case the limestone 

injection process offers modest removal efficiency at low capital cost, and relatively low 

operating cost.  For electric utilities, limestone injection for SO2 control has largely been 

overshadowed by higher efficiency processes such as wet scrubbing due to the way in which SO2 

regulations have been promulgated.  Whether or not low-efficiency, low-cost mercury removal 

processes find commercial application may well depend on how mercury emissions are 

regulated. 
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2.3.2 Scrubbed Systems 

Annual levelized costs were estimated for B&W’s enhanced wet FGD process installed at a 500 

MWe coal-fired plant.  The costs were calculated comprising the total capital requirement, 

distributed over a 20-year life, and yearly operating and maintenance costs.  EPRI’s (Electric 

Power Research Institute) TAGTM Technical Assessment Guide (EPRI Report P-6587-L) was 

used as the basis for the calculations.   

 

The starting point for the total capital requirement was the installed equipment cost – all other 

capital/investment costs were determined by applying factors to the installed equipment cost.  

Included as other capital costs were engineering, general facilities, project contingency, process 

contingency, pre-production costs, inventory costs and a one-time licensing fee.  Yearly 

operating costs included the reagent, water, and parasitic power costs, as well as a substantial 

carrying charge.  Since existing plant operating personnel can easily assume the duties of 

operating and monitoring the B&W system, no costs were included for additional operating 

labor. 

 

The levelized cost for the B&W enhanced wet FGD mercury removal process added to an 

existing wet scrubber is estimated to be $1,000 per pound of mercury removed.  This cost is 

significantly lower than that reported, above, for the activated carbon injection system – 

$17,500/pound of mercury removed.  The cost of mercury removal for the B&W process is only 

5.7% of the cost of using activated carbon. 

 

The cost for activated carbon injection is based on a carbon:mercury  mass ratio of 9000:1, 

which yielded an incremental mercury removal of 38% in tests conducted in the CEDF.  

Reported values for C:Hg ratios necessary to achieve 90% mercury removal range from 6000:1 

to in excess of 30,000:1.  Figure 2-8 provides a comparison between activated carbon injection 

over a range of C:Hg ratios with the B&W process including the levelized costs for the addition 

and operation of a new wet FGD system.  Assumptions for this comparison include (in addition 

to those made for the calculations, above): 
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• Plant Size:  500 MWe, 75% capacity factor 
• Coal Mercury Concentration:  0.05 to 0.25 ppm 
• Wet Scrubber Capital Costs:  $6.00/kW 
• Wet Scrubber Material Costs:  $1.00/kW 
• Wet Scrubber Personnel Costs:  $4.00/kW 
• Baseline Mercury Removal in Scrubber:  50% 
• Particulate-Phase Mercury:  20% of total 

 

It can be seen that the levelized costs for the B&W process (including the cost of the wet 

scrubber) are more-or-less independent of the mercury concentration in the coal.  This is due to 

the relative costs of the wet scrubber ($11/kW) compared to the incremental cost of the enhanced 

mercury removal system – $0.08/kW to $0.42/kW, depending on the mercury concentration in 

the coal.  It is important to note that the B&W enhanced wet FGD system – including the costs 

for the addition of a wet scrubber – can be competitive with activated carbon systems, 

depending on the mercury concentration in the coal and the mercury emissions target.   

 

It is also important to note that this comparison takes no credit for the SO2, H2SO4, HCl, or HF 

removal benefits of the addition of the scrubber.  Further, the analysis does not take into account 

the potentially significant fuel cost savings made possible by the wet scrubber by enabling a 

utility to switch back to a higher-sulfur local coal.  An additional benefit of the scrubber 

approach is that no impact on ash utilization or disposal is anticipated.  The activated carbon 

system may well result in higher ash disposal costs due to the presence of the carbon in the fly 

ash.  Furthermore, installation of a spray cooling system and/or an additional fabric filter may be 

required to achieve high removal rates with activated carbon. 
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Figure 2-8 – Annual Cost Comparison for Wet FGD and Activated Carbon 
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2.4 Preliminary Assessment of the Market 

This activity focused on evaluating the existing U.S. coal-fired utility boiler population with 

respect to various design parameters (unit size and location, FGD system type, reagent type, 

extent of mercury oxidation, etc.) to quantify the potential impacts of B&W’s control 

technologies on mercury emissions from U.S. utilities.  The estimates are based on a detailed 

coal-fired utility plant database and data obtained during pilot-scale testing.   

 

A summary of the current U.S. coal-fired utility boiler population is shown in Table 2-5.  The 

units are arranged by geographic location (east or west of the Mississippi River), coal type, FGD 

type (if applicable), and particulate control device (PCD).  The categorical breakdowns are based 

on EPA-supplied data.  The six highlighted rows correspond to the six largest categories and 

represent 85% of the total U.S. generating capacity.  For simplicity, the various mercury removal 

impact scenarios are calculated using only these six categories.  These scenarios also assume that 

no fuel switching occurs.  Three mercury removal impact scenarios are shown in the table and 

represent: 

 

• Current:  The amount of mercury removal currently achieved with existing pollution 
control equipment. 

 
• Enhanced w/o Oxidation:  The amount of mercury removal possible with the application 

of B&W’s control technologies (sorbent injection for unscrubbed units, enhanced wet 
FGD for units equipped with wet scrubbers). 

 
• Enhanced w/Oxidation:  The amount of mercury removal possible with the application of 

the B&W control technologies and the application of a technology capable of oxidizing 
80% of the elemental mercury in the flue gas prior to (upstream of) the mercury removal 
process.   

 

To be effective, oxidation of the mercury needs to be effected upstream of the mercury removal 

process.  The use of SCR catalyst for mercury oxidation, for example, is expected to impact 

mercury removal in the enhanced wet FGD process since the SCR unit is located upstream of the 

wet scrubber.  The effectiveness of the SCR approach for the sorbent injection process, on the 

other hand, is not known.  The sorbent is injected into the flue gases in the upper furnace (well 

upstream of the SCR), and removed from the flue gases in the particulate collector (downstream 
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of the SCR).  The impact of mercury oxidation across the SCR on mercury removal by the 

sorbent is therefore dependent on the temperature window in which the mercury is adsorbed by 

the sorbent.  Unfortunately, the time-temperature relationship for mercury removal by the 

limestone is currently unknown. 

 

For each of the three scenarios illustrated in the table, a weighted-average removal (and 

corresponding estimated emission rate) is calculated based on the installed generating capacity 

for each category.  For example, the “Current” weighted-average mercury removal is 35%, 

resulting in an estimated emission rate of 54 tons/yr of mercury.  This estimate agrees well with 

the generally-reported emission rate of 50 to 55 tons/yr of mercury.   
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Table 2-5 – U.S. Coal-fired Generating Market Summary 

 

      Hg Removal Impact Scenarios 

Location Coal 
Type 

FGD 
Type 

PCD 
Type MW % of 

Total MW Current 
Enhanced 

w/o Hg0 
Oxidation 

Enhanced 
w/ Hg0 

Oxidation 
Scrubbed Units  

East Bit Wet ESP 39,345 12.8 63% 80% 92% 
East Bit Wet Other 3,496 1.1    
East Bit Dry ESP 160 0.1    
East Bit Dry Other 3,017 1.0    
East Sub Wet ESP 1,954 0.6    
East Sub Wet Other 44 0.0    
West Bit Wet ESP 2,305 0.8    
West Bit Wet Other 1,498 0.5    
West Bit Dry Other 1,256 0.4    
West Sub Wet ESP 13,412 4.4 57% 72% 91% 
West Sub Wet Other 9,867 3.2 57% 72% 91% 
West Sub Dry ESP 1,562 0.5    
West Sub Dry Other 4,588 1.5    
West Lig Wet ESP 8,726 2.8    
West Lig Dry Other 1,380 0.4    

Scrubbed Totals   92,610     
Unscrubbed Units        

East Bit NA ESP 109,659 35.7 18% 66% 79% 
East Bit NA Other 2,974 1.0    
East Sub NA ESP 45,431 14.8 39% 63% 82% 
East Sub NA Other 1,807 0.6    
West Bit NA ESP 2,438 0.8    
West Bit NA Other 864 0.3    
West Sub NA ESP 40,858 13.3 39% 63% 82% 
West Sub NA Other 6,795 2.2    
West Lig NA ESP 1,031 0.3    
West Lig NA Other 2,430 0.8    

Unscrubbed Totals   214,287  Weighted-Average Removal 

 U.S. Totals  306,897  35% 68% 83% 

 Estimated Emission Rates, ton/yr 
     53.8 26.9 14.2 
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The results presented in Table 2-5 illustrate several key considerations for improving mercury 

removal performance for coal-fired utilities: 

 

• Two-thirds of U.S. generating capacity is supplied by bituminous and subbituminous 
coal-fired units equipped with an ESP, only.  Improved mercury control for these units 
will have a major impact on the nationwide emissions rate. 

 
• Applying B&W’s enhancement technologies to both scrubbed and unscrubbed units 

results in a 50% decrease in the emissions rate, from 54 tons/yr to 27 tons/yr. 
 
• Combining B&W’s control technologies with an oxidation technology capable of 

oxidizing 80% of the elemental mercury results in a further reduction of 50%, down to 
14 tons/yr.  This reduction is due in large part to the conversion (and capture) of the large 
amount of elemental mercury generated by the subbituminous coal-fired units.  As 
described, above, this scenario assumes an as-yet unidentified method for oxidizing 
mercury in such a way as to improve mercury capture for the sorbent injection process. 
 

• Even with the high levels of oxidized mercury generated in the oxidation-based scenario, 
sorbent injection removes less mercury than enhanced wet FGD. 

 

Table 2-6 further illustrates the importance of mercury oxidation technologies for high levels of 

mercury removal on a national scale.  In the table, the results of the three scenarios, above, are 

repeated along with two additional scenarios (again, no fuel switching is included).  The two 

additional scenarios are: 

 

• All Enhanced WFGD w/o Oxidation:  In this scenario, all units (both scrubbed and 
unscrubbed) are equipped with B&W’s enhanced wet FGD process. 

 
• All Enhanced WFGD w/Oxidation:  In this scenario, all units are equipped with B&W’s 

enhanced wet FGD process and an oxidation technology capable of converting 80% of 
the elemental mercury to oxidized mercury. 
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Table 2-6 – Impact of Elemental Hg Oxidation 

 

Scenario 
Number 1 2 3 4 5 

 Current 
Enhanced 
w/o Hg0 

Oxidation 

Enhanced w/ 
Hg0 Oxidation 

All E-WFGD 
w/o Hg0 

Oxidation 

All E-WFGD  
w/ Hg0 

Oxidation 
Weighted-
Average 
Removal 

35% 68% 83% 76% 92% 

Estimated 
Emission Rate, 
tons/yr 

53.8 26.9 14.2 19.6 6.7 

 

 

The results shown in Table 2-6 indicate that utilizing enhanced wet FGD for all units without a 

mercury oxidation technology (Scenario 4) yields higher mercury removals than the combination 

of sorbent injection for unscrubbed units and enhanced wet scrubber control for scrubbed units 

(Scenario 2).  It can also be seen that mercury removal can be dramatically increased with the 

addition of an oxidation technology (Scenarios 2 versus 3 or Scenarios 4 versus 5).  The 

emission rate for Scenario 5 is equivalent to an average plant removal (from as-fired coal to 

stack) of 92%, compared to an average plant removal of 76% in the absence of an oxidation 

technology. 

 

In lieu of a viable elemental mercury oxidation technology, a potential option for increasing the 

level of oxidized mercury  (and subsequently increase mercury removal efficiency) would be for 

plants currently firing low sulfur, subbituminous coal to switch to higher sulfur bituminous coal 

and install a B&W enhanced wet FGD system.  Specifically, this option would target eastern 

plants that switched to a western subbituminous coal to meet SO2 emissions requirements.  As 

described, above, western coals typically generate significantly higher percentages of elemental 

mercury than do eastern coals – a significant disadvantage with respect to mercury removal.   

 

As presented in Section 2.3.2, B&W’s enhanced wet FGD process may be cost-competitive with 

an activated carbon system – even when the entire cost of the wet scrubber is included in the 

mercury removal cost.  For some plants, it may be cost-effective for these plants to switch back 
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to the local high sulfur coal (with its significantly lower shipping costs and higher oxidized 

mercury formation) and install an enhanced wet FGD system for SO2 and mercury control, as 

opposed to installing an activated carbon system for mercury control, alone.  This approach has 

the additional advantages of reducing H2SO4, HCl, and HF emissions. 

 

The potential impact of this option is shown in Table 2-7, wherein four scenarios are shown.  

The first represents the current emissions as shown in Table 2-5.  Scenario 2 assumes that all 

units currently equipped with wet scrubbers apply B&W’s enhanced wet FGD process.  

Scenario 3 includes Scenario 2 plus the assumption that all unscrubbed eastern units currently 

firing subbituminous coal (45,431 MWe from Table 2-5) switch to an eastern bituminous coal 

and install an enhanced wet FGD system.  Scenario 4 includes Scenario 3 plus the assumption 

that all unscrubbed eastern units currently firing low sulfur bituminous coal (109,659 MWe from 

Table 2-5) switch to a higher sulfur (and presumably less expensive) bituminous coal and install 

an enhanced wet FGD system.  It can be seen that, even without a viable mercury oxidation 

technology, B&W’s enhanced wet FGD process can have a significant impact on national 

mercury emissions levels. 

 

 

 

 

Table 2-7 – Impact of Coal Switch + B&W’s Wet FGD Process 

 

Scenario 
Number 1 2 3 4 

 Current 

Scrubbed 
Units w/ 

Enhanced 
WFGD 

Scenario 2 + 
East Sub 
Switch 

Scenario 3 + 
East Bit 
Switch 

Weighted- 
Average 
Removal 

35% 39% 46% 73% 

Estimated 
Emission Rate, 
tons/yr 

53.8 50.6 44.7 22.9 
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3.0 Fate of Mercury 

 

3.1 Overview 

The objectives of this task were to investigate the ultimate fate of mercury contained in coal 

combustion products (CCP) and how emerging mercury control technologies may affect this 

fate.  Previous sections of this report illustrate that much of the mercury released during coal 

combustion can be adsorbed using an injected sorbent which is subsequently removed with the 

fly ash, or can be absorbed in a downstream flue gas desulfurization unit.  However, little work 

has been done to determine if the mercury removed with the CCP is in a stable form, or a form 

that can be leached into ground water or vaporized in subsequent treatment or utilization 

processes.  The use of sorbents or additives to remove mercury may also affect the suitability of 

CCP for reuse. 

 

This task focuses on the main methods of disposal and reuse for CCP.  CCP can be divided into 

two categories: 

 

• Ash, which includes fly ash, bottom ash, and slag 
 
• FGD waste, which includes all forms of FGD sludge, but mainly the gypsum produced in 

wet scrubbers that employ limestone forced oxidation systems 
 

The American Coal Ash Association publishes a breakdown of all CCP produced in the U.S. 

each year and how much of this material is recycled for other uses.  In 1998, the main use for ash 

was in the cement/grout industry (13%) and most of the rest was landfilled (66%).  A small 

percentage was used for other purposes.  For FGD wastes, a large portion was landfilled (91%), 

and some was used in the wallboard industry (6%).  Therefore, work under this task is focused 

on the fate of mercury as it applies to landfills and the cement and wallboard industries. 

 

Section 3.2 of this report focuses on conventional chemical characterization, like the Toxicity 

Characteristic Leaching Procedure (TCLP), EPA Method 1311.  Samples from pilot-scale tests 

were evaluated via the TCLP for their mercury leaching characteristics.  Section 3.3 of the report 

presents the development and results of a new procedure to test the thermal stability of mercury 
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compounds in CCP waste.  Both the cement and wallboard processes employ heating steps that 

could release the mercury captured in the CCP wastes if the mercury compounds are not suitably 

inert.  The procedure is based on the use of a mercury analyzer that can detect low levels of 

mercury in the off gas from heated CCP waste samples. 

 

3.2 Conventional Chemical Testing 

This section presents the results of conventional wet chemistry testing on various CCP waste 

samples.  The main procedure used is the Toxicity Characteristic Leaching Procedure (TCLP), 

EPA Method 1311.  This method involves a 20:1 dilution of a small sample of CCP waste in a 

weak acid solution.  The solution is then analyzed to determine if mercury has leached from the 

sample.  For these types of materials, the TCLP limit is 0.2mg Hg/l.  Materials with 

concentrations below this limit are acceptable for landfill without additional treatment.  

 

Waste samples from pilot tests conducted in October, 1999, were collected from the wet scrubber 

and ESP for each test run.  These samples were filtered, and the solid and liquid fractions were 

analyzed for total mercury.  According to the TCLP method, a sample can contain up to 

4mg Hg/kg and still meet TCLP limits because of the 20:1 dilution.  For these tests, if the solids 

contained less than 0.2mg Hg/kg, a TCLP was not done because the subsequent dilution would 

reduce the mercury concentration well below the TCLP limit.     

 

Table 3-1 illustrates the results of the tests.  Column 1 is the test number.  Column 2 shows the 

Test ID used by MTI.  The final letter in the ID corresponds to the particular Ontario Hydro 

sample train (triplicates were performed for each test condition) during which the sample was 

collected.  Shaded cells indicate that the sample was further tested for thermal stability as 

explained in the next section.  Column 3 shows the code used by MTI to identify which 

technology was being tested without divulging proprietary information.  Column 4 shows the 

solids content (in percent) of the slurry samples.  Column 5 shows the total mercury contained in 

the solid portion of the samples.  This column shows that “non-detects” were obtained for all but 

three samples.  Columns 6-8 show the total mercury contained in the solid portion of the samples 

for additional tests that will be explained below.  Column 9 shows the total mercury contained in 

the liquid portion of the samples.  For the slurry samples, no mercury could be detected in the 
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filtrate.  For two of the ESP ash samples (which were taken during sorbent injection tests), 

subsequent TCLP tests showed that the mercury was below the detection limit of 0.01mg Hg/l. 

This is important because it shows that the form of mercury in these samples is not soluble (e.g., 

not HgCl2) and that the solubility was not affected by the use of the mercury control 

technologies. 

 

 

Table 3-1 – Results of Mercury Analyses on October Waste Samples 

 

Wet Scrubber Sludge Analysis Hg in Solids, mg/kg dry Filtrate
Test MTI ID Code % solids Std 1 Std 2 HNO3 HNO3/HCl mg/l

1 WS-1C Baseline 38.9 #N/A 0.072 0.064 0.069 <0.00050

2 WS-2B App1 0.1x 39.2 #N/A 0.074 0.074 0.064

3 WS-3C App1 0.01x 39.1 #N/A 0.069 0.072 0.079

4 WS-4C App1 1.0x 48.0 #N/A 0.075 0.081 0.081
5 WS-5C Alt App1 48.8 #N/A 0.160 0.160 0.160
6 WS-6C App2 0.25x 52.3 #N/A 0.130 0.130 0.140 <0.00050
7 WS-7B Alt App1+App2 52.6 0.21 0.190 0.190 0.190 <0.00050
8 WS-8C App1+App2 52.7 #N/A 0.150 0.150 0.160 <0.00050
9 WS-9C App2 0.125x 54.8 #N/A 0.093 0.091 0.100 <0.00050

ESP Ash Analysis TCLP

SI-1 SI-1C Sorb1 350F #N/A 0.038 0.031 0.031

SI-2 SI-2B Sorb2 250F 0.22 <0.01

SI-3 SI-3C Sorb3 750F 0.34 <0.01

= Tested by Thermal Decomposition  

 

 Method Key: 

 Std1 = SW846-7471 

 Std2 = SW846-7471 w/high mass sample 

 HNO3 = 50% HNO3 at room temp for 60 min 

 HNO3/HCl = 50% HNO3/HCl at room temp for 60 min 

 Filtrate = SW846-7470A / EPA 245.2  

 TCLP = SW846-1311 

 

If meeting TCLPs limits were the only goal of this study, testing would have stopped at 

Column 5.  However, in order to study the effect of the various mercury control technologies on 

waste characteristics, additional information was needed from the samples.  Therefore, the basic 

analytical technique used to determine total mercury was revised by increasing the initial sample 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 52 of 87 

size to decrease the detection limits, thus producing the results shown in Column 6 (Std 2).   This 

column shows that the mercury concentration in the wet scrubber module gradually increased 

during the test.  This is predicted by mass balance calculations that indicate a steady-state 

mercury level of 0.5mg Hg/l should eventually be reached.  The drop shown in Test 9 was 

caused when half the slurry in the recirculation tank was dumped in preparation for Test 9. 

 

The analytical procedure for total mercury calls for a very aggressive (and costly) digestion step 

because it was originally designed to completely dissolve all the various species in fly ash.  The 

original procedure involves heating the sample in a sealed container for 1 hour in aqua regia (a 

mixture of concentrated hydrochloric (HCl) and nitric (HNO3) acids).  However, because of the 

low volatility of mercury, it is unlikely that any would be present in the fly ash particles that 

form at high temperatures in the upper furnace.  Therefore, the digestion step was simplified to 

determine if the mercury compounds could be digested with weaker acids and in shorter times.  

The new procedure used a 50% acid solution and no heating (Columns 7&8 in Table 3-1).  The 

digestion step was further studied to determine the minimum digestion time required.  If adopted, 

this procedure would be less costly, less time consuming and safer to perform. 

 

Figure 3-1 presents a comparison of the three digestion procedures.  The good agreement 

between the methods suggests that the mercury is not strongly tied up within fly ash or gypsum 

and is relatively easy to digest.  Also, no differences were detected in the mercury concentration 

for digestion times ranging from 5 min to 60 min.  This does not imply that the mercury will 

leach in landfills.  A 50% nitric or hydrochloric acid solution is much stronger than rainwater or 

the dilute acetic acid solutions used in TCLP test.  However, this does imply that the mercury is 

not strongly bound with the fly ash or gypsum particles. 

 

The same types of analyses were performed on samples from tests conducted in April of 2000.  

Table 3-2 illustrates the results.  Again, the total mercury in the samples was far below a level 

that would necessitate further TCLP tests.  In addition, no mercury could be detected in the 

filtrate, indicating that the mercury compound(s) formed in the waste through the use of the 

various mercury control technologies are relatively insoluble. 
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Figure 3-1 – Hg Concentrations in Wet Scrubber Hydroclone Underflow Slurry 

 

 

 

The combined results of all the conventional chemical analyses show that, at least for the B&W 

mercury removal technologies tested, the mercury compound(s) formed are: 

 

• insoluble by TCLP standards 
 
• are present at levels far below the TCLP limits 

 

and thus acceptable for disposal in a landfill. 

 

Further speculation hints that the mercury removed in the wet scrubber forms a fine particulate, 

perhaps mercury sulfide (HgS).  However, more tests are needed to confirm this.  If the form of 

mercury could be determined, then much could be inferred about its fate in landfills (HgS is 
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insoluble in water and weak acids) and in the cement and wallboard industries (HgS has a 

relatively low vapor pressure at the processing temperatures of interest).  The section below 

discusses the development and results of a thermal stability method that may provide more clues 

as to what mercury compounds are present in CCP wastes.  

 

 

Table 3-2 – Results of Mercury Analyses on April Waste Samples 

 

Wet Scrubber Sludge Analysis Hg in Solids, mg/kg Filtrate
Test MTI ID Code % solids Std 2 mg/l

1 WS2-2A Base 45.0 0.130 <0.00050
2 WS2-2C Alt App1A-1x 43.0 0.140 <0.00050
3 WS2-3C Alt App1A-0.1x 44.0 0.180 <0.00050
4 WS2-4C Base 47.0 0.150 <0.00050
5 WS2-5C Alt App1A-0.02x 49.0 0.180 <0.00050
6 WS2-6B Alt App1-1x 49.0 0.170 <0.00050
7 WS2-7B Base 50.0 0.170 <0.00050
8 WS2-8B Alt App1A-1x 50.0 0.200 <0.00050
9 WS2-9C App2-Mix 53.0 0.140 <0.00050

ESP Ash Analysis
9 WS2-9C Base <0.10

= Tested with Hg CEM by Thermal Decomposition  
 

Method Key: 

Std1 = SW846-7471 

Std2 = SW846-7471 w/high mass sample 

Filtrate = SW846-7470A / EPA 245.2  

TCLP = SW846-1311 
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3.3 Thermal Stability Tests 

The results presented, above, indicate that the mercury in wet scrubber sludge, with or without 

the application of enhanced mercury removal technologies, exists in a form that is insoluble in 

the weak acid used in the TCLP method.  Calculations also show that the mercury content in 

most coals is so small that, even if all the mercury ended up in the scrubber sludge in a soluble 

form, the sludge would still meet TCLP limits.  Therefore, the focus of this study shifted to the 

development of a method to determine the thermal stability of mercury compounds in CCP 

wastes.  If successful, the information could be used to predict the fate of mercury in any 

subsequent disposal or reuse application. 

 

Normal wet chemistry and other analytical methods cannot be used to distinguish the various 

mercury compounds in CCP wastes because they are present in such small amounts.  However, 

MTI recently purchased a mercury analyzer from PS Analytical that is capable of detecting 

mercury at very low concentrations in gas streams.  The analyzer was used to develop a method 

to detect, as a function of temperature, the evolution of mercury from samples of CCP waste.  

 

Figure 3-2 shows the vapor pressure curves for Hg and several simple mercury salts that may 

exist in CCP waste.  The figure shows that different mercury compounds have significantly 

different vapor pressures at any given temperature.  Theoretically, these differences could be 

used to help determine what mercury compounds exist in CCP waste – if the compounds exist as 

such.  Adsorbed or absorbed forms of mercury and its compounds would significantly 

complicate the situation, of course.  The the following sections describe the apparatus used in the 

thermal stability study, how standards were prepared and tested, problems encounter during the 

development of this method, and finally, the results of tests on samples from pilot tests at MTI 

and from several utility sites.  In all, over 130 tests were conducted as part of this study. 
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Vapor Pressure of Hg  and its Salts
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Figure 3-2 – Vapor Pressure of Hg and Select Hg Salts 

 

3.3.1 Apparatus and Method 

A schematic of the thermal stability test apparatus is shown in Figure 3-3.  It consists of an argon 

source, an argon flow meter, a temperature-controlled tube furnace, a high temperature furnace, 

an impinger to convert all mercury to elemental mercury (Hg0), a chiller to remove water vapor, 

space to test various traps and filters, and a PS Analytical Mercury Analyzer (PSA).  

Temperature is measured at the sample location and in the pyrolyzer.   Argon flow is held at 

250 ml/min throughout each test.  Test samples are placed in a glass sample boat (preheated to 

800 C to purge mercury) and placed in the control oven.  The samples are first heated to 140 C to 

evaporate all liquid water and evolve the waters of hydration of gypsum, and then to 600 C at a 

rate of 6 C/min.   The temperature of 140 C was chosen to simulate the temperatures within the 

rotary kiln of a typical wallboard plant.  This is the highest temperature to which most CCP 

wastes are typically exposed.  Gases from the control oven then flow through the pyrolyzer to 

convert gaseous mercury compounds to elemental mercury.  Mercury concentration in the gas is 

then measured by atomic fluorescence in the PSA and the data displayed and stored as a function 

of time and temperature.   
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Prior to testing, the oven was carefully probed with a separate thermocouple placed inside of an 

empty sample boat to determine the position at which the oven temperature coincided with the 

sample temperature.  This was necessary because it was felt that any metallic thermocouple 

placed in the oven during an actual test could interfere with the mercury measurement.   

Figure 3-4 shows that at a position of 4.75 inches from the leading edge of the heating element 

the sample temperature coincided very well with the oven temperature.  The center of the sample 

boat was placed at this position for all tests after Nov 5, 2000 – which includes all of the data 

presented in this report. 

 

 

 

 

Ar

Flow
Meter

Control Oven Pyrolyzer

HgO

Impinger
Chiller

Filter

TC 1 TC 2

Mercury CEM

Sample
Boat
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Figure 3-3 – Thermal Stability Test Apparatus 
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Oven Characterization Test
250 ml/min Ar, Test: 110400-1 and 110500-1
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Figure 3-4 – Oven Characterization Test 

 

 

3.3.2 Preparation and Testing of Standards 

Standards made from pure mercury compounds were prepared and tested in order to generate 

plots for comparison with CCP wastes.  It was beyond the scope of this study to test all possible 

mercury compounds, so several of the most likely compounds that may form in the wet scrubber 

environment were chosen: mercuric chloride (HgCl2), mercuric sulfide (HgS), mercuric sulfate 

(HgSO4) and mercuric oxide (HgO).  Good test practices also call for the periodic testing of a 

blank, in this case either an empty sample boat or a boat filled with alumina (Al2O3) that was 

previously baked at 800 C, pure gypsum or distilled water. 

 

At first, the standard compounds were dissolved in the appropriate acids and diluted to about 1 

ppm.  However, subsequent tests gave poor results.  A new method was therefore developed 

whereby the mercury compounds were ground and diluted with pure alumina.  The alumina was 

prebaked at 800 C.  The target concentration was about 1 ppm Hg.  These standards produced 
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reliable and reproducible results in subsequent tests.  They were also used in later tests to spike 

waste samples in an attempt to identity particular mercury compounds. 

 

Figure 3-5 shows the thermal stability curve (TSC) produced during a typical test.  This test 

represents a blank consisting of an empty sample boat that had been washed and prebaked in a 

muffle furnace (as was done for all tests).  The title indicates the sample tested, the flow rate of 

argon, the composition of the impinger solution, the heat rate of the sample and the test ID.  The 

x-axis shows the date and time of the test.  The left-hand y-axis shows control oven temperature 

in degrees Celsius.  The temperature curve for this test shows that the sample was quickly heated 

from room temperature to 100 C, held at 100 C for 30 min, heated at 6 C/min to 140 C, held at 

140 C for 10 min, then heated to 400 C at 6 C/min.  The control oven has 12 programmable 

heating rates and pauses.  The heating curve was often changed depending on what type of 

material was being analyzed, but in general the rate of heating was typically 6 C/min.   

 

The right-hand y-axis shows mercury concentration.  No units are given because the software 

controlling the mercury analyzer was not written for the case in which the gold trap is bypassed, 

as was done for this study.  However, it is roughly equivalent to µg/Nm3.   A precise calibration 

method will be developed if the results of this study warrant further development.  Furthermore, 

the most important information to be gained from this study is the temperature at which mercury 

is detected, the general shape of the mercury curve and the relative area under the curve.  Exact 

concentrations are only needed if this method were to be used to measure the exact amount of 

mercury in the samples, for which there are already adequate wet chemistry techniques.  The 

value of the mercury concentration for this test shows a “background” concentration of about 7.  

The “background” level is a consequence of not being able to precisely calibrate the instrument.  

The overall conclusion is that Figure 3-5 shows that no mercury was evolved from the sample 

boat.  
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Blank
250 ml/min Ar, 2% SnCl2 in 20% NaOH, 6°C/min, Test: 082500-1
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Figure 3-5 – Blank Sample Boat 

 

Figure 3-6 shows the TSC for laboratory-grade gypsum.  The small peak at 200 C may represent 

some mercury contamination in the sample or it may be caused when the waters of hydration 

released from the sample free some mercury that had deposited in the apparatus (this 

phenomenon will be further discussed, below).  The area under the mercury curve is also given.  

It can be proportioned with the sample weight given in the title to determine a relative mercury 

concentration.  

 

Figure 3-7 shows the TSC for three sample weights of a HgSO4 standard.  This figure shows that 

the area under the curve can be used to compare the relative amounts of mercury in the samples.  

The sample weights tested were equivalent to about 1x, 0.5x and 0.25x and this corresponded 

well to the areas under the curve of 0.999, 0.496 and 0.245, respectively. 
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CaSO4.2H2O (gypsum) - 2.0707 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112200-1
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Figure 3-6 – Gypsum Blank 

 

 

HgSO4 - 0.2019, 0.1009, 0.0523g @ 1 ppm Hg in Al2O3
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min
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Figure 3-7 – Multiple TSCs for the HgSO4 Standard at Various Sample Weights 
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Figures 3-8 through 3-11 show the TSCs for the HgCl2, HgO, HgSO4, and HgS standards, 

respectively.  The figures shows several interesting  things.  First, in all cases, only a small 

fraction of the total mercury is evolved up to 140 C.  The samples evolve mercury according to 

somewhat different time-temperature relationships. The curves are in general agreement with the 

vapor pressure data presented in Figure 3-2.  Unfortunately, as reported by this method, three of 

the four compounds chosen for this study evolve mercury at similar peak temperatures (~300 C).  
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HgCl2 - 0.2947 g @ ~1 ppm Hg in Al2O3
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110700-1
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Figure 3-8 – TSC for the HgCl2 Standard 

 

 

HgO - 0.1567 g @ ~1 ppm Hg in Al2O3
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110700-2
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Figure 3-9 – TSC for the HgO Standard 
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HgSO4 - 0.0782 g @ ~1 ppm Hg in Al2O3
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110700-3
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Figure 3-10 – TSC for the HgSO4 Standard 

 

 

 

HgS - 0.1028 g @ ~1 ppm Hg in Al2O3
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110700-4
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Figure 3-11 – TSC for the HgS Standard 
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Figure 3-12 shows the TSC for a combination of the HgCl2 and HgS standards.  The figure 

shows the effect of having multiple compounds within the same sample with similar expected 

peak temperatures.  This demonstrates the difficulty in using this technique if the CCP wastes 

contain multiple compounds – even when the compounds are well-defined.  

 

HgCl2 (0.20g) + HgS (0.04g) in Al2O3

250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test 101100-2
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Figure 3-12 – TSC for the Combined HgCl2 and HgS Standards 

 

 

3.3.3 Method Development 

Upon completion of standard development, the next step involved testing select waste samples 

from pilot-scale tests.  The samples chosen (highlighted earlier in Tables 3-1 and 3-2) are a 

representative cross-section of the B&W mercury control technologies described in earlier 

sections of this report.  However, early results with the TSC method were very disappointing as 

shown in Figure 3-13.  The TSC produced from the wet scrubber samples produced dozens of 

poorly-defined, sharp and broad peaks.  Worse yet, many of the peaks occurred at very low 

temperatures that would indicate the presence of some form of highly volatile mercury 

compound. 
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However, the area under these peaks was much larger than could be accounted for by the total 

mercury in the sample as measured by standard methods.  Furthermore, the peaks were not 

reproducible and could often be generated by using only distilled water (see Figure 3-14) – hence 

these mysterious peaks were dubbed “water spikes”. 

 

Many explanations were put forth to explain the peaks.  Test procedures were modified and 

different kinds of filters were added to ascertain their cause.  After dozens of tests, it was 

determined that mercury was depositing in the apparatus.  This mercury was then released when 

water from the test sample (either liquid water or waters of hydration) was vaporized into the 

argon stream.  The exact mechanism by which this occurs is not known.  It could be a chemical 

reaction, steam stripping, or possibly some impact of the steam on the temperature profile within 

the apparatus.   

 

In an attempt to eliminate mercury deposition within the test apparatus, further tests identified 

two cool zones: one between the exit of the pyrolyzer and heated sample hose and, more 

significantly, one between the exit of the heated sample hose and the inlet of the impinger.  The 

apparatus was modified to eliminate the cool zones as best as possible.  The test procedure was 

also modified to include vaporizing a sample boat of distilled water at the beginning and end of 

each test, called a “steam flush”.  However, even with these changes, the water spikes could not 

be completely eliminated.  It is believed that this effect could be eliminated in the future by 

further design modifications.   
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WS2-8B Hydroclone Underflow - 3.48 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test 101100-3
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Figure 3-13 – “Water Spikes” for a Typical Wet Scrubber Sludge 

 

 

 

H2O - 2 ml Reverse Osmosis
250 ml/min Ar, 2% SnCl2 in 20% NaOH, 6°C/min, Test: 082400-1
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Figure 3-14 – “Water Spikes” from Distilled Water 
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3.3.4 Pilot-Scale Sample Testing 

This section presents results of thermal stability testing for samples from several pilot-scale test 

programs conducted at MTI’s Alliance Research Center.  Results from samples obtained from 

commercial utility plants are reported in Section 3.3.5.  Table 3-3 shows what samples were 

tested.  The data is presented by showing the pilot data for the ESP ash, then the pilot data for the 

wet FGD sludge, and finally the data from the utilities. 

 

 

Table 3-3 – Sample List for Thermal Stability Testing 

 

April 1998 AECDP Phase III Test Series
Test Type MTI ID Code % Hg Rem

10 WFGD Sludge 10C App1 71
11 WFGD Sludge 11C App2 73

ESP Rem
10 ESP Ash 10 Baseline for Ash 20
13 ESP Ash 13A Sorb Inj 1 53

Oct 1999 Phase I Test Series
Test Type MTI ID Code Hg, mg/kg % Hg Rem

1 WFGD Sludge WS-1C Baseline 0.072 47
5 WFGD Sludge WS-5C Alt App1 0.160 77
7 WFGD Sludge WS-7B Alt App1+ App2 0.190 80

April 2000 Phase II Test Series
Test Type MTI ID Code Hg, mg/kg % Hg Rem

1 WFGD Sludge WS2-2A Baseline 0.130 71
6 WFGD Sludge WS2-6B Alt App1 0.170 84
8 WFGD Sludge WS2-8B Alt App1A 0.200 87
9 ESP Ash WS2-9C Baseline for Ash <0.10

Utility Samples
Eastern Bituminous

ESP Ash
WFGD Sludge
Landfill Waste

Western Subbituminous Blend
ESP Ash

Misc.
Fingernails  
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ESP Ash Samples.  The first two TSCs for the pilot-scale samples, Figures 3-15 and 3-16, 

represent ESP ash before and after a sorbent injection test, respectively.  Figure 3-15 shows that 

5.1g of ash produced a single peak with an area of 1.14 and a peak temperature of about 400 C.  

The only standard with these characteristics is HgSO4, however the shapes of the two curves are 

not similar. 

 

AECDP Phase III Test 10A ESP Ash - 5.1384 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110800-4
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Figure 3-15 –  TSC for ESP Ash (Baseline) 

 

 

The TSC in Figure 3-16 has several interesting characteristics.  It shows that sorbent injection 

changed the TSC in that a new, and more dominant, peak formed with a peak temperature of 

300 C.  The new peak produced an area of 0.43 with a sample size of only 0.50g.  A relative 

mercury concentration can be calculated for the ash samples by dividing the total area under the 

curve by the mass of the sample.  The baseline ash had a relative mercury concentration of 

0.2215 (1.138/5.138).  The ash from the sorbent injection test had a relative mercury ratio of 

1.292 (0.652/0.5046), which is approximately 6 times higher than baseline sample and is 

consistent with the increased mercury removal shown for these tests in Table 3-3.  The new peak 

suggests the presence of HgO or HgS, but could simply be the result of a desorption process of 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 70 of 87 

these or some other mercury compound(s).  The drawn out shoulder on the back of the new peak 

corresponds to the peak in Figure 3-15.  This helps explain the mercury removal mechanism for 

this particular sorbent.  It appears that the mercury in the flue gas combines with the sorbent to 

produce a solid-phase product, without significantly affecting the baseline mercury removal of 

the ash.  

 

 

AECDP Phase III Test 13A ESP Ash - 0.5046 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 110900-4
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Figure 3-16 – TSC for ESP Ash (Sorbent Injection) 

 

 

Figure 3-17 shows the TSC for an ESP ash sample from the April testing.  No sorbent injection 

tests were conducted during this test series, so this figure corresponds to another baseline ESP 

mercury removal condition.  The sample contained very little mercury as 5.3g of sample only 

produced an area of 0.1.  The sharp peak on the right side of the graph, labeled “steam flush” is 

the first example presented of the mercury released at the end of the test by vaporizing a sample 

boat of distilled water.  For this particular test, the mercury released during the flush represents 

about 26% of the total mercury evolved from the sample. 
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WS2-9C ESP Ash - 5.3448 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120100-2
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Figure 3-17 – TSC for WS2-9C ESP Ash (Baseline) 

 

 

The important result from the work with the ESP ash samples is that no mercury is evolved at 

temperatures below about 150-200 C.  This is true for both the baseline and sorbent injection test 

conditions. 

 

Wet FGD Samples.  Figures 3-18 and 3-19 show the baseline TSCs for wet FGD slurry for the 

October and April tests, respectively.  Both curves seem to show that the slurry contains two 

mercury forms, one with a peak temperature of about 300 C, and one with a peak temperature of 

about 400 C.  In both cases, the first peak is smaller than the second peak.  The first peak 

suggests the presence of HgO or HgS, and the second peak resembles the behavior of the HgSO4 

standard, but there is no way to positively identify the compounds.  These curves also show that 

a small amount of mercury is released below 140 C.  It’s hard to discern whether these small 

peaks represent a volatile mercury compound or are just a remnant of the “water spike” 

phenomenon, but in either case, they are a small fraction of the total mercury in the samples.  

The steam flushes at the end of each test yielded 17% and 10% of the total mercury, respectively.  
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WS-1C Dewatered ART Slurry - 2.2258 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112700-1
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Figure 3-18 – TSC for WS-1C Wet FGD Sludge (Baseline) 

 

 

 

WS2-2A HC Slurry - 3.9145 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112800-1
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Figure 3-19 – TSC for WS2-2A Wet FGD Sludge (Baseline) 
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Figures 3-20 through 3-25 illustrate the TSCs for various pilot-scale wet FGD sludges obtained 

during testing of B&W’s enhanced wet FGD process (using a variety of approaches and 

reagents).  In general, the curves show two peaks similar to the baseline peaks, except that the 

first peak is generally larger in area.  This seems to suggest that the enhanced processes are 

favoring the formation of only one form of mercury. 
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AECDP Phase III Test 10C Dewatered Slurry - 1.0438 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112900-3
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Figure 3-20 – TSC for AECDP Phase III Test 10C Wet FGD Sludge (App1) 

 

 

WS-11C Dewatered ART Slurry - 2.5045 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112200-3
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Figure 3-21 – TSC for AECDP Phase III Test 11C Wet FGD Sludge (App2) 
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WS-5C Dewatered ART Slurry - 3.2424 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 111600-3
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Figure 3-22 – TSC for WS-5C Wet FGD Sludge (Alt App1) 

 

 

WS2-6B ART Dewatered Slurry - 1.1244 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112900-4
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Figure 3-23 – TSC for WS2-6B Wet FGD Sludge (Alt App1) 
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WS-7B Dewatered ART Solids - 2.2509 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112200-2
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Figure 3-24 – TSC for WS-7B Wet FGD Sludge (Alt App1 + App2) 

 

 

WS2-8B HC Slurry - 2.0483 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 112800-2
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Figure 3-25 – TSC for WS2-8B Wet FGD Sludge (Alt App1A) 
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Miscellaneous Samples.  For general comparison purposes, and to illustrate the sensitivity of the 

method, Figure 3-26 shows the TSC for a sample comprising a co-author’s fingernail clippings.   

This author was not involved in the preparation or handling of any of the pure mercury 

compounds used to make the standards.  The main peak in this TSC has a peak temperature of 

340 C, which does not correspond well with any of the standards.  However, the most interesting 

finding in this run is that the resulting peaks for the fingernails had a combined area of 1.58.  

Dividing by the mass of the fingernail clippings gives a relative mercury concentration ratio of 

26.6 (1.58/0.0594).  This means that the mercury concentration in the fingernail sample was 83 

times greater than in the wet FGD slurry, illustrating how little mercury there is in CCP wastes, 

with or without enhanced mercury control.   

 

 

 

GTA Fingernails - 0.0594 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120600-2
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Figure 3-26 – TSC for Co-author’s Fingernails 
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3.3.5 Commercial Plant Samples 

With help from the American Coal Ash Association, CCP waste samples were obtained from 

two utilities, one burning an eastern bituminous coal and the other burning a blend of western 

subbituminous coals.  The eastern plant uses an ESP and wet scrubber to control particulate and 

SO2 emissions, although the scrubber chemistry is different than that for B&W testing in the 

CEDF.  This may effect the mercury compound(s) formed in the scrubber as will be discussed 

below.  This plant provided three samples:  an ESP ash, a dewatered wet FGD sludge and a 

stabilized sludge that consists of a mixture of ESP ash, wet FGD sludge and lime.  The western 

plant sent only a sample of ESP ash.   

 

Figures 3-27 and 3-28 show the TSCs for the two ESP ash samples.  The eastern ash (Figure 3-

27) produced a broad peak at 330 C to 400 C.  The relative mercury concentration ratio for this 

ash is 0.44.  This is about twice as high as the pilot-scale ash shown earlier in Figure 3-15.  The 

western ash (Figure 3-28) contained almost no mercury.  A 20g sample had to be used to produce 

even a modest peak on the TSC.  The peak temperature for this ash was about 280 C and the 

relative mercury concentration was only 0.0014.  The differences between these two ashes could 

be due to differences in coal constituents, like mercury, chlorine and calcium, as well as the 

operating conditions of the boiler and ESP. 
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Bituminous ESP Ash - 1.0025 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120500-2
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Figure 3-27 – TSC for an Eastern Bituminous Coal ESP Ash 

 

 

Western Subbituminous Coal - ESP Ash - 20.7178 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120600-1
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Figure 3-28 – TSC for a Western Subbituminous Coal Blend ESP Ash 

 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 80 of 87 

 

Figures 3-29 and 3-30 show the TSCs for the eastern wet FGD and stabilized sludge, 

respectively.  These materials appear to contain a mercury compound with a peak temperature of 

only 200 C, which is much lower than any recorded for the standards or the pilot-scale sludges.  

This difference is likely due to the fact that the scrubbers that produced the samples were 

operated very differently.  However, additional samples from other sites would be needed to 

confirm this.  The wet FGD sludge has a relative mercury concentration of 1.05, which is 3.3 

times higher than the pilot-scale wet FGD sludge shown earlier in Figure 3-25.  However, this is 

well within the range of mercury found in different coals.  Also, the utility scrubber was likely 

operating at steady state, whereas the CEDF scrubber had not attained steady-state mercury 

concentration in the slurry (calculated to be about 2.5 times higher than the reported value). 
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Bituminous Filter Cake - 0.2549 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120400-1
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Figure 3-29 – TSC for an Eastern Bituminous Coal Wet FGD Sludge 

 

 

Bituminous Stabilized Waste - 0.2546 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120500-1
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Figure 3-30 – TSC for an Eastern Bituminous Coal Landfill Waste 
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3.3.6 Sample Spikes 

Several TSC tests involved the addition of standards (known compounds) to a typical wet FGD 

sludge to determine the effect on the resulting TSC.  It was hoped that new peaks would form or 

that existing peak heights would increase in correspondence to which standard was used.  Four 

samples were prepared by adding appropriate amounts of the standards to typical wet FGD slurry 

(Figure 3-25) and mixing overnight.  Figures 3-31 to 3-34 show the TSCs for the four spiked 

samples.  In each case, only the first peak increased in area.  This was attributed to chemical 

reactions between the standards and slurry.  This, again,  illustrates the limitations of the method 

in identify individual mercury compounds. 
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WS2-8B Spiked with HgS Std - 1.1543 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 113000-2
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Figure 3-31 – TSC for MTI Wet FGD Slurry Spiked with HgS Standard 

 

 

WS2-8B Spiked with HgO Std - 1.0633 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 113000-1
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Figure 3-32 – TSC for MTI Wet FGD Slurry Spiked with HgO Standard 

 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 84 of 87 

 

WS2-8B Spiked with HgSO4 Std - 1.1680 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 113000-3
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Figure 3-33 – TSC for MTI Wet FGD Slurry Spiked with HgSO4 Standard 

 

 

WS2-8B spiked w/HgCl2 std - 1.0056 g
250 ml/min Ar, 2% SnCl2 in 5% NaOH, 6°C/min, Test: 120100-1
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Figure 3-34 – TSC for MTI Wet FGD Slurry Spiked with HgCl2 Standard 
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3.4 Fate of Mercury – Summary 

All CCP samples tested contained too little mercury to exceed Toxicity Characteristic Leaching 

Procedure (TCLP) limits – even if all of the mercury had reported to the liquid phase, which it 

did not.  For comparison purposes, human fingernail clippings were found to contain 83 times 

more mercury than the wet FGD sludge produced by either the conventional or B&W enhanced 

wet FGD system.  Further, no mercury was ever detected in any liquid fraction, suggesting that 

no soluble form of mercury, such as HgCl2, was present in any of the samples.  Thermal stability 

testing indicated that all samples were stable (with respect to mercury content) up to at least 

140 C, the temperature at which rotary kilns in wallboard plants operate. 

 

Overall, the fate of mercury testing indicated that solid byproducts produced by conventional 

systems, as well as those produced by the B&W enhanced processes, appear to be suitable (with 

respect to mercury) materials for wallboard and cement manufacture, and for disposal in 

landfills.  



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 86 of 87 

4.0 Acknowledgements 

 

The authors gratefully acknowledge the funding support provided by the U.S. Department of 

Energy’s National Energy Technology Laboratory for the work reported, herein.  Also 

acknowledged is the advice and support of its technical project managers: L. E. Dalverny, A. E. 

Mayne, and P. E. Botros.  The support and technical advice provided by both the U.S. 

Department of Energy’s National Energy Technology Laboratory and the Ohio Coal 

Development Office within the Ohio Department of Development during the first three phases of 

the AECDP is also gratefully acknowledged.  We believe that this partnership will result, in a 

timely manner, in mercury removal technologies which will permit U.S. utilities to produce 

cleaner, inexpensive electricity from our abundant domestic supplies of coal.  We also 

acknowledge the continuing technical advice provided by P. S. Nolan (The Babcock & Wilcox 

Company) and R. T. Bailey, W. Downs, and M. J. Holmes (McDermott Technology, Inc.). 

 



Advanced Emissions Control Development Program 

Final Report – Revision 0  Page 87 of 87 

5.0 References 

 

Advanced Emissions Control Development Program, Phase I Final Report, U.S. Department of 

Energy DE-FC22-94PC94251, Ohio Coal Development Office CDO/D-922-13, February 29, 

1996. 

 

Advanced Emissions Control Development Program, Phase II Final Report, U.S. Department of 

Energy DE-FC22-94PC94251, Ohio Coal Development Office CDO/D-922-13, April 21, 1998. 

 

Advanced Emissions Control Development Program, Phase III Final Report, U.S. Department of 

Energy DE-FC22-94PC94251, Ohio Coal Development Office CDO/D-922-13, July 28, 1999. 

 

Mercury Control for Coal-Fired Utilities, Milestone Report #1, Ohio Coal Development Office 

CDO/D-98-7, March 15, 2000. 

 

Mercury Control for Coal-Fired Utilities, Milestone Report #2, Ohio Coal Development Office 

CDO/D-98-7, February 13, 2001. 

 

Mercury Control for Coal-Fired Utilities, Technical Report –Amendment for Hg Speciation 

Testing, Ohio Coal Development Office CDO/D-98-7, March 15, 2001. 

 


