
SANDIA REPORT
SAND2005-3402
Unlimited Release
Printed July 2005

Correlation and Image Compression for
Limited-Bandwidth CCD

Douglas G. Thompson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

 - 1 -

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

 - 2 -

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2005-3402
Unlimited Release
Printed July 2005

Correlation and Image Compression for
Limited-Bandwidth CCD

Douglas G. Thompson
SAR Applications Department

Sandia National Laboratories
PO Box 5800

Albuquerque, NM 87185-0519

ABSTRACT
As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the
amount of data stored and transmitted with each image becomes more significant. This
document gives the results of a study to determine the effect of lossy compression in the image
magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression
types, plus lossless zlib compression, and test each compression method with over 600 CCD
image pairs. We also derive theoretical predictions for the correlation for most of these
compression schemes, which compare favorably with the experimental results. We recommend
image transmission formats for limited-bandwidth programs having various requirements for
CCD, including programs which cannot allow performance degradation and those which have
stricter bandwidth requirements at the expense of CCD performance.

 - 3 -

ACKNOWLEDGEMENTS

This work was funded by the US DOE NNSA/NA-22 Office of Nonproliferation & National
Security, Office of Research and Development, under the Advanced Radar System (ARS)
project.

Special thanks to Doug Bickel and John Delaurentis for helping to review this work and to get
me through the sticky mathematics.

 - 4 -

CONTENTS
ABSTRACT ..3
ACKNOWLEDGEMENTS...4
CONTENTS ..5
1 Introduction ...7
2 Data Compression Methods Tested ...9

2.1 Lossy Data Compression Methods ..9
2.2 Lossless Data Compression Methods ..13

3 Compressed CCD Tests...15
4 Test Results..19

4.1 Subjective Image and CCD Quality...19
4.2 Compression Results ...24
4.3 Timing Benchmark Results ...25
4.4 CCD Results ..28

4.4.1 Comparing CCD Implementations ..28
4.4.2 Comparing Performance Measurements..29
4.4.3 Evaluating Lossy Compression Methods...36
4.4.4 CCD results versus original correlation ...39

5 A few Theoretical Notes..43
5.1 The Effect of Window Size in Correlation Estimation ..43
5.2 The Effect of Phase Quantization ..44

5.2.1 Comparing Theory to Reality ..46
5.3 The Effect of Magnitude Quantization ..48

5.3.1 Linear Magnitude Case..51
5.3.2 Square Root of Magnitude Case ..51
5.3.3 Cube Root of Magnitude Case...52
5.3.4 Fourth Root of Magnitude Case...52
5.3.5 Log of Magnitude Case..53
5.3.6 Transform-Based Methods ..54
5.3.7 Lloyd’s Quantizer ..54

5.4 Comments on Magnitude Clipping..54
5.4.1 Assume Independence ...55
5.4.2 Assume Identical Correlation ..56
5.5 The Effect of Adding Independent Gaussian Noise...58
5.6 Comparing Theory to Reality ..59

6 Conclusions and Recommendations ..63
6.1 Recommendations for Limited-Bandwidth CCD Programs ..63
6.2 Recommendations for Future Work on this Topic...63

7 References ...65
Appendix A A few statistical derivations...67

A.1 Expectations of a Rayleigh Random Variable ...67
A.2 Expectations of a Uniform Random Variable..68
A.3 Average Power in Rayleigh Clipping Noise ..68

DISTRIBUTION ...71

 - 5 -

This page left intentionally blank.

 - 6 -

1 Introduction
As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the
amount of data stored and transmitted with each image becomes more significant. This
document gives the results of a study to determine the effect of lossy compression in the image
magnitude and phase on Coherent Change Detection (CCD). We examine several compression
types, the primary method being to simply remove bits from the data after taking the Nth root of
the magnitude. We also examine the effect on data size of using lossless zlib compression on the
data resulting from the lossy compression.

 - 7 -

2 Data Compression Methods Tested
This section discusses the data compression methods tested in this study.

2.1 Lossy Data Compression Methods

This section discusses the lossy data compression methods considered. Table 1 and Table 2
provide a summary of the different methods tried, from two different points of view. Table 1
shows the different trials sorted by relative output size. For the magnitude data, we perform the
indicated operation, then take the N least significant bits, where N is the number in the second
column of the table. Any values that do not fit into N bits are hard-limited to 2N-1. For JPEG
cases, we take the square root of the magnitude and quantize to form 8-bit data, then JPEG-
compress this data with the quality factor indicated. Those cases where the operation is indicated
as Lloyd refer to quantization Method I as described in [1] and summarized below. Those cases
indicated as FFT refer to quantizing the Fourier Transform of the image instead of the image
itself, as discussed in [2] and summarized below.

For FFT cases, we quantize the I and Q components of the image in the frequency domain. In all
other cases, the operation only refers to the magnitude data. The phase data is simply quantized
to the indicated number of bits, keeping the most-significant bits.

Unlike the uniform quantization used in all other cases, the cases using Lloyd’s quantizer map
arbitrary sets of input values into an arbitrary set of output quanta. The compressor maps all
input values that lie in the first set to the integer label “0”, the values that lie in the second set to
the label “1”, and so on. Only the output quanta and the labels are stored or transmitted with the
image. The decompressor then maps each of the labels to the appropriate output quantum. We
implemented this quantization scheme on the square root of the magnitude data. We first
calculate the optimum input ranges and the corresponding optimum output quanta using Lloyd’s
Method I, using a histogram of the data as an approximation to the probability distribution
function. We then map the input values into the integer labels. Note that this method requires
the transmission of the 2Nm quanta (floating-point values) in addition to the image data, where
Nm is the number of magnitude bits. We have ignored these few extra data words in our
calculation of compression ratios. The process of calculating the input regions and quanta and
then quantizing the data takes prohibitively long in Matlab but runs fairly fast in C, so we
implemented this compression scheme in C.

For the FFT cases, we take the two-dimensional FFT of the complex image to yield the image
domain. We assume that the image was a two-dimensional FFT of some windowed phase
histories. While this is not entirely accurate for images produced by OSA, it makes a good
approximation. We multiply by the inverse of a Taylor window in both range and azimuth to
obtain a data set with a fairly uniform distribution in I and Q. We then quantize the I and Q parts
of this data. We tried cases with uniform quantization whose limits were defined by the
maximum absolute value of the data (“full range”) and cases where the limits were defined by 1,
2, 3, and 4 standard deviations of the data. Since the I and Q parts are nearly identically
distributed and uniform, we only did cases where the I and Q parts are quantized to the same

 - 9 -

number of bits. The decompressor combines I and Q parts to make complex data, multiplies by a
Taylor window in two dimensions, then takes the two-dimensional inverse FFT.

Table 1. The lossy data compression methods used in this study and the relative output size.

Operation # Magnitude Bits kept # Phase bits kept Relative size
None 16 16 1
Square root 8 12 0.625
Square root 8 8 0.5
Square root 8 6 0.438
Divide by 2 9 4 0.406
Divide by 2 8 4 0.375
Divide by 4 8 4 0.375
Square root 8 4 0.375
FFT, full range 6 6 0.375
Square root 6 6 0.375
Divide by 8 7 4 0.344
Square root 5 6 0.344
Square root 8 2 0.313
Square root 6 4 0.313
Square root 4 6 0.313
Third root 4 6 0.313
95% JPEG 8 8 0.30
Lloyd 6 3 0.281
Square root 5 4 0.281
90% JPEG 8 8 0.28
80% JPEG 8 8 0.27
Square root 6 2 0.25
Lloyd 5 3 0.25
Square root 5 3 0.25
FFT, 1 std 4 4 0.25
FFT, 2 stds 4 4 0.25
FFT, 3 stds 4 4 0.25
FFT, 4 stds 4 4 0.25
FFT, full range 4 4 0.25
Lloyd 4 4 0.25
Square root 4 4 0.25
Third root 4 4 0.25
Fourth root 3 5 0.25
Lloyd 3 5 0.25
Natural log 3 5 0.25
95% JPEG 8 6 0.24
90% JPEG 8 6 0.22
Third root 4 3 0.219
Fourth root 3 4 0.219
Natural Log 3 4 0.219
Natural log 3 3 0.188
95% JPEG 8 4 0.178
Fourth root 3 2 0.156
Fourth root 2 1 0.094

 - 10 -

Figure 1 shows histograms of a typical clutter image. Urban images would be expected to be
approximately the same but with bright pixels occurring more often. Note that the most
significant bits of the magnitude are not used very often, so chopping off a few bits on this end
will have little effect. Examining these plots closely, we can see two issues in lowering the bit-
count of our image representation: quantization and clipping. In almost any operation where we
reduce the number of bits used to store a number, we introduce quantization error. If we start
with a 16-bit number, we know that its square root can be stored in 8 bits, but with the loss of a
fractional part, or in other words, with quantization error introduced. The other issue is clipping–
to store a number in N bits, we must limit all values greater than or equal to 2N by setting them
equal to 2N-1. If we desire to store the square root of our 16-bit magnitude in only 4 bits, we can
see from the histogram that ~1.0% of the pixels in this particular image are greater than 2N-1. At
this point, we see this as a reasonable trade-off to consider making to reduce the data rate.

As shown in the last plot in Figure 1, the phase has a uniform distribution across the entire 16-bit
domain (representing 0 to 2π). This tells us that we can get the best gain in data rate reduction
for the quality degradation simply by dropping the least significant bits. We will see another
significant quality of the phase in the following section: since it is uniformly distributed across
its entire domain, it rarely sees gains due to lossless compression when it is compressed by itself.

 - 11 -

0 1 2 3

x 104

0

1

2

3

4
x 106 Magnitude

Counts

N
um

be
r o

f o
cc

ur
re

nc
es

0 50 100 150 200
0

5

10
x 105 Square root of magnitude

Counts

N
um

be
r o

f o
cc

ur
re

nc
es

0 10 20 30 40
0

2

4

6
x 105 Third root of magnitude

Counts

N
um

be
r o

f o
cc

ur
re

nc
es

0 5 10 15
0

1

2

3

4
x 105 Fourth root of magnitude

Counts
N

um
be

r o
f o

cc
ur

re
nc

es

0 5 10 15
0

1

2

3
x 105 Natural log of magnitude

Counts

N
um

be
r o

f o
cc

ur
re

nc
es

0 2 4 6 8

x 104

0

1

2

3

4
x 104 Phase

Counts

N
um

be
r o

f o
cc

ur
re

nc
es

Figure 1. Histograms of a typical clutter image.

Table 2 shows a matrix view of the lossy compression methods in this study. The top row shows
the number of phase bits. The leftmost two columns show the number of magnitude bits and the
nonlinear operation performed. The operation column indicates the power of the root for a root
operation, “Log” for the natural log operation, the quality factor (indicated by a “%” symbol) for
JPEG compression, “Lloyd” for Lloyd’s quantizer, and “FFT” for images quantized in the
frequency domain. We then indicate in matrix form which combinations were tested. The table
also includes the results of the tests at the highest level, indicating those combinations which
resulted in no noticeable degradation (“Good”), those which resulted in Change Detection not
working at all (“Bad”), and those with significant degradation that may still be useful for various
applications (“X”). The details of the results are shown in later sections.

 - 12 -

Table 2. A matrix view of the lossy compression methods examined in this study. Entries indicated “good”
have no noticeable degradation; those marked “Bad” have essentially no information remaining, and those

marked “X” have some significant degradation.

Phase
bits ⇒

Mag
bits⇓

⇓Op

16 12 8 6 5 4 3 2 1

16 1 Good
8 Good Good Good X Bad
6 X X Bad
5 X X X
4

2

 X X
4 3 X X X
3 X X Bad
2 4 Bad
8 80% X
8 90% X X
8 95% X X X
6 X
4 FFT X
6 X
5 X
4 X
3

Lloyd

 X
3 Log X X X
9 X
8 /2 X
8 /4 X
7 /8 X

2.2 Lossless Data Compression Methods

In addition to the lossy data compression discussed above, these tests examined the effects of
lossless data packing and compression methods on the resulting size and on CPU requirements.
We first pack the bits so that all bits of each byte are used, then we further compress them using
the lossless zlib compression algorithm.

For these tests, we wrote a simple C function that can be called from Matlab that packs data with
an arbitrary number of bits (anything from 1 bit per item to 32 bits per item) into a stream of
standard 8-bit bytes, and a corresponding function that unpacks the data [3]. In addition to
eliminating unused bits, these functions put the data into a near-optimum order giving maximum
compression in the following step with a simple packing scheme. In particular, any whole-byte
quantities are packed separately from the remaining partial-byte quantities. For example, if we
are packing 12-bit data, all the least-significant bytes are put together first, followed by the most-
significant 4 bits of each item, packed with multiple items in each byte. If we are packing 32-bit

 - 13 -

data (e.g. the original GFF format), then we store the least-significant phase byte of all pixels,
then the most-significant phase byte of all pixels, then the least-significant magnitude byte of all
pixels, then the most-significant magnitude byte of all pixels. Such ordering significantly
increases the compression attained by zlib in the following step. We tested the compression
using these packing functions in two different ways. For one set of tests, we pack and store all
the magnitude bits, then pack and store all the phase bits. For the other set of tests, we combine
magnitude and phase into one item, and pack and store this aggregate item all together.

The packed data is then compressed using the zlib compression library [4]. This library includes
compression schemes used by the Unix command gzip and by Windows .zip file software. This
step reduces the data size by a factor of about 0.75-0.8 on average, depending on image contents.
Note that the choice of zlib compression is near-optimal in the same sense as the bit-packing
scheme described above: other schemes may result in better compression ratios but are not as
simple to implement, and may take more CPU time.

For those cases where the magnitude is JPEG compressed, there is no point in attempting further
compression on the magnitude. Since the phase is uniformly distributed, it can achieve very
little if any compression by itself. Thus, for the JPEG cases, we do not attempt any lossless
compression.

 - 14 -

3 Compressed CCD Tests
We tested a total of 633 image pairs from two different flight campaigns. The majority of the
image pairs (558 pairs) came from a single flight on November 1, 2004. During this flight, nine
circle passes were flown around two sites while people and vehicles moved about on the ground.
In each pass, the radar collected 31 images suitable for CCD processing. The first six passes
imaged the first site. This allows 15 different combinations of passes per image at this site. The
last three passes imaged a second nearby site, allowing three different combinations of passes per
image.

The remainder of the image pairs (75 pairs) came from a series of three flights, on November 17
and 21, 2004 and January 7, 2005. Some of the pairs were within a single flight and others
spanned flights. There was significant rain in the Albuquerque area between each of these pairs
of flights, so any of the pairs which span flights had relatively poor CCD results. Part of the
purpose of including these image pairs is to check the similarities and differences between the
behavior of highly correlated image pairs versus less-correlated image pairs in the presence of
lossy compression.

For some of this data, we ran two different CCD processors. The first was the
GEARSDriver.exe software provided by GA. This is a command-line CCD processor with a
processing engine similar to that in CLAW. The input is in the form of Lynx Image Files
(.limg), and the output is TIFF files (.tif), scaled so that a pixel value of 255 represents a
correlation of 1. We are not privy to the source code for this processor and thus do not know and
cannot change the algorithms or parameters used. This processor was used to process all of the
pairs described above. The second CCD processor was a Matlab script written by Armin Doerry
and processed only a subset of the 558 pairs from the November 1 flight. This script takes in two
complex floating-point matrices and corresponding header structures, and creates a floating-point
matrix as the output CCD product. The registration is done using Matlab functions provided as
part of the Image Processing Toolbox. The GEARSDriver showed registration problems much
less often than the simple Matlab script.

Both CCD processors had a few cases where the correlation went up as the images were
degraded. Since we expect degradation in the images to produce degradation in the CCD
product, we threw out all such cases, attributing them to bad registration in the un-degraded case.
We also threw out cases where the registration shifted the images so much that the resulting
CCD image was smaller in either dimension than 1600 pixels. This was both for convenience
(we chose a 1600x1600-pixel region of each image to analyze) and because cases where the
images were shifted more than this are likely to have inaccurate registration. Finally, we threw
out cases where there were no 30x30 blocks whose minimum correlation was greater than 0.7
(since this is required for our measure of contrast between bright and dark pixels; see below).
From the November 1, 2004 data set, 17 pairs were thrown out because of increasing correlation.
22 pairs were thrown out because there were no blocks with minimum correlation greater than
0.7, and 519 pairs were used.

We need a criterion or set of criteria for determining whether CCD still works given a particular
method of lossy compression. The ideal criterion would simply be the ability to detect changes.

 - 15 -

This is difficult to measure directly, since we have no a priori knowledge of which pixels contain
changes and which do not. Therefore, we measured several different quantities as
approximations to the ideal criterion. Perhaps the best picture of the performance of a CCD
algorithm in the presence of lossy compression can be obtained by examining several or all of
these parameters; therefore, we describe and present the data for all of them in this document.

The first measure of CCD performance is simply to calculate the average correlation across the
image. While this is not especially useful for comparing images because of the many factors
which go into correlation measurements (like actual changes in the scene, thermal noise,
navigation errors, etc.), it is more interesting if we compare the average correlation for a
degraded image pair to the average correlation for the original un-degraded version of the same
CCD product. The correlation in a degraded image pair divided by the correlation in the original
image pair should be the correlation due to lossy compression, as shown by the following
equations, using the typical model for correlation.

 ...original temporal thermal geometryγ γ γ γ= ⋅ ⋅ ⋅ (1)

 ...compressed compression temporal thermal geometry compression originalγ γ γ γ γ γ γ= ⋅ ⋅ ⋅ ⋅ = ⋅ (2)

In the typical CCD problem, the value to be derived is temporalγ , the correlation due to changes in
the scene over time. For our current purposes, we desire to find the reduction in correlation due
to the compression, or

 compressed
compression

original

γ
γ

γ
= . (3)

We examine both the compression itself and its equivalent SNR, calculated as

 , 1010 log
1equivalentSNR ρ
γ
γ

⎛ ⎞
= ⋅ ⎜ ⎟−⎝ ⎠

. (4)

In order to calculate the equivalent SNR degradation due to the lossy compression, we apply
Equation (4) to the full correlation, then subtract the values for the degraded CCD products from
those for the original CCD products.

The second measure of CCD performance is to calculate the average correlation across those
regions of the image with high correlation in the original CCD product. It is not a particularly
bad thing if the dark regions (indicating change) of a CCD product get darker (more strongly
indicating change), so we desire to leave them out of the calculation. In calculating this
parameter, we divide the CCD image into 30x30-pixel blocks, and find all those blocks whose
minimum correlation is greater than 0.7 in the original CCD product. We find the average
correlation over these same blocks in the degraded CCD product. Again, we examine this
parameter in linear correlation space relative to the original value, and as an equivalent SNR
degradation.

 - 16 -

The third measure of CCD performance is to calculate the difference in dB between the
equivalent SNR of the average bright pixel and the average dark pixel. For this calculation,
bright pixels are defined as in the previous paragraph as those 30x30-pixel blocks whose
minimum correlation in the original CCD image is greater than 0.7. Dark pixels are defined as
those 30x30-pixel blocks whose maximum correlation in the original CCD image is less than 0.3.
If the dark pixels really are caused by changes in the scene as we assume, then we desire to
maximize the difference between the bright and dark pixels so that we can easily pick out the
dark ones.

The fourth measure of CCD performance is the RMS of the difference in pixel values between
the original and degraded CCD images. This measurement is more sensitive to changes in the
individual pixel values, compared to the above three measures which examine changes in
averages over relatively large numbers of pixels.

 - 17 -

4 Test Results
This section examines in detail the results of the tests described above.

4.1 Subjective Image and CCD Quality

In addition to objectively measuring the CCD results with the degraded images, we examined the
images for subjective viewing quality. Both the degraded magnitude image and the degraded
CCD result were examined qualitatively.

To check the magnitude image quality, we convert the quantized values back to magnitude
(undoing the non-linear operations performed, but not undoing the lossy effects of quantization
or JPEG compression), then take the square root to obtain a quarter-power image. We multiply
the resulting value by 8, and then use it to index a linear grayscale look-up table. This is similar
to one of the common ways of displaying the GFF images: to take the square root of the original
16-bit magnitude data, and then multiply by 8 to give an 8-bit grayscale index. We then save
these images as 100%-quality JPEGs, since this is a convenient image format known to preserve
image appearance fairly well, as the human eye can measure it. Note that only the operations
and number of bits stored for the magnitude part of the image affect this result, since the phase is
thrown away in creating the magnitude image.

Not surprisingly, we could see no visible difference between the original image and any of the
images where the operation was a square root and at least 5 magnitude bits were saved. The net
effect of all the operations performed in these cases was the same as for the original image.
Multiplying the quarter-power data by 8 and then limiting the resulting values to fit into 8-bit
quantities is equivalent to limiting the original quarter-power data to 5 bits. Quantizing the
square root of the magnitude is done in either case.

Most of the cases where we took a different operation than the square root and/or kept fewer than
5 bits look very similar to the original image. When rapidly changing from one case to another
on the computer screen, the eye catches the changes so that it is obvious that the two images are
not identical. However, it is hard to discern any difference by looking at the original image next
to the degraded image. Of those cases examined in this study, the only exceptions to this
statement are the 4-bit square-root case, and the 2-bit fourth-root case. In both of these cases, too
few bits are kept to allow the preservation of dynamic range in the image. Referring back to the
histograms in Figure 1, it is the presence of a few bright points in the image that the eye sees as
contrast. With the square-root case, four bits limits the data to so that not all of the primary
hump is represented, and none of the upper tail. The image looks very gray and uninteresting. If
we scale the image so that we get some bright points, then too much of the histogram becomes
bright as well, and the image is washed out.

A few sample cases of a SAR image of Sandia’s radar calibration range are shown in Figure 2.
Since the images are displayed as 5-bit square-root of magnitude images, none of the square-root
cases with 5 or more bits is shown. First we see the original image, with three corner reflectors
visible. Next is the 4-bit square-root of magnitude image. Notice the dim corner reflectors. If
we had chosen a more interesting scene, we would notice that all image features are similarly

 - 19 -

dim. The bottom row shows 4-bit cube root of magnitude and 3-bit natural log of magnitude.
For the eye, it is difficult to detect any differences between these images and the original.

 - 20 -

(a) (b)

(c) (d)

Figure 2. Sample SAR image showing degradation: (original, 16-bit magnitude image (displayed as 5-bit
square root) (b) 4-bit square-root of magnitude, (c) 4-bit cube root of magnitude, (d) 3-bit natural log of

magnitude.

a)

 - 21 -

A
so
format, so we simply examine these images litative check of CCD results.

ts or
 cases

f

y
.

or
e
l),

s discussed above, most of the CCD processing for this study was done by the GEARSDriver
ftware provided by GA. The CCD output products produced by this software are in TIFF

 for the qua

In general, the square root operation produces a CCD product that better approximates the
original than other operations. Those cases with 8-bit square root of magnitude data and 6 bi
more of phase data have performance nearly indistinguishable from the original. Those
using the square root of magnitude with at least 4 bits of magnitude data and at least 4 bits o
phase data are only slightly darker on the whole, but bright points tend to lose correlation.

Particularly among the cases with 8 total bits, the performance seems to be optimized by
balancing the number of bits between phase and magnitude. In all cases where significant
clipping occurs, the correlation on and around bright points in the image (those affected by
clipping) degrades noticeably. All trials with 2 bits of phase data or fewer are significantl
degraded (enough that they are marked as “bad” in Table 2) and should not be used for CCD

Figure 3 shows a few samples of the CCD product corresponding to the image in Figure 2. F
this case, we show the original product, the 8-bit square-root of magnitude and 6-bit phase cas
(the product this paper recommends as best compression with performance equal to the origina
and two cases with 8 total bits. Notice that with 4 bits of square-root of magnitude and 4 bits of
phase, the average correlation remains high, but the correlation around bright points is noticeably
lower, due to the magnitude limiting seen above in the SAR images.

 - 22 -

(a) (b)

(c) (d)
Figure 3. Sample CCD images from Sandia’s radar calibration range: (a) original 16-bit magnitude, 16-bit
phase, (b) 8-bit square root of magnitude, 6-bit phase, (c) 4-bit square root of magnitude, 4-bit phase, and

(d) 4-bit cube root of magnitude, 4-bit phase

 - 23 -

4.2 Compression Results

This section discusses the amount of compression obtained from the combination of the various
lossy compression methods and lossless zlib compression. Table 3 summarizes this data. For
most cases, the lossy compression ratio given is simply the number of magnitude bits plus the
number of phase bits in the degraded product, divided by 32, the total number of bits in the initial
product. For the JPEG cases, the lossy compression ratio is the number of phase bits in the
degraded product divided by the number of phase bits in the original, plus the ratio of bytes in
the magnitude JPEG to the bytes in the original magnitude data. The two columns labeled as the
zlib compression ratio give the lossless compression ratio for the data with the two different
types of data packing. This ratio is 1 for all JPEG cases because zlib is not used in these cases.
As discussed in Section 2.2, the one packing method involves combining the integers
representing magnitude with the integers representing phase before packing the data into 8-byte
quantities. The combination is of the form

 . (5) ,2 bits magnitudeNmag phase+ ⋅

This method is indicated as “Mag & Phase together” in the table. The second method is to pack
all the magnitude data into 8-byte quantities and pack all the phase data into 8-byte quantities,
then concatenate the resulting arrays together. This is indicated as “Mag & Phase separate” in
the table. On average, the case with phase and magnitude data separate compresses about 1%
better than the case with the two items packed together, meaning that the compression ratio is
better by 0.01. However, we see that for many cases the two numbers are identical or nearly so.
For cases with 8-bit magnitude data, the packed data from the two methods is essentially if not
exactly the same, so the compression ratios must of necessity be similar.

Table 3. Compression ratios with the two methods of packing data.

 Lossy
Compression

ratio

Zlib
compression
ratio / Phase,
mag together

Total
compression
ratio / Phase,
mag together

Zlib
compression
ratio / Phase,
mag separate

Total
compression
ratio / Phase,
mag separate

16-bit mag,16-bit phase 1.00 0.53 0.53 0.77 0.77
8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 0.81 0.51
8-bit mag^(1/2),8-bit phase 0.50 0.78 0.39 0.78 0.39

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.87 0.35
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.92 0.34

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 0.75 0.33
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.87 0.33

8-bit 95% jpeg,8-bit phase 0.32 1.00 0.32 1.00 0.32
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 0.98 0.34
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 0.92 0.34

7-bit mag/8, 4-bit phase 0.34 0.86 0.30 0.92 0.32
6,6-bit I/Q of FFT 0.38 0.78 0.29 0.91 0.34

8-bit 90% jpeg,8-bit phase 0.29 1.00 0.29 1.00 0.29
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 0.91 0.28
8-bit 80% jpeg,8-bit phase 0.27 1.00 0.27 1.00 0.27
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 0.85 0.27
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 0.69 0.26
8-bit 95% jpeg,6-bit phase 0.26 1.00 0.26 1.00 0.26
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 0.88 0.28
5-bit mag^(1/2),4-bit phase 0.28 0.90 0.25 0.95 0.27

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.96 0.24

 - 24 -

3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.97 0.24
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.92 0.26
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.91 0.23

4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.93 0.23
8-bit 90% jpeg,6-bit phase 0.23 1.00 0.23 1.00 0.23
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 0.96 0.24

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 0.87 0.22
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 0.95 0.24

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.87 0.22
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.90 0.22

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.82 0.18
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.86 0.19

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.77 0.17
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.86 0.22
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.20 0.79 0.20

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.20 0.78 0.19
8-bit 95% jpeg,4-bit phase 0.19 1.00 0.19 1.00 0.19
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 0.62 0.19
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 0.85 0.21

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.69 0.17
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.85 0.16

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.74 0.12
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 0.50 0.05

4.3 Timing Benchmark Results

In addition to testing the CCD results obtained from images degraded by lossy compression, we
ran some rough benchmarks to gauge how long the conversions, bit-packing, and compression
take. These benchmarks were run on a Linux machine with dual 2.4 GHz Pentium-4
hyperthreaded processors. Since we did not optimize the code we are testing in these
benchmarks, the results simply give a rough idea of the length of the various tasks.

Figure 4 compares a few parameters between the two byte-packing schemes described in Section
2.2. All parameters are average values plotted versus the lossy compression ratio. The data
shown for the zlib compression ratio was shown in table form in the previous section and appears
again here. The mean compression time is the time to form the JPEG image (in Matlab) for
those cases using that compression method, and the lossless zlib compression time (in C) for all
other cases. The mean packing time is the time it takes to combine the N-bit quantities into
properly ordered sets of 8-bit bytes. For JPEG cases, this only involves the phase, and thus there
is no difference between the two methods. For all other cases, the “Mag & phase separate”
method requires two calls to a C function that packs the data into 8-bit quantities while the “Mag
& Phase together” method requires one such call. The extra function call does not double the
execution time since the function has less data to operate on each time, but it does increase the
total execution time by an average of 0.4 seconds. The total average processing time to prepare
the data for a low-bandwidth link is about 0.43 seconds smaller for the “Mag & Phase together”
case. For this reason and because this method is simpler conceptually (especially for images
using a total of 8 bits per pixel), for the rest of this document we assume that we will use the
“Mag & Phase together” method. The compression data shown in Section 4.4 includes this
assumption.

 - 25 -

0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Lossy Compression Ratio

Zl
ib

 c
om

pr
es

si
on

 ra
tio

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

Lossy Compression Ratio

M
ea

n
C

om
pr

es
si

on
 ti

m
e

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

Lossy Compression Ratio

M
ea

n
pa

ck
in

g
tim

e

0 0.2 0.4 0.6 0.8
2

4

6

8

10

12

14

Lossy Compression Ratio

M
ea

n
to

ta
l p

ro
ce

ss
in

g
tim

e Mag & Phase Separate
Mag & Phase Together

Figure 4. A few parameters comparing the two byte-packing methods. The legend in the bottom-right plot

applies to all four plots.

Table 4 summarizes the timing benchmarks for all the lossy compression schemes tested. Note
that there is a bit of a mix between C code and Matlab code and that no particular effort was
made to optimize the execution speed of any of the functions tested. The column indicated as
“bit-chopping time” refers to performing the indicated root or other operation on the original
magnitude data and truncating this result and the phase to the indicated number of bits. This
takes significantly longer for cube roots and fourth roots in Matlab. A program desiring to use
one of these compression schemes would benefit from some type of lookup table or other
approximation to these operations. Since we will truncate to an integer after the operation, it
only needs to be accurate to the nearest integer anyway. The bit-chopping time for 16-bit mag,
16-bit phase (the original data) is artificially inflated because this test used the same code for all
cases. The code could easily be optimized by removing such terms as where N=16. We
chose those areas of the test to use C code instead of Matlab scripts based on quick tests
indicating that there would be a significant speedup. For example, we ran just a few trials of
Lloyd’s quantizer in Matlab and C and determined that C was many times faster. However, a
similar set of trials on the cases using the square root and the third root indicated that the
difference was insignificant. If we choose not to use zlib compression, then we would
recommend a simpler and faster bit-packing scheme, especially for cases with multiples of 8
total bits.

16 N2 / 2

We can see a few interesting features in this data. The FFT-based compression schemes take the
longest by far. My implementation of Lloyd’s quantizer is much faster for small numbers of bits

 - 26 -

than for large numbers. As mentioned above, this implementation of the third-root and fourth-
root schemes is much slower than the square-root schemes, but this difference could probably be
eliminated in an optimized system. The zlib compression for 16-bit magnitude, 16-bit phase
takes an extremely long time in some cases, distorting the mean. It is unknown why this happens
but we have repeated this test several times with similar results. The most interesting point
shown in this table is that the FFT-based methods probably take too long to be useful
operationally, unless they give a much better performance than the other methods.

Table 4. A summary of the timing benchmarks.

 Lossy
compression

ratio

Zlib
compression

ratio

Total
compression

ratio

Mean
compression

time *

Mean packing
time **

Mean bit-
chopping time

Mean total
processing

time
16-bit mag,16-bit phase 1.00 0.53 0.53 31.31 0.89 0.92 33.12

8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 1.64 1.03 2.80 5.47
8-bit mag^(1/2),8-bit phase 0.50 0.78 0.39 1.50 0.99 2.81 5.30

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.82 0.81 1.13 2.75
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.82 0.81 1.11 2.74

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 1.39 1.01 2.80 5.20
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.74 0.81 1.09 2.64

8-bit 95% jpeg,8-bit phase 0.32 1.00 0.32 1.36 0.76 1.75 3.87
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 1.35 1.00 2.83 5.17
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 1.41 0.98 2.81 5.20

7-bit mag/8, 4-bit phase 0.34 0.86 0.30 0.84 0.80 1.08 2.73
6,6-bit I/Q of FFT 0.38 0.78 0.29 1.20 0.96 10.41 12.58

8-bit 90% jpeg,8-bit phase 0.29 1.00 0.29 1.46 0.85 1.87 4.18
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 1.14 0.97 2.93 5.04
8-bit 80% jpeg,8-bit phase 0.27 1.00 0.27 1.41 0.85 1.85 4.10
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 1.38 1.00 5.28 7.66
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 1.37 1.04 2.90 5.31
8-bit 95% jpeg,6-bit phase 0.26 1.00 0.26 1.52 0.86 1.91 4.29
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 1.28 0.99 2.82 5.08
5-bit mag^(1/2),4-bit phase 0.28 0.90 0.25 1.21 1.00 2.83 5.03

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.58 0.94 10.76 12.28
3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.60 0.91 1.26 2.76
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.98 0.95 6.55 8.48
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.70 0.92 1.61 3.23

4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.66 0.93 11.20 12.79
8-bit 90% jpeg,6-bit phase 0.23 1.00 0.23 1.46 0.85 1.86 4.18
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 1.02 0.93 3.05 5.00

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 1.01 0.97 2.93 4.91
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 1.14 0.99 2.82 4.95

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.66 0.94 10.66 12.25
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.77 0.97 2.57 4.30

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.60 0.99 5.32 6.91
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.58 0.99 2.58 4.15

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.62 1.00 5.25 6.88
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.81 0.98 5.30 7.09
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.20 1.29 0.98 5.28 7.55

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.20 0.77 0.94 10.63 12.34
8-bit 95% jpeg,4-bit phase 0.19 1.00 0.19 1.55 0.89 1.97 4.41
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 1.24 1.08 2.90 5.23
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 1.10 1.00 2.83 4.94

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.97 0.94 10.43 12.33
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.56 1.00 2.58 4.13

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.47 1.03 5.31 6.81
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 2.75 1.05 5.59 9.40

 * JPEG in Matlab, zlib in C ** in C *** in Matlab, except Lloyd’s and FFT methods in C

 - 27 -

4.4 CCD Results

This section presents the CCD results. The first two subsections examine the data from the point
of view of comparing the two CCD implementations and the four measures of CCD performance
discussed in Section 1, and how each behaves in the presence of degraded imagery. The next
subsection examines the data from the point of view of evaluating the usefulness of the various
lossy compression schemes for images to be used in CCD. The last subsection examines the data
from the second set of flights to investigate the behavior of less-correlated image pairs.

4.4.1 Comparing CCD Implementations

We ran both CCD processor implementations with 12 different lossy compression schemes and
106 image pairs from the November 1 data set. Both processors occasionally had issues where
the correlation increased as the images were degraded – the Matlab code saw this occur 25 times,
and the C code only twice. All of these cases have been thrown out. The data shown in the
following two figures comes from the remaining 79 image pairs. Note that after these 106 image
pairs were processed as a representative set from both processors, we used only the C-code CCD
processor for the remainder of the images because it runs much more quickly.

Figure 5 plots the mean correlation in the Matlab output versus the mean correlation in the C
code output. The different colors represent the twelve different lossy compression schemes
included in this test. We see that most of the cases are roughly scattered about the line where the
two results are equal. There is one set of dots far to the left that represent an image pair which
was not properly registered by GA’s code where the Matlab code was successful.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparing Implementations, mean over entire image

Result using GA's C code

R
es

ul
t u

si
ng

 A
rm

in
's

 M
at

la
b

co
de

, o
ne

 w
ar

pi
ng

 p
as

s

Figure 5. A comparison of the mean correlation from GA’s GEARSDriver code and Armin’s Matlab code.

Figure 6 shows the same data but with each measurement relative to the un-degraded version.
Now, for nearly all cases, the measurements are clustered more closely about the line where the

 - 28 -

two results are equal. For the two worst compression schemes (green and red dots), the dots that
were far to the left in the previous plot now fall a good distance to the right. The worst
compression scheme (red dots) also has many cases where the Matlab code is significantly worse
than GA’s code. However, for all cases where the CCD processing can be considered successful,
the relative performance of the two implementations was indistinguishable. Thus, we postulate
that the results discussed in Section 4.4.3 can be applied to other CCD processors with
confidence that the performance will be similar if not identical.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Comparing Implementations, mean over entire image

Result using GA's C code, relative to original GFF

R
es

ul
t u

si
ng

 A
rm

in
's

 M
at

la
b

co
de

, r
el

at
iv

e
to

 o
rig

in
al

 G
FF

Figure 6. A comparison of the mean correlation from GA’s GEARSDriver code and Armin’s Matlab code,

each measured relative to the original GFF image in the same processor.

4.4.2 Comparing Performance Measurements

This section compares the four performance measurements described in Section 1. In these
comparisons, we show only those lossy compression schemes not indicated as “Bad” in Table 2.
Each plot includes 519 image pairs. The various colors of dots indicate the different
compression schemes, although the colors are repeated since we use only 7 colors for all of the
compression schemes tested. The main reason to show this data is to show that the four different
measures of performance are not entirely independent and that we can probably use any of them
in determining which lossy compression schemes are valid for a particular application.

Figure 7 compares the total correlation averaged over only the bright regions of the image with
the total correlation averaged over the entire image. As mentioned in Section 1, bright regions
are defined as those 30x30-pixel regions whose minimum correlation in the original CCD
product is greater than 0.7. Note that this does not refer to bright radar return but bright CCD
product. As would be expected, the correlation averaged over the bright regions is greater than
the average over the entire image, except for one case which may indicate bad registration.
Now, if we take the same two measurements relative to the measurement for the original CCD
product, then they align much more closely. This is shown in Figure 8. While there may be a

 - 29 -

few more values above the unity line than below it, these results in general are very close to
equal.

Figure 7. The total correlation, averaged over the entire image vs. averaged over only bright regions. The

solid line shows where the two values are equal.

Figure 8. The correlation relative to the original GFF, averaged over the entire image vs. averaged over only

bright regions. The solid line shows where the two values are equal.

Now we convert the total correlation to its SNR equivalent. Figure 9 compares the mean SNR
equivalent over bright regions to the mean over the entire CCD image. Figure 10 makes a

 - 30 -

similar comparison but with all values relative to the original un-degraded CCD product. Note
that in both cases the solid line is where the mean over bright regions is 1.5 times the mean over
the entire image. In Figure 9, the data fall roughly around this line, and in Figure 10 they cluster
more closely around it. Figure 11 shows the difference of 1.5 times the mean over the entire
image minus the mean over the bright regions. From this, we can see that there is significant
variation in the difference between these two measurements. However, on average we can
expect that the ratio between them is approximately 1.5.

Figure 9. SNR equivalent to total correlation, averaged over the entire image vs. averaged over only bright

regions. The solid line is where the mean over bright regions is 1.5 times the mean over the entire image.

 - 31 -

Figure 10. SNR equivalent to total correlation relative to original GFF, averaged over the entire image vs.

averaged over only bright regions. The solid line is where the mean over bright regions is 1.5 times the mean
over the entire image.

Figure 11. SNR equivalent to total correlation relative to original GFF, difference of 1.5 times the mean over

entire image minus the mean over bright regions.

Figure 12 compares the loss of equivalent SNR in the bright regions to the loss of contrast
between bright and dark regions. Recall that the contrast between bright and dark regions is
simply measured as the difference in equivalent SNR between the two regions. Thus this plot

 - 32 -

compares something of the form to something of the form ()a bΔ − ()aΔ , where represents the
same thing in both cases. Note that the solid line is where loss of bright-dark contrast is half the
loss of SNR in bright regions.

a

Figure 13 shows the difference between the loss of equivalent
SNR and two times the loss of contrast. Again, significant variation remains, but we can
conclude that on average the loss in contrast is approximately half the loss in equivalent SNR in
the bright regions. This is good news – since the dark regions are getting darker while the bright
regions are getting darker, the ability to detect changes does not degrade as quickly as the
equivalent SNR alone would suggest.

Figure 12. Loss of contrast between bright and dark regions vs. loss of SNR in the bright regions. The solid

line is where loss of bright-dark contrast is half the loss of SNR in bright regions.

 - 33 -

Figure 13. Loss of SNR in bright regions minus two times the loss of contrast between bright and dark

regions.

Figure 14 compares the RMS of the difference between the two CCD images to the total
correlation over bright regions. The solid line is where the RMS correlation difference is equal to
the loss in correlation due to compression. The RMS correlation difference is well above the line
for those cases with high average correlation. This seems to indicate that when we first begin
degrading the images, the CCD product begins to change but its average does not. This could be
similar to SAR images from slightly different viewing angles: the speckle changes but average
RCS values and the bulk of the scene stay the same. This type of change was also observed in
the qualitative measurements described in Section 4.1. It appears that the RMS correlation
difference is lower than the loss in total correlation for the lowest-correlation cases to the left of
the plot, although we don’t go out far enough to be certain that this is the trend. Figure 15 shows
the difference between the RMS of the correlation difference and the loss in correlation over the
bright regions. As in the other comparisons above, there is some variation in the data, but on
average the two values are fairly close, especially for cases with significant degradation.

 - 34 -

Figure 14. RMS of correlation change over entire image vs. mean correlation over bright regions, relative to
original GFF. The solid line is where the RMS of correlation change is equal to the loss in mean correlation.

Figure 15. RMS of correlation error minus mean loss of correlation over bright regions.

 - 35 -

4.4.3 Evaluating Lossy Compression Methods

This section discusses the relative performance of the various lossy compression methods
examined in this study. Table 6 shows the mean values for the four performance measures
examined, as well as the compression ratios. The chart is sorted in order of decreasing total
compression ratio, assuming that the data is packed and compressed as discussed in Section 4.2.
Systems choosing not to use zlib or similar compression should use the first column as the
compression ratio instead of the third. The colors in the chart indicate those cases which meet
the thresholds indicated in Table 5. Note that these colors loosely follow a green-yellow-red
progression from good to bad. All the thresholds except those indicated by red entries require
the measurements to be smaller than the indicated values. The green entries indicate a threshold
which is in some sense subjective and will be discussed below.

Table 5. The performance thresholds and the corresponding colors as shown in Table 6.

Thresholds

Color Δ SNR, entire image Δ SNR, bright regions Δ (Bright-Dark)

Green no visible change, << yellow thresholds, single-mode histogram

Tan 0.667 1.0 0.5

Yellow 1.0 1.5 0.75

Orange 1.33 2.0 1.0

Red >3.33 >5.0 >2.5

 - 36 -

Table 6. CCD results given lossy compression. Colors indicate performance thresholds given in Table 5. “*” indicates cases averaged over the entire
image, while “**” indicates cases averaged over 30x30 blocks with minimum correlation > 0.7.

Lossy
Compression

ratio

Zlib
compression

ratio

Total
compression

ratio

Mean
correlation due
compression*

Delta SNR due
compression,

dB*

Mean
correlation due
compression**

Delta SNR due
compression,

dB**

Delta (bright-
dark) due

compression, dB

RMS of
difference in
correlation

16-bit mag,16-bit phase 1 0.53 0.53 1 0 1 0 0 0
8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 1 -0.09 1 -0.13 -0.07 0.007
8-bit mag^(1/2),8-bit phase 0.5 0.78 0.39 1 -0.09 1 -0.14 -0.07 0.007

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.99 -0.26 0.99 -0.41 -0.24 0.019
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.99 -0.27 0.99 -0.41 -0.22 0.02

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 1 -0.1 1 -0.16 -0.09 0.007
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.99 -0.27 0.99 -0.42 -0.24 0.019

8-bit 95% jpeg,8-bit phase 0.3 1 0.32 0.95 -1.25 0.95 -1.84 -1.01 0.052
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 1 -0.12 1 -0.18 -0.09 0.014
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 1 -0.12 1 -0.18 -0.1 0.012

7-bit mag/8, 4-bit phase 0.34 0.86 0.3 0.99 -0.31 0.99 -0.46 -0.25 0.02
6,6-bit I/Q of FFT 0.38 0.78 0.29 0.99 -0.18 0.99 -0.24 -0.09 0.014

8-bit 90% jpeg,8-bit phase 0.28 1 0.29 0.92 -1.72 0.93 -2.45 -1.29 0.073
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 0.99 -0.17 0.99 -0.22 -0.04 0.021
8-bit 80% jpeg,8-bit phase 0.27 1 0.27 0.89 -2.45 0.89 -3.38 -1.67 0.107
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 0.97 -0.77 0.97 -1.13 -0.61 0.034
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 0.99 -0.33 0.99 -0.52 -0.31 0.016
8-bit 95% jpeg,6-bit phase 0.24 1 0.26 0.95 -1.26 0.95 -1.85 -1.02 0.053
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 0.99 -0.35 0.99 -0.54 -0.32 0.02
5-bit mag^(1/2),4-bit phase 0.28 0.9 0.25 0.99 -0.35 0.99 -0.54 -0.3 0.021

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.94 -1.39 0.95 -1.84 -0.74 0.072
3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.98 -0.55 0.98 -0.79 -0.38 0.029
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.96 -0.99 0.96 -1.49 -0.86 0.042
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.98 -0.41 0.98 -0.63 -0.35 0.022
4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.79 -4.11 0.8 -5.27 -2.07 0.207

8-bit 90% jpeg,6-bit phase 0.22 1 0.23 0.92 -1.73 0.93 -2.46 -1.3 0.074
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 0.96 -1.02 0.96 -1.54 -0.88 0.043

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 0.98 -0.4 0.99 -0.57 -0.25 0.026
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 0.96 -1.02 0.96 -1.54 -0.87 0.045

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.97 -0.76 0.97 -1.01 -0.4 0.042
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.94 -1.34 0.94 -1.94 -1.05 0.059

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.91 -2.09 0.91 -2.88 -1.41 0.09
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.94 -1.49 0.94 -2.14 -1.15 0.064

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.93 -1.57 0.93 -2.28 -1.23 0.065
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.91 -1.96 0.92 -2.7 -1.32 0.085
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.2 0.96 -0.97 0.96 -1.43 -0.78 0.042

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.2 0.96 -1.05 0.96 -1.4 -0.55 0.055
8-bit 95% jpeg,4-bit phase 0.18 1 0.19 0.94 -1.45 0.94 -2.11 -1.15 0.059
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 0.85 -3.13 0.85 -4.33 -2.19 0.14
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 0.85 -3.14 0.85 -4.34 -2.2 0.141

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.91 -2.04 0.92 -2.68 -1.05 0.101
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.91 -2.04 0.91 -2.89 -1.52 0.086

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.78 -4.28 0.78 -5.64 -2.54 0.197
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 0.51 -8.24 0.51 -10.08 -3.56 0.467

 - 37 -

Figure 16 shows the histograms of the RMS of the correlation difference for all cases that
meet the green, tan, and yellow thresholds in all three columns. The color of the subplot
title indicates the threshold color code from the first colored column. In many cases,
there are two different behaviors. To distinguish the two, we find the “histogram
breakpoint” as the first bin without any occurrences, lying to the right of the primary
hump. The blue portion of the histogram shows occurrences to the left of this point, and
the red portion shows occurrences to the right. The text within each histogram shows the
location of the breakpoint and the mean value for each portion of the histogram.
Examination of a few cases indicates that the red portion of each histogram corresponds
to cases where the registration is incorrect due to the image degradation, and the blue
portion corresponds to cases where the registration is maintained. The histograms have
been cut off at the top to allow viewing the detail in the tails.

Notice that the cases coded green have all the values clumped together with a small RMS
correlation error. The 8-bit square-root of magnitude, 4-bit phase case also has all the
data grouped together with no registration errors, but the error is a little higher. We
conclude that 8 bits of square-root of magnitude data and at least 4 bits of phase are
required for registration as reliable and accurate as with 16-bit magnitude, 16-bit phase
data. With only 4, 5, or 6 bits of square-root of magnitude data, or with other operations,
we sometimes obtain good registration results, but they are not as reliable. In these
histograms, we can see the non-subjective part of the green color-coded cases: the
histograms of performance of these cases are clustered tighter and are significantly lower
than any other cases. For this reason, we recommend 8-bit square-root of magnitude and
6-bit phase data for projects which desire low-data-rate images with no CCD degradation.
For projects which can allow a small amount of CCD degradation, we recommend 8-bit
square root of magnitude and 4-bit phase data for a slightly smaller data rate. For
projects which desire 8 total bits per pixel at the expense of greater CCD degradation, we
recommend 4-bit magnitude data with Lloyd’s quantizer and 4-bit phase data. This is
also the recommended choice for projects which can accommodate the loss in CCD
performance but have processing throughput limitations or other reasons to avoid using
lossless compression. Note that the total compression for 8-bit square-root of
magnitude/4-bit phase data is almost as good as the 4-bit Lloyd, 4-bit phase data when we
include the effects of the lossless compression, but when we include only the lossy
compression ratio the 4-bit/4-bit case is significantly better.

 - 38 -

Figure 16. Histograms of the cases marked green, tan, and yellow in Table 6.

4.4.4 CCD results versus original correlation

All of the CCD data analyzed in Section 4.4.3 was from a single flight with two scene
locations. We desire to compare these results to those at other locations. The other
locations we had available were from a series of three flights by a different radar. From
these flights, we processed 75 pairs, of which 4 had increasing correlation as the images
degraded and 12 had generally poor registration. In this section, we consider the
remaining 59 image pairs. Figure 17 shows a histogram of the un-degraded correlation of
all 59 pairs. There is a much wider spread of values than was seen in the previous data
set. We examined the motion records from each pair and found no evidence of
differential motion that would degrade the correlation significantly. The greatest
difference in depression angles occurs in the cases colored blue in the histogram – those
with the best correlation. The common difference between the cases colored blue and
those colored green and red is the amount of time between the reference pass and the
comparison pass. There is one case with a correlation of 0.59 that we might think should
be included in the green set; however, its other characteristics (including time between

 - 39 -

passes) align more closely with the blue cases. We therefore consider it an anomalous
member of the blue set. We will see below that the blue and green cases behave rather
similarly, so it is not terribly significant which set a particular case is grouped with.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

Mean Correlation

O
cc

ur
re

nc
es

Figure 17. A histogram of correlation from 59 image pairs at several sites. Colors indicate different

groups of pairs discussed in the text.

All the CCD pairs shown in blue in Figure 17 come from the same flight. Those colored
red and green come from flights 4 days apart. During the four days between these flights,
there was significant rain in the area, so the lower correlation is probably due to actual
detected change. The cases colored green and blue are from Sandia’s radar calibration
range, while the red cases are from farmland and other areas some distance away near the
Rio Grande. We believe that the extreme low correlation observed in the red cases is due
to an abundance of trees and their shadows in these areas, as well as ground cover that is
more susceptible to change due to rain (e.g. farmland vs. bare desert).

Figure 18 compares the average correlation due to the lossy compression for the three
groups of CCD pairs in Figure 17 and the data presented in the previous section. In
adjusting the axis to make some of the details more easily visible, we have cut off some
of the lowest-correlation data. Note that especially for the cases with correlation above
about 0.94, the CCD pairs colored blue and green in Figure 17 very closely approximate
the data in the previous section. Those cases colored red in Figure 17 tend to be slightly
higher. We believe that this is because the red cases already have such low correlation
that they are not affected as much by further degradations in the images.

We believe it is significant that the change in correlation given the lossy compression is
so nearly the same for cases with average correlation ranging all the way from 0.48 up to
0.92. Many if not all of the cases presented in the previous section have lower correlation

 - 40 -

than would be expected given the clutter-to-noise ratio estimated in the images. Since
images with initial correlations over such a wide range have shown similar behaviors
given these lossy compression schemes, we expect that image pairs producing a yet
higher correlation will most likely behave in the same manner.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Lossy Compression Ratio

C
or

re
la

tio
n

du
e

to
 c

om
pr

es
si

on

blue cases
green cases
red cases
previous section

Figure 18. A comparison of the three groups of CCD pairs in this section with the cases in the

previous section.

 - 41 -

5 A few Theoretical Notes
This section covers several theoretical issues related to predicting the correlation in the
presence of lossy compression schemes.

5.1 The Effect of Window Size in Correlation Estimation

This section briefly reviews the calculation of correlation in CCD and how the window
size affects the estimate. The comments in this section are well known in the CCD
world, but we include them here as a reminder.

Before we calculate the correlation, the two images must be co-registered so that one lies
exactly on top of the other, to precision well below a pixel. We then calculate the
correlation as

*

1 2

*
1 1 2 2

s s

s s s s
ρ =

⋅ *

∑
∑ ∑

 (6)

where s1 and s2 represent the two complex, registered images. The sums are taken over
some window size in the image, typically using an odd number of pixels and the same
number of pixels in each dimension. 5x5 and 7x7 are common values for the window
size.

Once we degrade CCD images through lossy compression as discussed in this document,
we may desire to ask, “Why don’t we increase the window size to regain correlation at
the expense of resolution in the CCD product?” However, we must recall that
Equation (6) is really averaging the correlation over a window size, not averaging to
increase SNR. Averages only increase SNR when the noise is a zero-mean random
variable that is added to the signal. Due to the multiplications involved in Equation (6),
the undesired quantities never appear in this form. Increasing the window size only
decreases the variance of the estimate of the correlation, not affecting the mean at all.

Confusion may arise due to a similar use of correlation in IFSAR. IFSAR height
mapping uses an equation similar to Equation (6), but takes the phase instead of the
magnitude of the result. In that case, increasing the window size results in lower height
noise at a cost of worse resolution (or increased post spacing) in the resulting product.
This is because the height noise is related to the variance in the correlation estimate. As
stated above, we can affect the variance but not the mean of the correlation estimate by
changing the window size.

Assuming we are already using the proper algorithms, there is no way to increase the
average correlation in a particular image pair to compensate for lossy compression.
Another way we might consider attempting this is to average in the image domain to
bring up the SNR before doing the correlation. This would work if the image were
correlated over a large enough region to perform the average (and if the noise remained
uncorrelated over this region). Typical Sandia radars produce images with pixels 1.2

 - 43 -

times smaller than the resolution cell. This means that the images are only correlated to a
distance of 1.2 pixels. We could adjust the parameters during the collection so that the
resulting images were more correlated, but this results in a larger number of pixels for a
given resolution, negating the size gains we would have gotten from lossy compression.
We also might think we can increase the correlation of a given image through reduced
resolution sub-band processing or a similar method. This might work if we could
separate the noise from the signal during this process, but since we cannot do that (if we
could, we would just keep the noise separate and have a perfect image anyway) we end
up increasing the correlation of the noise in the same proportions as we do for the signal,
with no net effect.

5.2 The Effect of Phase Quantization

Assume we have two GFF images of the same area, taken at different times (i.e. a CCD
pair). The ideal complex image for both cases is denoted s. Due to many factors, the
images created are different from the ideal (and different from each other). These factors
may include geometry differences, scene changes, focusing differences, and others. We
denote the difference from the ideal as n1 for the first image and n2 for the second image,
and the actual images as and 1 1s s n= + 22s s n= + . Now assume that we quantize the
phase for both images to Np bits. Since the phase is a uniform random variable between
-pi and +pi, the quantization noise introduced is a uniform random variable. The phase is
quantized as

16

2round
2

2
2

p

p

N

GFF

quantized N

p

p π

⎛ ⎞⋅
⎜ ⎟⎜ ⎟
⎝= ⋅ ⎠ (7)

compared to the original phase,

 162
2
GFF

original

p
p π ⎛= ⋅⎜

⎝ ⎠
⎞
⎟ (8)

where pGFF is the 16-bit representation of the phase in the GFF file. With a uniform
distribution as the input, the round function produces an error uniformly distributed
between -0.5 and +0.5. Thus, the phase error is

 ()0.5... 0.5
2 ...

2 2p perror N N

U
p U

2 pN

π ππ
− + ⎛= ⋅ = −⎜

⎝ ⎠
⎞
⎟ (9)

where U() represents a uniform distribution between the indicated values. We denote the
phase errors for the two images as p1 and p2.

Now we desire to calculate the cross-correlation between the two images in CCD
processing. The equation used to calculate this is

 - 44 -

*

1 2

*
1 1 2 2

s s

s s s s
γ =

⋅ *

∑
∑ ∑

 (10)

where the sums are taken over some region of the image. The intent of these sums is to
average out noise in the estimate of correlation. For this derivation, we assume that the
summation symbol indicates a statistical expectation, forgetting that we really are
summing over a small (say, 5x5 or 7x7) region of the image. The correlation for our case
is then

() () () ()1 21 2

1 2

2* * * *
1 2 1 21 2

2 2 2 22 2
1 21 2

j p pjp jp

jp jp

s s n s n n n es n e s n e

s n s ns n e s n e
γ

−− + ⋅ + ⋅ + ⋅+ +
= =

+ ⋅ ++ ⋅ +

∑∑
∑ ∑∑ ∑

 (11)

Since s, n1, and n2 are mutually uncorrelated, all the cross terms in the numerator go away
in the expectation. The magnitude-squares in the denominator have similar expansions
and similar cross-terms which disappear in the expectation. We also simplify by
assuming that the two noise terms have identical statistics (i.e. the effective SNR of both
images is the same). Thus, the correlation simplifies to

()()1 22

2
1

j p ps e

s n
γ

−⋅
=

+

∑
∑ ∑ 2 (12)

The denominator in this form is the same as for the original non-quantized correlation, so
we focus for the moment on the numerator. Notice that we are taking the complex
magnitude of a sum. In the ideal case, each term of the sum is real. However, we have
added a phase term to each one. From a statistical point of view, we may want to say that
the sum vanishes because p1 and p2 (and their difference) are uncorrelated with s.
However, since p1 and p2 are small, ()1 2j p p−e has a mean of 1.0 and a complex variation
about this value. With two non-zero-mean uncorrelated quantities, the expectation is the
product of the two individual expectations, or

()1 22

2
1

j p ps e

s n
γ

−⋅
=

+ 2

∑ ∑
∑ ∑

 (13)

Now we focus on the term ()1 2j p pe −∑ . Since p1 and p2 are small, zero-mean, and

uniformly distributed, their difference has a triangle-function probability distribution with
a peak at zero. If we picture the complex plane, each term in the sum is a vector of length
one and direction nearly parallel to the real axis. On average, the result of the entire sum
is real, so only the real part of each term contributes. The real part is ()1 2cos p p− .
Since the argument of the cosine is always small, we expand this in its Taylor series so
that the entire term becomes

 - 45 -

 () () ()
1 2

22 2 2
1 2 1 21 21 1 1

2 2
j p p

2
p p pp p

e −
⎛ ⎞ − +−

= − = − = −⎜ ⎟
⎜ ⎟
⎝ ⎠

p∑ ∑ ∑∑ ∑ (14)

Notice that we have assumed that p1 and p2 are uncorrelated. Recalling that the two
phase-error terms are identically distributed, the correlation now simplifies to

()2 2

1
2

1

1s p

s n
γ

−
=

+ 2
∑ ∑
∑ ∑

 (15)

We can now separate the correlation due to phase quantization from the original
correlation as

 quantizedPhase original phaseQuantizationγ γ γ= (16)

where

 2
11phaseQuantization pγ = −∑ (17)

This is simply one minus the variance in this zero-mean, uniformly distributed random
variable. Since we know the distribution from Equation (9), we can easily calculate the
variance as

2 2

2
1

1 2 1
12 32 2pNp

π⎛ ⎞ ⎛ ⎞= ⋅ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
pN

π (18)

so that

211

3 2 pphaseQuantization N

πγ ⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 (19)

5.2.1 Comparing Theory to Reality

In this section, we compare the theoretical result derived above to experimental results.
First, we created a set of synthetic images, following the models described above. The
original image s has Gaussian real and imaginary parts, as do the noise terms n1 and n2.
These three terms are scaled to create a desired effective SNR, and we create the two
synthetic images. In order to more fully model the differences between real CCD images,
we multiply the second image by a random phase and by a random magnitude between
approximately 0.89 and 1.12 (±0.5 dB). For each effective SNR, we create 32 such
image pairs and test the correlation between them in the presence of phase quantization.
The result is shown in Figure 19 (correlation) and Figure 20 (effective SNR). For all
cases, Figure 19 shows the correlation for a particular test normalized by the correlation
for the corresponding original undegraded image pair. Figure 20 shows this same value
converted to log-space as effective SNR to separate the highly correlated cases. The

 - 46 -

squares indicate the theoretical value (not a function of original SNR or original
correlation), while the lines indicate the average value obtained from the 32 synthetic
image pairs. The theoretical data matches the data from synthetic image pairs rather well,
although it is slightly pessimistic for the 2- and 3-bit cases.

In addition to testing synthetic data, we performed similar tests using the actual CCD
image pairs used for the data presented in Section 1. We performed a separate set of tests
using 16-bit magnitude and N-bit phase, where N ranges from 3 to 16. The results of
these tests are presented as the stars in Figure 19 and Figure 20. These tests have
consistently higher correlation than the theoretical value or the synthetic data, which
probably indicates that there is more correlation between the two phase errors in the real
data than in the synthetic data. We conclude that the theoretical expression in Equation
(19) is a good estimate but slightly pessimistic compared to real images.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

2

3

4
5

Original Image Correlation

C
or

re
la

tio
n

du
e

to
 p

ha
se

 q
ua

nt
iz

at
io

n

Figure 19. Theoretical correlation due to phase quantization (squares) compared to synthetic images

(lines) and actual CCD data (stars). Numbers to the left of each line indicate number of phase bits
stored.

 - 47 -

-5 0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50

55

60

2

3

4

5

6

7

8

9

10

11

Original Effective SNR

E
ffe

ct
iv

e
S

N
R

 d
ue

 to
 p

ha
se

 q
ua

nt
iz

at
io

n

Figure 20. Theoretical effective SNR due to phase quantization (squares) compared to synthetic

images (lines) and actual CCD data (stars). The numbers at the right indicate the number of phase
bits stored.

5.3 The Effect of Magnitude Quantization

As above, assume we have two GFF images of the same area, taken at different times (i.e.
a CCD pair). The ideal complex image for both cases is denoted s. Due to many factors,
the images created are different from the ideal (and different from each other). These
factors may include geometry differences, scene changes, focusing differences, and
others. We denote the difference from the ideal as n1 for the first image and n2 for the
second image, and the actual images as 1 1s s n+ 2 and 2s s n= = + . Now assume that we
quantize the magnitude of each image in the following manner. We take the Nr-th root of
each image, divide by a scale factor kscale, then quantize this value to the nearest integer.
We also clip the highest-magnitude pixels by limiting them to 2Nm-1 where Nm is the
number of bits to store for the magnitude. We denote the data stored and transmitted for
each image as

 ' '
rN

i

i qi
scale

s
u n

k

⎛ ⎞
⎜= + −
⎜ ⎟
⎝ ⎠

cin ⎟ (20)

where the “i”s are replaced by 1 and 2 for each image and the variables are

'

'

original quantization error -0.5...+0.5

original clipping error
qi

ci

n

n

=

=

 - 48 -

We show a negative sign on the clipping error to emphasize that it always makes the
result smaller than the original. We return to the image domain by multiplying by kscale,
by undoing the Nr-th root operation, and by multiplying by the phase of the original
image. Thus the magnitude of the degraded image is

 ' '

r

r

N
N

i

i scale qi ci
scale

s
t k n n

k

⎛ ⎞⎛ ⎞
⎜ ⎜= ⋅ + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎟⎟

'

 (21)

Note that we can apply the clipping error after returning to the magnitude domain with no
effect on the image quality degradation and with significantly simpler equations. Thus,
we remove from the equation and replace it with outside of the parentheses, so
that the image magnitude simplifies to

cin cin

 () ()' r
r r

N N
N N

i i scale qi ci i qit s k n n s n= + ⋅ − = + −
r

cin

k

 (22)

where

effective quantization error -0.5 ... 0.5

effective clipping error
qi scale scale

ci

n k

n

= +

=

Note that the clipping error is always positive or zero and thus has non-zero mean,
while the quantization error is zero mean. The magnitude-quantized complex image is
then

cin

 () ()r r
i ir r

N N
j jN N

i i qi ci i qi ciim s n n e s n e n e ijφ φ φ⎛ ⎞= + − ⋅ = + ⋅ − ⋅⎜ ⎟
⎝ ⎠

 (23)

Where the variables are defined as

 (24)
i

image-doman representation of the actual image as stored and transmitted
phase of the original (noisy but undegraded) image

iim

φ
=
=

We desire to calculate the cross-correlation between the two images in CCD processing.
The equation used to calculate this is

*

1 2

*
1 1 2 2

im im

im im im im
γ =

⋅ *

∑
∑ ∑

 (25)

where the sums are taken over some region of the image. The intent of these sums is to
average out noise in the estimate of correlation. For these derivations, we assume that the
summation symbol indicates a statistical expectation, forgetting that we really are
summing over a small (say, 5x5 or 7x7) region of the image. We here encounter two

 - 49 -

difficulties. First, it is difficult to simplify this equation for a general . We thus leave
the simplification to the subsections below, where we consider one value of in each
subsection. Second, the clipping noise term is difficult to handle because it is highly
correlated with the original signal s (in fact, it is a function of). In many cases, it is
also of the same magnitude as . Due to these complications, for the present we assume
that is zero. In Section

rN

rN

s

s

N

cin

i i

i

cin 5.4, we return to this term and examine its effects and the
difficulty in predicting the correlation in the presence of clipping.

In each of the following subsections, we calculate the power in the quantization noise that
is added to the image during the compression process, . We convert this to
correlation by recalling an equation that can be derived from Equation

qi

(25),

()

() () () ()

2

2 2 2 2
1 2

E

E E E E

s

s n s n
γ =

+ ⋅ +
 (26)

In comparisons with existing image data, we calculate the signal and noise power of the
image as

() ()

() ()

2
2

2
2

E
E 11

E
E

1

i

i

i

i

s
s

SNR

s
n

SNR

=
+

=
+

 (27)

where SNR is the signal-to-noise ratio, determined from the undegraded correlation. Note
that the estimate of the signal power obtained from the two images may be different; thus,
the i subscript in the first of these equations numbers the estimate of the power, not the
signal whose power we refer to. We then calculate the correlation due to the magnitude
quantization as

() ()

() () () ()

2 2

1 2

2 2 2 2
1 1 21 2

E E

E E E E
magQuant

q q

s s

s n N s n N
γ

⋅
=

+ + ⋅ + + 2

 (28)

Whenever necessary, we assume a uniform clutter region within which each signal si has
Rayleigh-distributed magnitude with a mean value determined by the average RCS of the
clutter. The Rayleigh parameter β is determined as

 () 2mean RCSβ
π

= . (29)

 - 50 -

5.3.1 Linear Magnitude Case

We now evaluate Equation (23) and the resulting correlation with =1. In this case,
each image is represented as

rN

 () ij
i i qi i qiim s n e s n e ijφ φ= + ⋅ = + ⋅ (30)

The additional noise introduced by the compression is easily separated as

 ,
ij

compression i qin n e φ= ⋅ (31)

We are interested in the noise power, which we can obtain as the mean of the square of
the compression noise, or

 () ()2 2
,Eqi compression i qiN n n= = E (32)

where E() denotes statistical expectation.

The quantization noise is uniform from -0.5kscale to +0.5kscale, so

2

12
scale

qi

k
N = (33)

5.3.2 Square Root of Magnitude Case

We now evaluate Equation (23) and the resulting correlation with =2. Notice that for
this and all following cases, we use

rN

1kscale = . In this case, each image is represented as

 ()2
22i ij j

i i qi i qi i qiim s n e s n s e n e ijφ φ= + ⋅ = + ⋅ ⋅ ⋅ + ⋅ φ (34)

The additional noise introduced by the quantization is easily separated as

 2
, 2 ij

compression i qi i qin n s e n ijeφ φ= ⋅ ⋅ ⋅ + ⋅ (35)

We are more interested in the noise power, which we can obtain as the mean of the
square of the quantization noise, or

 () ()2 2 3
,E E 4 4qi compression i qi i qi i qiN n n s n s n= = ⋅ ⋅ + ⋅ ⋅ 4+ (36)

 - 51 -

We assume that the quantization noise is independent of the signal and has zero mean.
The noise power then reduces to

 () () ()24 E E Eqi qi i qiN n s= ⋅ ⋅ + 4n (37)

As derived in Appendices A.1 and A.2, the additional noise power reduces to

 1
3 2 8qiN

πβ= ⋅ ⋅ +
1
0

 (38)

5.3.3 Cube Root of Magnitude Case

We now evaluate Equation (23) and the resulting correlation with =3. In this case,
each image is represented as

rN

 () 2 13
2 33 3 33 3i ij j

i i qi i qi i qi i qiim s n e s n s n s n eφ φ⎛ ⎞⎛ ⎞= + ⋅ = + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (39)

The additional noise introduced by the quantization is easily separated as

2 1

2 33 33 3 ij
qi qi i qi i qin n s n s n e φ⎛= ⋅ ⋅ + ⋅ ⋅ + ⋅⎜

⎝ ⎠
⎞
⎟ (40)

We are interested in the noise power, which we can obtain as the mean of the square of
the quantization noise. Again, we assume that the quantization noise is independent of
the signal and has zero mean. The noise power then reduces to

 () 4 22 2 43 3E E 9 12qi qi qi i qi i qiN n n s n s n
⎛= = ⋅ ⋅ + ⋅ ⋅ +⎜
⎝ ⎠

6 ⎞
⎟ (41)

Using the derivations in Appendices A.1 and A.2, this becomes

 () ()
2 1

2 23 33 5 3 42 2
4 3 20 3 448qiN β β⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
1 (42)

5.3.4 Fourth Root of Magnitude Case

We now evaluate Equation (23) and the resulting correlation with =4. In this case,
each image is represented as

rN

 () 3 14 22 3 44 4 44 6 4i ij j
i i qi i qi i qi i qi i qiim s n e s n s n s n s n eφ φ⎛ ⎞⎛ ⎞= + ⋅ = + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (43)

The additional noise introduced by the quantization is easily separated as

 - 52 -

3 122 3 44 44 6 4 ij

qi qi i qi i qi i qin n s n s n s n e φ⎛ ⎞= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (44)

We are interested in the noise power, which we can obtain as the mean of the square of
the quantization noise. Again, we assume that the quantization noise is independent of
the signal and has zero mean. The noise power then reduces to

 () 3 12 2 4 62E E 16 68 28qi qi qi i qi i qi i qiN n n s n s n s n
⎛ ⎞= = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +⎜ ⎟
⎝ ⎠

82 (45)

Using the derivations in Appendices A.1 and A.2, this becomes

 () () ()
3 1 1

2 2 24 2 44 7 17 3 1 52 2 2
3 4 20 2 16 4 2304qiN β β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 (46)

5.3.5 Log of Magnitude Case

For the case where we take the log instead of a root of the magnitude, we proceed slightly
differently from the above. We begin with the same assumptions. Then, instead of
taking a root, we take the log,

 ()logit s= + in (47)

We then quantize this value to the nearest integer. We also clip the highest-magnitude
pixels by limiting them to 2Nm-1 where Nm is the number of bits to store for the
magnitude.

 ()' logi i qit s n cin= + + (48)

Notice that the quantization is very different when done in the log domain as compared to
the linear magnitude domain. On the other hand, the action of the clipping function in the
two domains is identical if we adjust parameters appropriately. Thus, we now assume
that we do the clipping after returning to the magnitude domain. In the magnitude
domain, we multiply by the phase of the original image to return to a complex image

 ()()() ()()exp log expi ij
i i qi ci i qi cim s n n e s n n e j

i
φ φ= + + ⋅ = ⋅ + ⋅ (49)

The additional noise term is easily approximated as its Taylor series,

 ()
2

exp 1
2
qi

qi qi

n
n n≈ + + (50)

 - 53 -

We can obtain the noise power as the mean of the square of the quantization noise. We
make the same assumptions on independence that we made in the previous sections. We
also assume for the moment that there is no clipping. The noise power then reduces to

()

() () () ()

22 4
2 2 2 2 3

2 22 4

E E E
2 4

1E E E E
4

qi qi
qi qi i qi i qi qi

qi i qi i qi

n n
N n s n s n n

N s n s n

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟= = ⋅ + = ⋅ + +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎝⎝⎝ ⎠

= ⋅ + ⋅ ⋅

⎞
⎟⎟
⎠⎠ (51)

Using the derivations in Appendices A.1 and A.2, this becomes

 () ()2 2 21 1 1 12 2
6 160 6 160 480qiN 283β β β ⎛ ⎞= ⋅ ⋅Γ + ⋅ ⋅Γ = + =⎜ ⎟

⎝ ⎠
β (52)

5.3.6 Transform-Based Methods

In this study, we have examined two transform-based lossy compression methods: JPEG
compression and quantizing the FFT of the complex image. Both of these methods are
too complex to be examined theoretically in this document. We thus do not compare the
trial results to any theoretical result.

5.3.7 Lloyd’s Quantizer

Lloyd’s quantizer is a data-dependent quantizer. There is nothing theoretical that can
easily be said about the performance of compression based on this quantizer beyond the
fact that the error is expected to be better than the corresponding uniform quantizer (if the
parameters are chosen correctly). Thus, we will compare the cases using Lloyd’s
quantizer to the theoretical value for a uniform quantizer with the same non-linear
operation, and expect to see better performance.

5.4 Comments on Magnitude Clipping

We now return to the clipping noise terms in Equation (23). For the moment, we ignore
the quantization noise characterized in the previous section and focus only on the
clipping. Using Equation (23) in Equation (25), we obtain

()()1 2

1 2

*
1 1 2 2

2

1 1 2 2

j j
c c

j j
c c

s n e s n e

s n e s n e

φ φ

φ φ
γ

−− ⋅ − ⋅
=

− ⋅ ⋅ − ⋅

∑
∑ ∑

2
 (53)

We will attempt to simplify this equation in two different ways and show the error in
each.

 - 54 -

5.4.1 Assume Independence

We assume for simplicity that the quantization noise and the clipping noise are mutually
independent and are each independent with respect to s1 and s2. We also assume that the
two images have identical noise characteristics. Then the correlation reduces to

2*

1 2
2 2 22

1 1ci ci

s s s

s n s n
γ = =

+ + +
∑

2n

∑
∑ ∑ ∑ ∑ ∑

 (54)

In beginning this discussion, we note that the clipping noise will in actuality be strongly
correlated with the image it comes from (and thus with the other image as well for high
SNR). Thus, the estimate of correlation obtained in this manner is expected to
significantly underestimate real data.

We can rearrange Equation (54) so that the correlation is given in terms of the original
correlation without magnitude quantization, as

2

2 2

2

2 2 2 21 1

originali

ci ci

i i

s

s n

n n

s n s n

γ
γ

+
= =

+ +
+ +

2

∑
∑ ∑

∑ ∑
∑ ∑ ∑ ∑

 (55)

 , 2 2

2 2

1

1

i
magClipping independent

ci i c

i

P

n P n

s n

γ = =
+

+
+
∑ i∑

∑ ∑

 (56)

where Pi is the total (signal plus noise) power in the original images.

As a formal definition of nci,

 ()
()()

()() ()()
0 2 1

2 1 2 1

r
m

r r
m m

N
N

i

ci i N
N N

scale i i scale

s k
n s

k s s

⎧ ≤ − ⋅⎪= ⎨
⎪ ⋅ − − > − ⋅⎩

scale

N

k
 (57)

Appendix A.3 derives the average power in the clipping noise as

() ()

()() ()

2

22
22 2

2

E 2 2 1

2 1
 2 2 1 exp

2

r
mr

r
mr

r
mr

NNN
ci scale

NNN
N scaleNN

scale

n k

k
k

π β

β
β

= − ⋅ ⋅ ⋅ −

⎛ −⎜ ⎟+ − + −
⎜ ⎟
⎝ ⎠

⎞ (58)

 - 55 -

For highly clipped cases, this value approaches the power in the original image (signal
plus noise). Thus, the predicted correlation for these cases is close to 0.5, the correlation
which corresponds to a signal-to-noise ratio of 0 dB. However, the actual correlation is
only slightly lower than the case with no clipping. Figure 21 shows the predicted and
actual effective SNR and correlation for a set of tests using 77 of the images pairs
referred to in Section 1. In this example, we clip the magnitude, with no quantizing
beyond the original 16-bit magnitude and phase image. For each image, we measure the
actual noise introduced (the difference between the original image and the clipped image)
and use this value to calculate the correlation that would be expected if this were
independent random noise. The actual correlation is much higher than this predicted
value, indicating that the noise thus introduced is highly correlated between the two
images.

4 6 8 10 12 14 16
-6

-4

-2

0

2

4

6

8

Number of magnitude Bits

E
ffe

ct
iv

e
S

N
R

Actual
Predicted

4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of magnitude Bits

C
or

re
la

tio
n

Actual
Predicted

Figure 21. Predicted and actual correlation and effective SNR due to clipping the magnitude.

5.4.2 Assume Identical Correlation

Now, we return to Equation (53) but without the assumption of independence. Assuming
the noise in the two images is independent and identically distributed, we can expand the
multiplication and write the correlation as

()1 21 2* *

1 2 1 2 1 2 1 2
2 2 2

1 1 1 12

jj j
c c c c

c c

s s n e s s n e n n e

s n n s n

φ φφ φ

γ
−−⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

=
+ + − ⋅ ⋅

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 (59)

We now assume that the correlation of the clipping noise from image 1 with image 2 is
the same as the correlation between the original images. This allows us to separate the
clipping noise and the image magnitudes into two different expectations. Similarly, we
assume that the correlation between the clipping noise from the two images is the same as
the correlation between the original images. We then write the entire correlation as

2 2* 2 2 2
1 2 1 2 2 1 1 2

2 2 2
1 1 1 12

original c original c original c c

c c

s s n s n s n n

s n n s n

γ γ γ
γ

⋅ − ⋅ − ⋅ + ⋅
≈

+ + − ⋅ ⋅

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

2∑
(60)

 - 56 -

We then divide top and bottom by the original signal plus noise power, and factor out the
original correlation from the entire expression.

2 22 2
1 21 2

2 2 2 2 2 2
1 1

2
1 1 1

2 2
1

1

2
1

c cc c

original
c c

n nn n

s n s n s n

n s n

s n

γ γ

⎛ ⎞⋅
⎜ ⎟+ + +
⎜ ⎟+ + +

≈ ⎜ ⎟
+ ⋅ ⋅⎜ ⎟+⎜ ⎟+⎜ ⎟

⎝ ⎠

∑ ∑∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

∑ ∑
∑ ∑

1 (61)

Now we again use the assumption that the noise terms from the two channels are
identically distributed to simplify to

2 2
1 1

2 2 2 2
1

2
1 1 1

2 2
1

1 2

2
1

c c

original
c c

n n

s n s n

n s n

s n

γ γ

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟+ +

≈ ⎜ ⎟
+ ⋅ ⋅⎜ ⎟+⎜ ⎟+⎜ ⎟

⎝ ⎠

∑ ∑
∑ ∑ ∑ ∑

∑ ∑
∑ ∑

1 (62)

so that the correlation due to clipping the magnitude is approximated as

2 2
1 1

2 2 2 2
1

, 2
1 1 1

2 2
1

1 2

2
1

c c

clipping identicalCorrelation
c c

n n

s n s n

n s n

s n

γ

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟+ +

≈ ⎜ ⎟
+ ⋅ ⋅⎜ ⎟+⎜ ⎟+⎜ ⎟

⎝ ⎠

∑ ∑
∑ ∑ ∑ ∑

∑ ∑
∑ ∑

1 . (63)

These equations have a nice form: the original correlation multiplied by a new term that
represents the correlation due to the clipping noise. However, they do not accurately
predict the correlation seen in tests with real data. The reason for this is that both the
numerator and denominator of Equation (59) contain several terms whose magnitude is
large but whose sum is much smaller than any individual term. Errors in approximating
such values are magnified. For one image tested, the individual terms were on the order
of 107, while the sum was on the order of 104. With such a sum, a 1% error in
approximating one of the terms has the potential to cause a 900% error in the sum. While
it is not known which is the most significant cause of the error, we have introduced the
following approximations:

• Assume that the correlation between clipping noise and an image is the same as the
correlation between the two images.

• Assume that the image magnitudes have a Rayleigh distribution (the real images
examined in this study are significantly different from this).

 - 57 -

5.5 The Effect of Adding Independent Gaussian Noise

In our studies to determine why the correlation predictions in the previous subsection are
so inaccurate, we added independent Gaussian noise to the image pairs to confirm that
this type of noise affects the correlation in the expected way. We discovered that the
image pairs from the November 1, 2004 flight test do not behave as expected in the
presence of added Gaussian noise.

One of the reasons for all of this theoretical work is to confirm that the results reported in
Section 1 are valid even though the data used to generate most of those results is suspect.
The correlation in these image pairs is significantly smaller than would be expected given
the actual estimated signal-to-noise ratio. Some amount of work has gone into the
problem of determining why the correlation is so low, but to our knowledge no
conclusions have been reached as of this writing. We include this information in part to
help in that effort.

Given the image and signal models in Section 5.3, the theoretical correlation after adding
noise is

11 11

tot
gaussian original

tot

S
PS S N

NS N N P N
S N

γ += = = ⋅
+ + ++

+

γ (64)

where the capital letters indicate average power in each signal, and is the original
signal-plus-noise power. Notice that the expected correlation is independent of any
assumptions on signal-to-noise ratio and only depends on the original correlation, the
original image power, and the additional noise power.

totP

Figure 22 shows the results of a set of tests where we added independent noise with
Gaussian real and imaginary parts to each image in a pair, then calculated the new
correlation. The different colors of dots represent different amounts of noise added to the
original images, and the blue lines represent the points where the real and theoretical
values match. The left two plots show the results from a set of 22 IFSAR image pairs in
the Buck Well region. The right two plots show the results from 86 of the CCD image
pairs from the November 1, 2004 flight. The top plots show the effective SNR, and the
bottom plots show the correlation.

 - 58 -

-5 0 5 10 15 20 25
-5

0

5

10

15

20

25

Theoretical Effective SNR

E
ffe

ct
iv

e
S

N
R

 a
ch

ie
ve

d
in

 IF
S

A
R

 d
at

a

-10 -5 0 5 10
-10

-5

0

5

10

Theoretical Effective SNR

E
ffe

ct
iv

e
S

N
R

 a
ch

ie
ve

d
in

 C
C

D
 d

at
a

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Theoretical Correlation

C
or

re
la

tio
n

ac
hi

ev
ed

 in
 IF

S
A

R
 d

at
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Theoretical Correlation

C
or

re
la

tio
n

ac
hi

ev
ed

 in
 C

C
D

 d
at

a

Figure 22. Comparing theory to reality for the CCD correlation and the IFSAR correlation.

Notice that the IFSAR data responds to the added noise as expected, but the CCD data
loses correlation more quickly than we would expect. The “tails” extending down from
the left edge of the CCD data are due to cases where registration errors have been
introduced. To be sure that these are the only cases where registration is an issue, we ran
a similar set of tests with the registration held constant for all cases of a particular image.
The results were identical to those in Figure 22 except for the tails.

5.6 Comparing Theory to Reality

We now combine the theoretical results of Sections 5.2 and 5.3 to obtain expected
correlation values corresponding to the values achieved in Sections 2-1. The results of
the comparison are shown in Table 7. For each lossy compression scheme, we show the
predicted correlation, the actual average correlation, and the difference (actual minus
predicted). We recall that we did not derive theoretical correlations for any of the
transform-based methods, so we leave them out of the comparison. We also do not have
a good prediction for correlation in the presence of clipping, so we assume in all cases
that there is no clipping. The predicted values shown in the cases with Lloyd’s quantizer
are actually the values for the square-root uniform quantizer with the same numbers of
bits. We would expect Lloyd’s quantizer to perform better.

 - 59 -

Table 7. Comparing the predicted correlations to the actual correlations for the tests in Sections 2-1

 Predicted Actual Difference
16-bit mag,16-bit phase 1.0000 1.0000 0.0000

8-bit mag^(1/2),12-bit phase 0.9963 0.9966 0.0003
8-bit mag^(1/2),8-bit phase 0.9962 0.9966 0.0003

9-bit mag/2, 4-bit phase 0.9871 0.9898 0.0027
8-bit mag/2, 4-bit phase 0.9871 0.9896 0.0025

8-bit mag^(1/2),6-bit phase 0.9955 0.9960 0.0005
8-bit mag/4, 4-bit phase 0.9869 0.9895 0.0026

8-bit 95% jpeg,8-bit phase -- 0.9474 --
5-bit mag^(1/2),6-bit phase 0.9955 0.9952 -0.0003
6-bit mag^(1/2),6-bit phase 0.9955 0.9955 -0.0000

7-bit mag/8, 4-bit phase 0.9861 0.9880 0.0019
6,6-bit I/Q of FFT -- 0.9931 --

8-bit 90% jpeg,8-bit phase -- 0.9250 --
4-bit mag^(1/2),6-bit phase 0.9955 0.9931 -0.0024
8-bit 80% jpeg,8-bit phase -- 0.8872 --
4-bit mag^(1/3),6-bit phase 0.9964 0.9690 -0.0274
8-bit mag^(1/2),4-bit phase 0.9835 0.9870 0.0035
8-bit 95% jpeg,6-bit phase -- 0.9469 --
6-bit mag^(1/2),4-bit phase 0.9835 0.9865 0.0030
5-bit mag^(1/2),4-bit phase 0.9835 0.9862 0.0027

4,4-bit I/Q FFT, 2 stds -- 0.9404 --
3-bit Lloyd's, 5-bit phase 0.9931 0.9780 -0.0151
6-bit Lloyd's, 3-bit phase 0.9451 0.9594 0.0144
4-bit Lloyd's, 4-bit phase 0.9835 0.9837 0.0002

4,4-bit I/Q FFT, 1 stds -- 0.7883 --
8-bit 90% jpeg,6-bit phase -- 0.9245 --
5-bit Lloyd's, 3-bit phase 0.9451 0.9578 0.0127

4-bit mag^(1/2),4-bit phase 0.9835 0.9841 0.0006
5-bit mag^(1/2),3-bit phase 0.9451 0.9577 0.0126

4,4-bit I/Q FFT, 3 stds -- 0.9690 --
3-bit ln mag,5-bit phase 0.9306 0.9429 0.0123

3-bit mag^(1/4),4-bit phase 0.8706 0.9063 0.0357
3-bit ln mag,4-bit phase 0.9216 0.9361 0.0144

4-bit mag^(1/3),3-bit phase 0.9460 0.9323 -0.0136
3-bit mag^(1/4),5-bit phase 0.8791 0.9130 0.0338
4-bit mag^(1/3),4-bit phase 0.9844 0.9602 -0.0242

4,4-bit I/Q FFT, 4 stds -- 0.9560 --
8-bit 95% jpeg,4-bit phase -- 0.9384 --
8-bit mag^(1/2),2-bit phase 0.7914 0.8499 0.0585
6-bit mag^(1/2),2-bit phase 0.7914 0.8494 0.0580

4,4-bit I/Q of FFT -- 0.9081 --
3-bit ln mag,3-bit phase 0.8857 0.9089 0.0233

3-bit mag^(1/4),2-bit phase 0.7006 0.7799 0.0793
2-bit mag^(1/4),1-bit phase 0.1566 0.5104 0.3539

Notice that the predicted and actual values are fairly close for all cases. In general, the
difference between them increases as the number of bits decreases. This is expected
because our small-value and independent noise assumptions become less valid. Notice
that the 4-bit magnitude, 4-bit phase case with Lloyd’s quantizer is slightly worse than
the predicted value and slightly worse than the corresponding case with the square-root
uniform quantizer. This is one case where multiple performance measures are required –
the uniform quantized case is not usable because of the extreme clipping of any bright
pixels in the magnitude image, but the case with Lloyd’s quantizer has a usable

 - 60 -

magnitude image and only slightly worse correlation. Lloyd’s quantizer is better than the
listed predicted value for those cases with 5 or more bits of magnitude, but worse for
cases with fewer bits. Perhaps this is because the clipping noise introduced by the
uniform quantizer with few bits has less effect on the correlation than the quantization
noise introduced by Lloyd’s quantizer in the same cases. Referring back to Table 6, at 4
bits magnitude, 4 bits phase, Lloyd’s quantizer is slightly worse than the uniform
quantizer for all measures of performance except the RMS of the difference in the
correlation map, which is slightly better. The RMS difference is more strongly affected
by the error the clipping causes around bright points, compared to the other measures
which tend to average out such errors.

 - 61 -

6 Conclusions and Recommendations
This document presented the results of a series of tests examining over 600 CCD image
pairs using 44 different lossy compression schemes. We also derived theoretical
predictions for the correlation for most of these compression schemes. The results
presented here are averages over many different image pairs, so some cases can be
expected to be significantly better or worse. Given all this information, this section gives
recommendations for future CCD projects and for future work on the present topic.

6.1 Recommendations for Limited-Bandwidth CCD Programs

We make the following suggestions for programs which desire to perform CCD and
which have limited image bandwidth:

• Use some form of lossless compression. While we have not done a detailed study on
the relative effectiveness of the various lossless compression schemes, zlib seems to
provide a good balance between simplicity, compression time, and compression ratio.
This library is available in source form and is easily portable (for Tactical IFSAR, it
was compiled for at least Mercury, Solaris, Windows, and Linux).

• For projects which require no loss in CCD performance, use 8-bit square-root of
magnitude and 6-bit phase data.

• For projects which can allow a small degradation in CCD performance, use 8-bit
square-root of magnitude and 4-bit phase data.

• For projects which require an 8-bit pixel at the cost of a larger degradation in CCD
performance, use Lloyd’s quantization scheme with 4 bits on the square root of the
magnitude and use 4-bit phase data. With zlib compression, this scheme is only
slightly smaller than 8-bit square-root of magnitude and 4-bit phase data, but without
lossless compression there is a more significant size difference.

6.2 Recommendations for Future Work on this Topic

• Complete the theoretical analysis: magnitude clipping, transform-based methods, and
Lloyd’s quantizer.

• Try some image pairs with more bright (high reflectivity) stuff in the image. We do
have some corner reflectors and vehicles in these images, which may be good
enough. The biggest difference would probably be that images with a lot of bright
regions would not compress as small in the lossless step.

 - 63 -

7 References
1. Lloyd, S. P., “Least Squares Quantization in PCM”, IEEE Transactions on
Information Theory, Vol. IT-28, No. 2, pp. 129-137, Mar. 1982.

2. Eichel, P, Ives, RW, “Compression of complex-valued SAR images”. IEEE
Tansactions on Image Processing; Oct. 1999; vol.8, no.10, p.1483-7.

3. \\sass4800\dgthomp\matlab\cpackunpack.c

4. http://www.zlib.org

 - 65 -

http://www.zlib.org/

Appendix A A few statistical derivations
A.1 Expectations of a Rayleigh Random Variable

Many of the theoretical formulas for correlation derived in Section 1 include powers of
the image magnitude, which we model as a Rayleigh random variable. We here derive
the expectation of expressions of the form ax where a is positive and x is a Rayleigh-
distributed random variable. The probability density function for such variables is

 ()
2

2 2exp ,0
2

x x
f x

β β
⎛ ⎞−

x= ⋅ ⎜ ⎟
⎝ ⎠

≤ (65)

The desired expectation is then

 ()
2

2 2
0

E exp
2

a a x x
x x

β β

∞ ⎛ ⎞−
= ⋅ ⋅ ⎜ ⎟

⎝ ⎠
∫ dx (66)

We make the substitution

2

22

2

2

x
t

x t

dx dt
t

β

β
β

=

= ⋅

=

 (67)

resulting in

 () ()
() ()

1

2 2
2

0 0

2
E exp 2 exp

2

a
a a

a a
t

x t dt t t
t

β β β
β

+
∞ ∞⋅

dt= ⋅ − ⋅ ⋅ = ⋅ − ⋅∫ ∫ (68)

We note that the integral is in the form of the gamma function,

 (69) () ()1

0

expzz t t d
∞

−Γ = −∫ t

So our expectation can be written in terms of the gamma function as

 () 2E 2
2

a
a a a

x β ⎛ 1⎞= ⋅Γ +⎜
⎝ ⎠

⎟ (70)

 - 67 -

A.2 Expectations of a Uniform Random Variable

Our theoretical correlations require expectations of several functions of a uniform
random variable. For all cases, the uniform random variable we use has a lower limit
equal to the negative of the upper limit. For most cases, these limits are ±0.5. We use
these assumptions to help simplify the derivations. Again, we will find the expectation of
an expression ax where x is now uniformly distributed. The probability density function
is now

 () 1 ,f x xα β
β α

= < <
−

 (71)

Our integral is then

 () ()()
1

E
1

a a
a x x

x
a

ββ

α α
β α β

+

= =
− + −∫ α

 (72)

We simplify at this point by recalling that we have said that β α= − .

 () ()()
() ()

()()

1 11

E
1 1

a aa
a x

x
a a

α

α

α α
2α α α

− + ++ − −
= =

+ − − − +
 (73)

If a is odd, the numerator cancels and the expectation is zero. If a is even, the expression
simplifies to

 () ()() ()
12E

1 2 1

a a
ax

a a

α
α

+

= =
α

+ +
 (74)

A.3 Average Power in Rayleigh Clipping Noise

We now calculate the average power in the noise introduced by clipping the Rayleigh-
distributed magnitude. The clipping noise is repeated here from Equation (57).

 ()
()()

()() ()()
0 2 1

2 1 2 1

r
m

r r
m m

N
N

i

ci i N
N N

scale i i scale

s k
n s

k s s

⎧ ≤ − ⋅⎪= ⎨
⎪ ⋅ − − > − ⋅⎩

scale

N

k
 (75)

The integral here has a different form compared to Equation (66) only by the lower limit.

 () () () ()()
()

2 2
2 2

2 2

2 1

E exp
2

r
mr

Nr NNm r
scale

NNN
ci ci scale

k

x x
n f x n x dx k x

β β

∞ ∞

−∞ − ⋅

⎛ ⎞−
= = ⋅ −⎜ ⎟

⎝ ⎠
∫ ∫ 2 1 dx− (76)

 - 68 -

This simplifies to

 () () ()()
()

2 222 2
2 2

2 1

E exp 2 1 2 2 1
2

r r
m mr r

Nr NNm r
scale

N NN NN N
ci scale scale

k

x x
n k x k

β β

∞

− ⋅

⎛ ⎞−
= ⋅ − − ⋅ ⋅⎜ ⎟

⎝ ⎠
∫ x dx− +

2xp dx

(77)

We rewrite this as

 (78) () () ()2 2 3E eci

a

n b x c x d x e x
∞

= ⋅ + ⋅ + ⋅ ⋅ − ⋅∫

where we define the constants

()
()

()

22

2

2

2

2

2 1

2 1

2 2 1

1

1
2

r
r

r
r

r
mr

N NNm
scale

NN Nm

NNN
scale

a k

k
b

k
c

d

e

β

β

β

β

= − ⋅

⋅ −
=

−
= −

=

=

 (79)

We can integrate the parts of Equation (78) separately.

 () () (2 2exp exp exp
2 2aa

b b
b x ex dx ex ea

e e

∞∞

⋅ ⋅ − = − ⋅ − = ⋅ −∫)2 (80)

 () () (
2

3 2 2
2exp exp exp

2 2a

d a d
d x e x dx ea ea

e e

∞ ⋅
⋅ ⋅ − ⋅ = ⋅ − + ⋅ −

⋅ ⋅∫)2 (81)

 () () (2 2 2 1exp exp erfc
2 2 2a

c a c
c x e x dx ea a e

e e e

π∞ ⋅
⋅ ⋅ − ⋅ = ⋅ − + ⋅

⋅ ⋅∫) (82)

Here erfc represents the complementary error function, or one minus the error function.
We can approximate this function in the cases where its argument is especially large or
small. The small-value approximation is

 () () ()2 2 2 21 1exp exp exp
2 2 2 2 2a

c a c c a c
c x e x dx ea ea

e e e e e 2 e

π π∞ ⋅ ⋅
⋅ ⋅ − ⋅ = ⋅ − + ⋅ − ⋅ − = ⋅

⋅ ⋅ ⋅ ⋅∫ (83)

 - 69 -

The large-value approximation is

 () () (2 2 2
2

1exp exp exp
2 2 2 4a

c a c c
c x e x dx ea ea

e e e a e

π∞ ⋅
⋅ ⋅ − ⋅ = ⋅ − + ⋅ − ⋅ −

⋅ ⋅ ⋅ ⋅∫)2 (84)

Finally, we arrive at the result by combining the terms and simplifying

 ()
()

()

2
2

2

2
2

exp
1

4 2
E

exp
1

2 2

ci

eac d
b d a a e

e e e e
n

ea c d
b c a d a a e

e a e e

π⎧ − ⎛ ⎞⎪ ⋅ + ⋅+ ⋅ +⎜ ⎟⋅ ⋅⎪ ⎝ ⎠= ⎨
−⎪ ⎛ ⎞⋅+ ⋅ + + ⋅ +⎜ ⎟⎪ ⋅ ⋅ ⋅⎝ ⎠⎩

 (85)

If we now insert the values for our constants a, b, c, d, and e, we arrive at

() ()

()() ()

2

22
22 2

2

E 2 2 1

2 1
 2 2 1 exp

2

r
mr

r
mr

r
mr

NNN
ci scale

NNN
N scaleNN

scale

n k

k
k

π β

β
β

= − ⋅ ⋅ ⋅ −

⎛ −⎜+ − + −
⎜ ⎟
⎝ ⎠

⎞
⎟

 (86)

for small values of a e and ()2E cin 0= otherwise. For large values of a e , there is no
clipping, which explains why the clipping noise goes away. Notice that for any pixels
which are clipped, the quantization noise is included in both and . However, for
such cases, the clipping noise dominates the quantization noise, so adding a small amount
of additional quantization noise should have little effect.

cin qin

 - 70 -

DISTRIBUTION
Unlimited Release

1 MS 1330 B. L. Remund 2340
1 MS 0519 B. L. Burns 2340

1 MS 0519 W. H. Hensley 2342
1 MS 0519 T. P. Bielek 2342
1 MS 1330 A. W. Doerry 2342
1 MS 0519 D. W. Harmony 2342
1 MS 0519 J. A. Hollowell 2342
1 MS 0519 S. S. Kawka 2342
1 MS 1330 M. S. Murray 2342
6 MS 0519 D. G. Thompson 2342

1 MS 0529 K. W. Sorensen 2345
1 MS 0529 D. F. Dubbert 2345
1 MS 0529 G. R. Sloan 2345

1 MS 1330 S. M. Becker 2348
1 MS 0519 S. M. Devonshire 2348
1 MS 0519 M. T. Gardner 2348

1 MS 0519 L. M. Wells 2354
1 MS 0519 D. L. Bickel 2354
1 MS 0519 J. T. Cordaro 2354
1 MS 0519 J. M. Delaurentis 2354

1 MS 1207 C. V. Jakowatz, Jr. 5937
1 MS 1207 N. E. Doren 5937
1 MS 1207 P. H. Eichel 5937

1 MS 9018 Central Technical Files 8945-1
2 MS 0899 Technical Library 9616

 DOE ARS DOE NA-22

 - 71 -

	Correlation and Image Compression for Limited-Bandwidth CCD
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	1 Introduction
	2 Data Compression Methods Tested
	2.1 Lossy Data Compression Methods
	2.2 Lossless Data Compression Methods

	3 Compressed CCD Tests
	4 Test Results
	4.1 Subjective Image and CCD Quality
	4.2 Compression Results
	4.3 Timing Benchmark Results
	4.4 CCD Results
	4.4.1 Comparing CCD Implementations
	4.4.2 Comparing Performance Measurements
	4.4.3 Evaluating Lossy Compression Methods
	4.4.4 CCD results versus original correlation

	5 A few Theoretical Notes
	5.1 The Effect of Window Size in Correlation Estimation
	5.2 The Effect of Phase Quantization
	5.2.1 Comparing Theory to Reality

	5.3 The Effect of Magnitude Quantization
	5.3.1 Linear Magnitude Case
	5.3.2 Square Root of Magnitude Case
	5.3.3 Cube Root of Magnitude Case
	5.3.4 Fourth Root of Magnitude Case
	5.3.5 Log of Magnitude Case
	5.3.6 Transform-Based Methods
	5.3.7 Lloyd’s Quantizer

	5.4 Comments on Magnitude Clipping
	5.4.1 Assume Independence
	5.4.2 Assume Identical Correlation

	5.5 The Effect of Adding Independent Gaussian Noise
	5.6 Comparing Theory to Reality

	6 Conclusions and Recommendations
	6.1 Recommendations for Limited-Bandwidth CCD Programs
	6.2 Recommendations for Future Work on this Topic

	7 References
	Appendix A: A few statistical derivations
	A.1 Expectations of a Rayleigh Random Variable
	A.2 Expectations of a Uniform Random Variable
	A.3 Average Power in Rayleigh Clipping Noise

	 DISTRIBUTION

