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ABSTRACT 
As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the 
amount of data stored and transmitted with each image becomes more significant.  This 
document gives the results of a study to determine the effect of lossy compression in the image 
magnitude and phase on Coherent Change Detection (CCD).  We examine 44 lossy compression 
types, plus lossless zlib compression, and test each compression method with over 600 CCD 
image pairs.  We also derive theoretical predictions for the correlation for most of these 
compression schemes, which compare favorably with the experimental results.  We recommend 
image transmission formats for limited-bandwidth programs having various requirements for 
CCD, including programs which cannot allow performance degradation and those which have 
stricter bandwidth requirements at the expense of CCD performance. 
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1 Introduction 
As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the 
amount of data stored and transmitted with each image becomes more significant.  This 
document gives the results of a study to determine the effect of lossy compression in the image 
magnitude and phase on Coherent Change Detection (CCD).  We examine several compression 
types, the primary method being to simply remove bits from the data after taking the Nth root of 
the magnitude.  We also examine the effect on data size of using lossless zlib compression on the 
data resulting from the lossy compression.  
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2 Data Compression Methods Tested 
This section discusses the data compression methods tested in this study.  

2.1 Lossy Data Compression Methods 

This section discusses the lossy data compression methods considered.  Table 1 and Table 2 
provide a summary of the different methods tried, from two different points of view. Table 1 
shows the different trials sorted by relative output size.  For the magnitude data, we perform the 
indicated operation, then take the N least significant bits, where N is the number in the second 
column of the table.  Any values that do not fit into N bits are hard-limited to 2N-1.  For JPEG 
cases, we take the square root of the magnitude and quantize to form 8-bit data, then JPEG-
compress this data with the quality factor indicated.  Those cases where the operation is indicated 
as Lloyd refer to quantization Method I as described in [1] and summarized below.  Those cases 
indicated as FFT refer to quantizing the Fourier Transform of the image instead of the image 
itself, as discussed in [2] and summarized below.   

For FFT cases, we quantize the I and Q components of the image in the frequency domain.  In all 
other cases, the operation only refers to the magnitude data.  The phase data is simply quantized 
to the indicated number of bits, keeping the most-significant bits.   

Unlike the uniform quantization used in all other cases, the cases using Lloyd’s quantizer map 
arbitrary sets of input values into an arbitrary set of output quanta.  The compressor maps all 
input values that lie in the first set to the integer label “0”, the values that lie in the second set to 
the label “1”, and so on.  Only the output quanta and the labels are stored or transmitted with the 
image.  The decompressor then maps each of the labels to the appropriate output quantum.  We 
implemented this quantization scheme on the square root of the magnitude data.  We first 
calculate the optimum input ranges and the corresponding optimum output quanta using Lloyd’s 
Method I, using a histogram of the data as an approximation to the probability distribution 
function.  We then map the input values into the integer labels.  Note that this method requires 
the transmission of the 2Nm quanta (floating-point values) in addition to the image data, where 
Nm is the number of magnitude bits.  We have ignored these few extra data words in our 
calculation of compression ratios.  The process of calculating the input regions and quanta and 
then quantizing the data takes prohibitively long in Matlab but runs fairly fast in C, so we 
implemented this compression scheme in C. 

For the FFT cases, we take the two-dimensional FFT of the complex image to yield the image 
domain.  We assume that the image was a two-dimensional FFT of some windowed phase 
histories.  While this is not entirely accurate for images produced by OSA, it makes a good 
approximation.  We multiply by the inverse of a Taylor window in both range and azimuth to 
obtain a data set with a fairly uniform distribution in I and Q.  We then quantize the I and Q parts 
of this data.  We tried cases with uniform quantization whose limits were defined by the 
maximum absolute value of the data (“full range”) and cases where the limits were defined by 1, 
2, 3, and 4 standard deviations of the data.  Since the I and Q parts are nearly identically 
distributed and uniform, we only did cases where the I and Q parts are quantized to the same 
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number of bits.  The decompressor combines I and Q parts to make complex data, multiplies by a 
Taylor window in two dimensions, then takes the two-dimensional inverse FFT. 

Table 1.  The lossy data compression methods used in this study and the relative output size. 

Operation # Magnitude Bits kept # Phase bits kept Relative size 
None 16 16 1 
Square root 8 12 0.625 
Square root 8 8 0.5 
Square root 8 6 0.438 
Divide by 2 9 4 0.406 
Divide by 2 8 4 0.375 
Divide by 4 8 4 0.375 
Square root 8 4 0.375 
FFT, full range 6 6 0.375 
Square root 6 6 0.375 
Divide by 8 7 4 0.344 
Square root 5 6 0.344 
Square root 8 2 0.313 
Square root 6 4 0.313 
Square root 4 6 0.313 
Third root 4 6 0.313 
95% JPEG 8 8 0.30 
Lloyd 6 3 0.281 
Square root 5 4 0.281 
90% JPEG 8 8 0.28 
80% JPEG 8 8 0.27 
Square root 6 2 0.25 
Lloyd 5 3 0.25 
Square root 5 3 0.25 
FFT, 1 std 4 4 0.25 
FFT, 2 stds 4 4 0.25 
FFT, 3 stds 4 4 0.25 
FFT, 4 stds 4 4 0.25 
FFT, full range 4 4 0.25 
Lloyd 4 4 0.25 
Square root 4 4 0.25 
Third root 4 4 0.25 
Fourth root 3 5 0.25 
Lloyd 3 5 0.25 
Natural log 3 5 0.25 
95% JPEG 8 6 0.24 
90% JPEG 8 6 0.22 
Third root 4 3 0.219 
Fourth root 3 4 0.219 
Natural Log 3 4 0.219 
Natural log 3 3 0.188 
95% JPEG 8 4 0.178 
Fourth root 3 2 0.156 
Fourth root 2 1 0.094 
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Figure 1 shows histograms of a typical clutter image.  Urban images would be expected to be 
approximately the same but with bright pixels occurring more often.  Note that the most 
significant bits of the magnitude are not used very often, so chopping off a few bits on this end 
will have little effect.  Examining these plots closely, we can see two issues in lowering the bit-
count of our image representation:  quantization and clipping.  In almost any operation where we 
reduce the number of bits used to store a number, we introduce quantization error.  If we start 
with a 16-bit number, we know that its square root can be stored in 8 bits, but with the loss of a 
fractional part, or in other words, with quantization error introduced.  The other issue is clipping–
to store a number in N bits, we must limit all values greater than or equal to 2N by setting them 
equal to 2N-1.  If we desire to store the square root of our 16-bit magnitude in only 4 bits, we can 
see from the histogram that ~1.0% of the pixels in this particular image are greater than 2N-1.  At 
this point, we see this as a reasonable trade-off to consider making to reduce the data rate. 

As shown in the last plot in Figure 1, the phase has a uniform distribution across the entire 16-bit 
domain (representing 0 to 2π).  This tells us that we can get the best gain in data rate reduction 
for the quality degradation simply by dropping the least significant bits.  We will see another 
significant quality of the phase in the following section:  since it is uniformly distributed across 
its entire domain, it rarely sees gains due to lossless compression when it is compressed by itself. 
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Figure 1.  Histograms of a typical clutter image.   

Table 2 shows a matrix view of the lossy compression methods in this study.  The top row shows 
the number of phase bits.  The leftmost two columns show the number of magnitude bits and the 
nonlinear operation performed.  The operation column indicates the power of the root for a root 
operation, “Log” for the natural log operation, the quality factor (indicated by a “%” symbol) for 
JPEG compression, “Lloyd” for Lloyd’s quantizer, and “FFT” for images quantized in the 
frequency domain.  We then indicate in matrix form which combinations were tested.  The table 
also includes the results of the tests at the highest level, indicating those combinations which 
resulted in no noticeable degradation (“Good”), those which resulted in Change Detection not 
working at all (“Bad”), and those with significant degradation that may still be useful for various 
applications (“X”).  The details of the results are shown in later sections. 
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Table 2.  A matrix view of the lossy compression methods examined in this study.  Entries indicated “good” 
have no noticeable degradation; those marked “Bad” have essentially no information remaining, and those 

marked “X” have some significant degradation. 

Phase 
bits ⇒ 

Mag 
bits⇓ 

⇓Op 

16 12 8 6 5 4 3 2 1 

16 1 Good         
8  Good Good Good  X  Bad  
6    X  X  Bad  
5    X  X X   
4 

2 

   X  X    
4 3    X  X X   
3     X X  Bad  
2 4         Bad 
8 80%   X       
8 90%   X X      
8 95%   X X  X    
6    X      
4 FFT      X    
6       X   
5       X   
4      X    
3 

Lloyd 

    X     
3 Log     X X X   
9      X    
8 /2      X    
8 /4      X    
7 /8      X    

 

2.2 Lossless Data Compression Methods 

In addition to the lossy data compression discussed above, these tests examined the effects of 
lossless data packing and compression methods on the resulting size and on CPU requirements.  
We first pack the bits so that all bits of each byte are used, then we further compress them using 
the lossless zlib compression algorithm. 

For these tests, we wrote a simple C function that can be called from Matlab that packs data with 
an arbitrary number of bits (anything from 1 bit per item to 32 bits per item) into a stream of 
standard 8-bit bytes, and a corresponding function that unpacks the data [3].  In addition to 
eliminating unused bits, these functions put the data into a near-optimum order giving maximum 
compression in the following step with a simple packing scheme.  In particular, any whole-byte 
quantities are packed separately from the remaining partial-byte quantities.  For example, if we 
are packing 12-bit data, all the least-significant bytes are put together first, followed by the most-
significant 4 bits of each item, packed with multiple items in each byte.  If we are packing 32-bit 
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data (e.g. the original GFF format), then we store the least-significant phase byte of all pixels, 
then the most-significant phase byte of all pixels, then the least-significant magnitude byte of all 
pixels, then the most-significant magnitude byte of all pixels.  Such ordering significantly 
increases the compression attained by zlib in the following step.  We tested the compression 
using these packing functions in two different ways.  For one set of tests, we pack and store all 
the magnitude bits, then pack and store all the phase bits.  For the other set of tests, we combine 
magnitude and phase into one item, and pack and store this aggregate item all together.   

The packed data is then compressed using the zlib compression library [4]. This library includes 
compression schemes used by the Unix command gzip and by Windows .zip file software.  This 
step reduces the data size by a factor of about 0.75-0.8 on average, depending on image contents.  
Note that the choice of zlib compression is near-optimal in the same sense as the bit-packing 
scheme described above:  other schemes may result in better compression ratios but are not as 
simple to implement, and may take more CPU time.   

For those cases where the magnitude is JPEG compressed, there is no point in attempting further 
compression on the magnitude.  Since the phase is uniformly distributed, it can achieve very 
little if any compression by itself.  Thus, for the JPEG cases, we do not attempt any lossless 
compression. 
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3 Compressed CCD Tests  
We tested a total of 633 image pairs from two different flight campaigns.  The majority of the 
image pairs (558 pairs) came from a single flight on November 1, 2004.  During this flight, nine 
circle passes were flown around two sites while people and vehicles moved about on the ground.  
In each pass, the radar collected 31 images suitable for CCD processing.  The first six passes 
imaged the first site.  This allows 15 different combinations of passes per image at this site.  The 
last three passes imaged a second nearby site, allowing three different combinations of passes per 
image.   

The remainder of the image pairs (75 pairs) came from a series of three flights, on November 17 
and 21, 2004 and January 7, 2005.  Some of the pairs were within a single flight and others 
spanned flights.  There was significant rain in the Albuquerque area between each of these pairs 
of flights, so any of the pairs which span flights had relatively poor CCD results.  Part of the 
purpose of including these image pairs is to check the similarities and differences between the 
behavior of highly correlated image pairs versus less-correlated image pairs in the presence of 
lossy compression.   

For some of this data, we ran two different CCD processors.  The first was the 
GEARSDriver.exe software provided by GA.  This is a command-line CCD processor with a 
processing engine similar to that in CLAW.  The input is in the form of Lynx Image Files 
(.limg), and the output is TIFF files (.tif), scaled so that a pixel value of 255 represents a 
correlation of 1.  We are not privy to the source code for this processor and thus do not know and 
cannot change the algorithms or parameters used.  This processor was used to process all of the 
pairs described above.  The second CCD processor was a Matlab script written by Armin Doerry 
and processed only a subset of the 558 pairs from the November 1 flight.  This script takes in two 
complex floating-point matrices and corresponding header structures, and creates a floating-point 
matrix as the output CCD product.  The registration is done using Matlab functions provided as 
part of the Image Processing Toolbox.  The GEARSDriver showed registration problems much 
less often than the simple Matlab script.   

Both CCD processors had a few cases where the correlation went up as the images were 
degraded.  Since we expect degradation in the images to produce degradation in the CCD 
product, we threw out all such cases, attributing them to bad registration in the un-degraded case.  
We also threw out cases where the registration shifted the images so much that the resulting 
CCD image was smaller in either dimension than 1600 pixels.  This was both for convenience 
(we chose a 1600x1600-pixel region of each image to analyze) and because cases where the 
images were shifted more than this are likely to have inaccurate registration.  Finally, we threw 
out cases where there were no 30x30 blocks whose minimum correlation was greater than 0.7 
(since this is required for our measure of contrast between bright and dark pixels; see below).  
From the November 1, 2004 data set, 17 pairs were thrown out because of increasing correlation.  
22 pairs were thrown out because there were no blocks with minimum correlation greater than 
0.7, and 519 pairs were used. 

We need a criterion or set of criteria for determining whether CCD still works given a particular 
method of lossy compression.  The ideal criterion would simply be the ability to detect changes.  
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This is difficult to measure directly, since we have no a priori knowledge of which pixels contain 
changes and which do not.  Therefore, we measured several different quantities as 
approximations to the ideal criterion.  Perhaps the best picture of the performance of a CCD 
algorithm in the presence of lossy compression can be obtained by examining several or all of 
these parameters; therefore, we describe and present the data for all of them in this document.   

The first measure of CCD performance is simply to calculate the average correlation across the 
image.  While this is not especially useful for comparing images because of the many factors 
which go into correlation measurements (like actual changes in the scene, thermal noise, 
navigation errors, etc.), it is more interesting if we compare the average correlation for a 
degraded image pair to the average correlation for the original un-degraded version of the same 
CCD product.  The correlation in a degraded image pair divided by the correlation in the original 
image pair should be the correlation due to lossy compression, as shown by the following 
equations, using the typical model for correlation. 

 ...original temporal thermal geometryγ γ γ γ= ⋅ ⋅ ⋅  (1) 

 ...compressed compression temporal thermal geometry compression originalγ γ γ γ γ γ γ= ⋅ ⋅ ⋅ ⋅ = ⋅  (2) 

In the typical CCD problem, the value to be derived is temporalγ , the correlation due to changes in 
the scene over time.  For our current purposes, we desire to find the reduction in correlation due 
to the compression, or  

 compressed
compression

original

γ
γ

γ
= . (3) 

We examine both the compression itself and its equivalent SNR, calculated as  

 , 1010 log
1equivalentSNR ρ
γ
γ

⎛ ⎞
= ⋅ ⎜ ⎟−⎝ ⎠

. (4) 

In order to calculate the equivalent SNR degradation due to the lossy compression, we apply 
Equation (4) to the full correlation, then subtract the values for the degraded CCD products from 
those for the original CCD products.  

The second measure of CCD performance is to calculate the average correlation across those 
regions of the image with high correlation in the original CCD product.  It is not a particularly 
bad thing if the dark regions (indicating change) of a CCD product get darker (more strongly 
indicating change), so we desire to leave them out of the calculation.  In calculating this 
parameter, we divide the CCD image into 30x30-pixel blocks, and find all those blocks whose 
minimum correlation is greater than 0.7 in the original CCD product.  We find the average 
correlation over these same blocks in the degraded CCD product.  Again, we examine this 
parameter in linear correlation space relative to the original value, and as an equivalent SNR 
degradation. 
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The third measure of CCD performance is to calculate the difference in dB between the 
equivalent SNR of the average bright pixel and the average dark pixel.  For this calculation, 
bright pixels are defined as in the previous paragraph as those 30x30-pixel blocks whose 
minimum correlation in the original CCD image is greater than 0.7.  Dark pixels are defined as 
those 30x30-pixel blocks whose maximum correlation in the original CCD image is less than 0.3.  
If the dark pixels really are caused by changes in the scene as we assume, then we desire to 
maximize the difference between the bright and dark pixels so that we can easily pick out the 
dark ones.   

The fourth measure of CCD performance is the RMS of the difference in pixel values between 
the original and degraded CCD images.  This measurement is more sensitive to changes in the 
individual pixel values, compared to the above three measures which examine changes in 
averages over relatively large numbers of pixels.   
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4 Test Results 
This section examines in detail the results of the tests described above.   

4.1 Subjective Image and CCD Quality  

In addition to objectively measuring the CCD results with the degraded images, we examined the 
images for subjective viewing quality.  Both the degraded magnitude image and the degraded 
CCD result were examined qualitatively.   

To check the magnitude image quality, we convert the quantized values back to magnitude 
(undoing the non-linear operations performed, but not undoing the lossy effects of quantization 
or JPEG compression), then take the square root to obtain a quarter-power image.  We multiply 
the resulting value by 8, and then use it to index a linear grayscale look-up table.  This is similar 
to one of the common ways of displaying the GFF images: to take the square root of the original 
16-bit magnitude data, and then multiply by 8 to give an 8-bit grayscale index.  We then save 
these images as 100%-quality JPEGs, since this is a convenient image format known to preserve 
image appearance fairly well, as the human eye can measure it.  Note that only the operations 
and number of bits stored for the magnitude part of the image affect this result, since the phase is 
thrown away in creating the magnitude image. 

Not surprisingly, we could see no visible difference between the original image and any of the 
images where the operation was a square root and at least 5 magnitude bits were saved.  The net 
effect of all the operations performed in these cases was the same as for the original image.  
Multiplying the quarter-power data by 8 and then limiting the resulting values to fit into 8-bit 
quantities is equivalent to limiting the original quarter-power data to 5 bits.  Quantizing the 
square root of the magnitude is done in either case.   

Most of the cases where we took a different operation than the square root and/or kept fewer than 
5 bits look very similar to the original image.  When rapidly changing from one case to another 
on the computer screen, the eye catches the changes so that it is obvious that the two images are 
not identical.  However, it is hard to discern any difference by looking at the original image next 
to the degraded image.  Of those cases examined in this study, the only exceptions to this 
statement are the 4-bit square-root case, and the 2-bit fourth-root case.  In both of these cases, too 
few bits are kept to allow the preservation of dynamic range in the image.  Referring back to the 
histograms in Figure 1, it is the presence of a few bright points in the image that the eye sees as 
contrast.  With the square-root case, four bits limits the data to so that not all of the primary 
hump is represented, and none of the upper tail.  The image looks very gray and uninteresting.  If 
we scale the image so that we get some bright points, then too much of the histogram becomes 
bright as well, and the image is washed out. 

A few sample cases of a SAR image of Sandia’s radar calibration range are shown in Figure 2.  
Since the images are displayed as 5-bit square-root of magnitude images, none of the square-root 
cases with 5 or more bits is shown.  First we see the original image, with three corner reflectors 
visible.  Next is the 4-bit square-root of magnitude image.  Notice the dim corner reflectors.  If 
we had chosen a more interesting scene, we would notice that all image features are similarly 
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dim.  The bottom row shows 4-bit cube root of magnitude and 3-bit natural log of magnitude.  
For the eye, it is difficult to detect any differences between these images and the original. 
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(a) (b) 

(c) (d) 
  

Figure 2.  Sample SAR image showing degradation: ( original, 16-bit magnitude image (displayed as 5-bit 
square root) (b) 4-bit square-root of magnitude, (c) 4-bit cube root of magnitude, (d) 3-bit natural log of 

magnitude. 

a) 
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s discussed above, most of the CCD processing for this study was done by the GEARSDriver 
ftware provided by GA.  The CCD output products produced by this software are in TIFF 

 for the qua

In general, the square root operation produces a CCD product that better approximates the 
original than other operations.  Those cases with 8-bit square root of magnitude data and 6 bi
more of phase data have performance nearly indistinguishable from the original.  Those
using the square root of magnitude with at least 4 bits of magnitude data and at least 4 bits o
phase data are only slightly darker on the whole, but bright points tend to lose correlation.   

Particularly among the cases with 8 total bits, the performance seems to be optimized by 
balancing the number of bits between phase and magnitude.  In all cases where significant 
clipping occurs, the correlation on and around bright points in the image (those affected by 
clipping) degrades noticeably.  All trials with 2 bits of phase data or fewer are significantl
degraded (enough that they are marked as “bad” in Table 2) and should not be used for CCD

Figure 3 shows a few samples of the CCD product corresponding to the image in Figure 2.  F
this case, we show the original product, the 8-bit square-root of magnitude and 6-bit phase cas
(the product this paper recommends as best compression with performance equal to the origina
and two cases with 8 total bits.  Notice that with 4 bits of square-root of magnitude and 4 bits of 
phase, the average correlation remains high, but the correlation around bright points is noticeably
lower, due to the magnitude limiting seen above in the SAR images. 
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(a) (b) 

(c) (d)
Figure 3.  Sample CCD images from Sandia’s radar calibration range: (a) original 16-bit magnitude, 16-bit 
phase, (b) 8-bit square root of magnitude, 6-bit phase, (c) 4-bit square root of magnitude, 4-bit phase, and 

(d) 4-bit cube root of magnitude, 4-bit phase 
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4.2 Compression Results 

This section discusses the amount of compression obtained from the combination of the various 
lossy compression methods and lossless zlib compression.  Table 3 summarizes this data.  For 
most cases, the lossy compression ratio given is simply the number of magnitude bits plus the 
number of phase bits in the degraded product, divided by 32, the total number of bits in the initial 
product.  For the JPEG cases, the lossy compression ratio is the number of phase bits in the 
degraded product divided by the number of phase bits in the original, plus the ratio of bytes in 
the magnitude JPEG to the bytes in the original magnitude data.  The two columns labeled as the 
zlib compression ratio give the lossless compression ratio for the data with the two different 
types of data packing.  This ratio is 1 for all JPEG cases because zlib is not used in these cases.  
As discussed in Section 2.2, the one packing method involves combining the integers 
representing magnitude with the integers representing phase before packing the data into 8-byte 
quantities.  The combination is of the form  

 . (5) ,2 bits magnitudeNmag phase+ ⋅

This method is indicated as “Mag & Phase together” in the table.  The second method is to pack 
all the magnitude data into 8-byte quantities and pack all the phase data into 8-byte quantities, 
then concatenate the resulting arrays together.  This is indicated as “Mag & Phase separate” in 
the table.  On average, the case with phase and magnitude data separate compresses about 1% 
better than the case with the two items packed together, meaning that the compression ratio is 
better by 0.01.  However, we see that for many cases the two numbers are identical or nearly so.  
For cases with 8-bit magnitude data, the packed data from the two methods is essentially if not 
exactly the same, so the compression ratios must of necessity be similar. 

Table 3.  Compression ratios with the two methods of packing data. 

 Lossy 
Compression 

ratio      

Zlib 
compression 
ratio / Phase, 
mag together 

Total 
compression 
ratio / Phase, 
mag together 

Zlib 
compression 
ratio / Phase, 
mag separate 

Total 
compression 
ratio / Phase, 
mag separate 

16-bit mag,16-bit phase 1.00 0.53 0.53 0.77 0.77 
8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 0.81 0.51 
8-bit mag^(1/2),8-bit phase 0.50 0.78 0.39 0.78 0.39 

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.87 0.35 
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.92 0.34 

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 0.75 0.33 
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.87 0.33 

8-bit 95% jpeg,8-bit phase 0.32 1.00 0.32 1.00 0.32 
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 0.98 0.34 
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 0.92 0.34 

7-bit mag/8, 4-bit phase 0.34 0.86 0.30 0.92 0.32 
6,6-bit I/Q of FFT 0.38 0.78 0.29 0.91 0.34 

8-bit 90% jpeg,8-bit phase 0.29 1.00 0.29 1.00 0.29 
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 0.91 0.28 
8-bit 80% jpeg,8-bit phase 0.27 1.00 0.27 1.00 0.27 
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 0.85 0.27 
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 0.69 0.26 
8-bit 95% jpeg,6-bit phase 0.26 1.00 0.26 1.00 0.26 
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 0.88 0.28 
5-bit mag^(1/2),4-bit phase 0.28 0.90 0.25 0.95 0.27 

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.96 0.24 
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3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.97 0.24 
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.92 0.26 
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.91 0.23 

4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.93 0.23 
8-bit 90% jpeg,6-bit phase 0.23 1.00 0.23 1.00 0.23 
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 0.96 0.24 

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 0.87 0.22 
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 0.95 0.24 

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.87 0.22 
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.90 0.22 

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.82 0.18 
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.86 0.19 

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.77 0.17 
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.86 0.22 
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.20 0.79 0.20 

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.20 0.78 0.19 
8-bit 95% jpeg,4-bit phase 0.19 1.00 0.19 1.00 0.19 
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 0.62 0.19 
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 0.85 0.21 

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.69 0.17 
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.85 0.16 

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.74 0.12 
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 0.50 0.05 

 

4.3 Timing Benchmark Results 

In addition to testing the CCD results obtained from images degraded by lossy compression, we 
ran some rough benchmarks to gauge how long the conversions, bit-packing, and compression 
take.  These benchmarks were run on a Linux machine with dual 2.4 GHz Pentium-4 
hyperthreaded processors.  Since we did not optimize the code we are testing in these 
benchmarks, the results simply give a rough idea of the length of the various tasks. 

Figure 4 compares a few parameters between the two byte-packing schemes described in Section 
2.2.  All parameters are average values plotted versus the lossy compression ratio.  The data 
shown for the zlib compression ratio was shown in table form in the previous section and appears 
again here.  The mean compression time is the time to form the JPEG image (in Matlab) for 
those cases using that compression method, and the lossless zlib compression time (in C) for all 
other cases.  The mean packing time is the time it takes to combine the N-bit quantities into 
properly ordered sets of 8-bit bytes.  For JPEG cases, this only involves the phase, and thus there 
is no difference between the two methods.  For all other cases, the “Mag & phase separate” 
method requires two calls to a C function that packs the data into 8-bit quantities while the “Mag 
& Phase together” method requires one such call.  The extra function call does not double the 
execution time since the function has less data to operate on each time, but it does increase the 
total execution time by an average of 0.4 seconds.  The total average processing time to prepare 
the data for a low-bandwidth link is about 0.43 seconds smaller for the “Mag & Phase together” 
case.  For this reason and because this method is simpler conceptually (especially for images 
using a total of 8 bits per pixel), for the rest of this document we assume that we will use the 
“Mag & Phase together” method.  The compression data shown in Section 4.4 includes this 
assumption. 
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Figure 4.  A few parameters comparing the two byte-packing methods.  The legend in the bottom-right plot 

applies to all four plots. 

Table 4 summarizes the timing benchmarks for all the lossy compression schemes tested.  Note 
that there is a bit of a mix between C code and Matlab code and that no particular effort was 
made to optimize the execution speed of any of the functions tested.  The column indicated as 
“bit-chopping time” refers to performing the indicated root or other operation on the original 
magnitude data and truncating this result and the phase to the indicated number of bits.  This 
takes significantly longer for cube roots and fourth roots in Matlab.  A program desiring to use 
one of these compression schemes would benefit from some type of lookup table or other 
approximation to these operations.  Since we will truncate to an integer after the operation, it 
only needs to be accurate to the nearest integer anyway.  The bit-chopping time for 16-bit mag, 
16-bit phase (the original data) is artificially inflated because this test used the same code for all 
cases.  The code could easily be optimized by removing such terms as  where N=16.  We 
chose those areas of the test to use C code instead of Matlab scripts based on quick tests 
indicating that there would be a significant speedup.  For example, we ran just a few trials of 
Lloyd’s quantizer in Matlab and C and determined that C was many times faster.  However, a 
similar set of trials on the cases using the square root and the third root indicated that the 
difference was insignificant.  If we choose not to use zlib compression, then we would 
recommend a simpler and faster bit-packing scheme, especially for cases with multiples of 8 
total bits. 

16 N2 / 2

We can see a few interesting features in this data.  The FFT-based compression schemes take the 
longest by far.  My implementation of Lloyd’s quantizer is much faster for small numbers of bits 
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than for large numbers.  As mentioned above, this implementation of the third-root and fourth-
root schemes is much slower than the square-root schemes, but this difference could probably be 
eliminated in an optimized system.  The zlib compression for 16-bit magnitude, 16-bit phase 
takes an extremely long time in some cases, distorting the mean.  It is unknown why this happens 
but we have repeated this test several times with similar results.  The most interesting point 
shown in this table is that the FFT-based methods probably take too long to be useful 
operationally, unless they give a much better performance than the other methods. 

Table 4.  A summary of the timing benchmarks. 

 Lossy 
compression 

ratio 

Zlib 
compression 

ratio 

Total 
compression 

ratio 

Mean 
compression 

time * 

Mean packing 
time ** 

Mean bit-
chopping time 

*** 

Mean total 
processing 

time 
16-bit mag,16-bit phase 1.00 0.53 0.53 31.31 0.89 0.92 33.12 

8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 1.64 1.03 2.80 5.47 
8-bit mag^(1/2),8-bit phase 0.50 0.78 0.39 1.50 0.99 2.81 5.30 

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.82 0.81 1.13 2.75 
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.82 0.81 1.11 2.74 

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 1.39 1.01 2.80 5.20 
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.74 0.81 1.09 2.64 

8-bit 95% jpeg,8-bit phase 0.32 1.00 0.32 1.36 0.76 1.75 3.87 
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 1.35 1.00 2.83 5.17 
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 1.41 0.98 2.81 5.20 

7-bit mag/8, 4-bit phase 0.34 0.86 0.30 0.84 0.80 1.08 2.73 
6,6-bit I/Q of FFT 0.38 0.78 0.29 1.20 0.96 10.41 12.58 

8-bit 90% jpeg,8-bit phase 0.29 1.00 0.29 1.46 0.85 1.87 4.18 
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 1.14 0.97 2.93 5.04 
8-bit 80% jpeg,8-bit phase 0.27 1.00 0.27 1.41 0.85 1.85 4.10 
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 1.38 1.00 5.28 7.66 
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 1.37 1.04 2.90 5.31 
8-bit 95% jpeg,6-bit phase 0.26 1.00 0.26 1.52 0.86 1.91 4.29 
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 1.28 0.99 2.82 5.08 
5-bit mag^(1/2),4-bit phase 0.28 0.90 0.25 1.21 1.00 2.83 5.03 

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.58 0.94 10.76 12.28 
3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.60 0.91 1.26 2.76 
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.98 0.95 6.55 8.48 
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.70 0.92 1.61 3.23 

4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.66 0.93 11.20 12.79 
8-bit 90% jpeg,6-bit phase 0.23 1.00 0.23 1.46 0.85 1.86 4.18 
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 1.02 0.93 3.05 5.00 

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 1.01 0.97 2.93 4.91 
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 1.14 0.99 2.82 4.95 

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.66 0.94 10.66 12.25 
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.77 0.97 2.57 4.30 

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.60 0.99 5.32 6.91 
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.58 0.99 2.58 4.15 

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.62 1.00 5.25 6.88 
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.81 0.98 5.30 7.09 
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.20 1.29 0.98 5.28 7.55 

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.20 0.77 0.94 10.63 12.34 
8-bit 95% jpeg,4-bit phase 0.19 1.00 0.19 1.55 0.89 1.97 4.41 
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 1.24 1.08 2.90 5.23 
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 1.10 1.00 2.83 4.94 

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.97 0.94 10.43 12.33 
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.56 1.00 2.58 4.13 

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.47 1.03 5.31 6.81 
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 2.75 1.05 5.59 9.40 

  * JPEG in Matlab, zlib in C    ** in C    *** in Matlab, except Lloyd’s and FFT methods in C 
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4.4 CCD Results 

This section presents the CCD results.  The first two subsections examine the data from the point 
of view of comparing the two CCD implementations and the four measures of CCD performance 
discussed in Section 1, and how each behaves in the presence of degraded imagery.  The next 
subsection examines the data from the point of view of evaluating the usefulness of the various 
lossy compression schemes for images to be used in CCD.  The last subsection examines the data 
from the second set of flights to investigate the behavior of less-correlated image pairs. 

4.4.1 Comparing CCD Implementations 

We ran both CCD processor implementations with 12 different lossy compression schemes and 
106 image pairs from the November 1 data set.  Both processors occasionally had issues where 
the correlation increased as the images were degraded – the Matlab code saw this occur 25 times, 
and the C code only twice.  All of these cases have been thrown out.  The data shown in the 
following two figures comes from the remaining 79 image pairs.  Note that after these 106 image 
pairs were processed as a representative set from both processors, we used only the C-code CCD 
processor for the remainder of the images because it runs much more quickly. 

Figure 5 plots the mean correlation in the Matlab output versus the mean correlation in the C 
code output.  The different colors represent the twelve different lossy compression schemes 
included in this test.  We see that most of the cases are roughly scattered about the line where the 
two results are equal.  There is one set of dots far to the left that represent an image pair which 
was not properly registered by GA’s code where the Matlab code was successful.   
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Figure 5.  A comparison of the mean correlation from GA’s GEARSDriver code and Armin’s Matlab code. 

Figure 6 shows the same data but with each measurement relative to the un-degraded version.  
Now, for nearly all cases, the measurements are clustered more closely about the line where the 
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two results are equal.  For the two worst compression schemes (green and red dots), the dots that 
were far to the left in the previous plot now fall a good distance to the right.  The worst 
compression scheme (red dots) also has many cases where the Matlab code is significantly worse 
than GA’s code.  However, for all cases where the CCD processing can be considered successful, 
the relative performance of the two implementations was indistinguishable.  Thus, we postulate 
that the results discussed in Section 4.4.3 can be applied to other CCD processors with 
confidence that the performance will be similar if not identical. 
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Figure 6.  A comparison of the mean correlation from GA’s GEARSDriver code and Armin’s Matlab code, 

each measured relative to the original GFF image in the same processor. 

4.4.2 Comparing Performance Measurements 

This section compares the four performance measurements described in Section 1.  In these 
comparisons, we show only those lossy compression schemes not indicated as “Bad” in Table 2.  
Each plot includes 519 image pairs.  The various colors of dots indicate the different 
compression schemes, although the colors are repeated since we use only 7 colors for all of the 
compression schemes tested.  The main reason to show this data is to show that the four different 
measures of performance are not entirely independent and that we can probably use any of them 
in determining which lossy compression schemes are valid for a particular application. 

Figure 7 compares the total correlation averaged over only the bright regions of the image with 
the total correlation averaged over the entire image.  As mentioned in Section 1, bright regions 
are defined as those 30x30-pixel regions whose minimum correlation in the original CCD 
product is greater than 0.7.  Note that this does not refer to bright radar return but bright CCD 
product.  As would be expected, the correlation averaged over the bright regions is greater than 
the average over the entire image, except for one case which may indicate bad registration.  
Now, if we take the same two measurements relative to the measurement for the original CCD 
product, then they align much more closely.  This is shown in Figure 8.  While there may be a 
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few more values above the unity line than below it, these results in general are very close to 
equal. 

 
Figure 7.  The total correlation, averaged over the entire image vs. averaged over only bright regions.  The 

solid line shows where the two values are equal. 

 
Figure 8.  The correlation relative to the original GFF, averaged over the entire image vs. averaged over only 

bright regions. The solid line shows where the two values are equal. 

Now we convert the total correlation to its SNR equivalent.  Figure 9 compares the mean SNR 
equivalent over bright regions to the mean over the entire CCD image.  Figure 10 makes a 
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similar comparison but with all values relative to the original un-degraded CCD product.  Note 
that in both cases the solid line is where the mean over bright regions is 1.5 times the mean over 
the entire image.  In Figure 9, the data fall roughly around this line, and in Figure 10 they cluster 
more closely around it.  Figure 11 shows the difference of 1.5 times the mean over the entire 
image minus the mean over the bright regions.  From this, we can see that there is significant 
variation in the difference between these two measurements.  However, on average we can 
expect that the ratio between them is approximately 1.5.   

 
Figure 9.  SNR equivalent to total correlation, averaged over the entire image vs. averaged over only bright 

regions. The solid line is where the mean over bright regions is 1.5 times the mean over the entire image. 
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Figure 10. SNR equivalent to total correlation relative to original GFF, averaged over the entire image vs. 

averaged over only bright regions.  The solid line is where the mean over bright regions is 1.5 times the mean 
over the entire image. 

 
Figure 11.  SNR equivalent to total correlation relative to original GFF, difference of 1.5 times the mean over 

entire image minus the mean over bright regions. 

Figure 12 compares the loss of equivalent SNR in the bright regions to the loss of contrast 
between bright and dark regions.  Recall that the contrast between bright and dark regions is 
simply measured as the difference in equivalent SNR between the two regions.  Thus this plot 
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compares something of the form  to something of the form ( )a bΔ − ( )aΔ , where represents the 
same thing in both cases.  Note that the solid line is where loss of bright-dark contrast is half the 
loss of SNR in bright regions.  

a

Figure 13 shows the difference between the loss of equivalent 
SNR and two times the loss of contrast.  Again, significant variation remains, but we can 
conclude that on average the loss in contrast is approximately half the loss in equivalent SNR in 
the bright regions.  This is good news – since the dark regions are getting darker while the bright 
regions are getting darker, the ability to detect changes does not degrade as quickly as the 
equivalent SNR alone would suggest. 

 
Figure 12.  Loss of contrast between bright and dark regions vs. loss of SNR in the bright regions.  The solid 

line is where loss of bright-dark contrast is half the loss of SNR in bright regions. 
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Figure 13.  Loss of SNR in bright regions minus two times the loss of contrast between bright and dark 

regions. 

Figure 14 compares the RMS of the difference between the two CCD images to the total 
correlation over bright regions. The solid line is where the RMS correlation difference is equal to 
the loss in correlation due to compression.  The RMS correlation difference is well above the line 
for those cases with high average correlation. This seems to indicate that when we first begin 
degrading the images, the CCD product begins to change but its average does not.  This could be 
similar to SAR images from slightly different viewing angles: the speckle changes but average 
RCS values and the bulk of the scene stay the same.  This type of change was also observed in 
the qualitative measurements described in Section 4.1.  It appears that the RMS correlation 
difference is lower than the loss in total correlation for the lowest-correlation cases to the left of 
the plot, although we don’t go out far enough to be certain that this is the trend.  Figure 15 shows 
the difference between the RMS of the correlation difference and the loss in correlation over the 
bright regions.  As in the other comparisons above, there is some variation in the data, but on 
average the two values are fairly close, especially for cases with significant degradation.   
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Figure 14.  RMS of correlation change over entire image vs. mean correlation over bright regions, relative to 
original GFF.  The solid line is where the RMS of correlation change is equal to the loss in mean correlation. 

 
Figure 15.  RMS of correlation error minus mean loss of correlation over bright regions. 
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4.4.3 Evaluating Lossy Compression Methods  

This section discusses the relative performance of the various lossy compression methods 
examined in this study.  Table 6 shows the mean values for the four performance measures 
examined, as well as the compression ratios.  The chart is sorted in order of decreasing total 
compression ratio, assuming that the data is packed and compressed as discussed in Section 4.2.  
Systems choosing not to use zlib or similar compression should use the first column as the 
compression ratio instead of the third.  The colors in the chart indicate those cases which meet 
the thresholds indicated in Table 5.  Note that these colors loosely follow a green-yellow-red 
progression from good to bad.  All the thresholds except those indicated by red entries require 
the measurements to be smaller than the indicated values.  The green entries indicate a threshold 
which is in some sense subjective and will be discussed below.  

 
Table 5.  The performance thresholds and the corresponding colors as shown in Table 6. 

Thresholds  

Color Δ SNR, entire image Δ SNR, bright regions Δ (Bright-Dark) 

Green no visible change, << yellow thresholds, single-mode histogram 

Tan 0.667 1.0 0.5 

Yellow 1.0 1.5 0.75 

Orange 1.33 2.0 1.0 

Red >3.33 >5.0 >2.5 
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Table 6.  CCD results given lossy compression.  Colors indicate performance thresholds given in Table 5.  “*” indicates cases averaged over the entire 
image, while “**” indicates cases averaged over 30x30 blocks with minimum correlation > 0.7. 

Lossy 
Compression 

ratio

Zlib 
compression 

ratio

Total 
compression 

ratio

Mean 
correlation due 
compression*

Delta SNR due 
compression, 

dB*

Mean 
correlation due 
compression**

Delta SNR due 
compression, 

dB**

Delta (bright-
dark) due 

compression, dB

RMS of 
difference in 
correlation

16-bit mag,16-bit phase 1 0.53 0.53 1 0 1 0 0 0
8-bit mag^(1/2),12-bit phase 0.63 0.68 0.43 1 -0.09 1 -0.13 -0.07 0.007
8-bit mag^(1/2),8-bit phase 0.5 0.78 0.39 1 -0.09 1 -0.14 -0.07 0.007

9-bit mag/2, 4-bit phase 0.41 0.93 0.38 0.99 -0.26 0.99 -0.41 -0.24 0.019
8-bit mag/2, 4-bit phase 0.38 0.92 0.34 0.99 -0.27 0.99 -0.41 -0.22 0.02

8-bit mag^(1/2),6-bit phase 0.44 0.75 0.33 1 -0.1 1 -0.16 -0.09 0.007
8-bit mag/4, 4-bit phase 0.38 0.87 0.33 0.99 -0.27 0.99 -0.42 -0.24 0.019

8-bit 95% jpeg,8-bit phase 0.3 1 0.32 0.95 -1.25 0.95 -1.84 -1.01 0.052
5-bit mag^(1/2),6-bit phase 0.34 0.92 0.32 1 -0.12 1 -0.18 -0.09 0.014
6-bit mag^(1/2),6-bit phase 0.38 0.84 0.32 1 -0.12 1 -0.18 -0.1 0.012

7-bit mag/8, 4-bit phase 0.34 0.86 0.3 0.99 -0.31 0.99 -0.46 -0.25 0.02
6,6-bit I/Q of FFT 0.38 0.78 0.29 0.99 -0.18 0.99 -0.24 -0.09 0.014

8-bit 90% jpeg,8-bit phase 0.28 1 0.29 0.92 -1.72 0.93 -2.45 -1.29 0.073
4-bit mag^(1/2),6-bit phase 0.31 0.91 0.28 0.99 -0.17 0.99 -0.22 -0.04 0.021
8-bit 80% jpeg,8-bit phase 0.27 1 0.27 0.89 -2.45 0.89 -3.38 -1.67 0.107
4-bit mag^(1/3),6-bit phase 0.31 0.84 0.26 0.97 -0.77 0.97 -1.13 -0.61 0.034
8-bit mag^(1/2),4-bit phase 0.38 0.69 0.26 0.99 -0.33 0.99 -0.52 -0.31 0.016
8-bit 95% jpeg,6-bit phase 0.24 1 0.26 0.95 -1.26 0.95 -1.85 -1.02 0.053
6-bit mag^(1/2),4-bit phase 0.31 0.81 0.25 0.99 -0.35 0.99 -0.54 -0.32 0.02
5-bit mag^(1/2),4-bit phase 0.28 0.9 0.25 0.99 -0.35 0.99 -0.54 -0.3 0.021

4,4-bit I/Q FFT, 2 stds 0.25 0.97 0.24 0.94 -1.39 0.95 -1.84 -0.74 0.072
3-bit Lloyd's, 5-bit phase 0.25 0.97 0.24 0.98 -0.55 0.98 -0.79 -0.38 0.029
6-bit Lloyd's, 3-bit phase 0.28 0.86 0.24 0.96 -0.99 0.96 -1.49 -0.86 0.042
4-bit Lloyd's, 4-bit phase 0.25 0.95 0.24 0.98 -0.41 0.98 -0.63 -0.35 0.022
4,4-bit I/Q FFT, 1 stds 0.25 0.93 0.23 0.79 -4.11 0.8 -5.27 -2.07 0.207

8-bit 90% jpeg,6-bit phase 0.22 1 0.23 0.92 -1.73 0.93 -2.46 -1.3 0.074
5-bit Lloyd's, 3-bit phase 0.25 0.92 0.23 0.96 -1.02 0.96 -1.54 -0.88 0.043

4-bit mag^(1/2),4-bit phase 0.25 0.89 0.22 0.98 -0.4 0.99 -0.57 -0.25 0.026
5-bit mag^(1/2),3-bit phase 0.25 0.89 0.22 0.96 -1.02 0.96 -1.54 -0.87 0.045

4,4-bit I/Q FFT, 3 stds 0.25 0.87 0.22 0.97 -0.76 0.97 -1.01 -0.4 0.042
3-bit ln mag,5-bit phase 0.25 0.86 0.22 0.94 -1.34 0.94 -1.94 -1.05 0.059

3-bit mag^(1/4),4-bit phase 0.22 0.98 0.21 0.91 -2.09 0.91 -2.88 -1.41 0.09
3-bit ln mag,4-bit phase 0.22 0.98 0.21 0.94 -1.49 0.94 -2.14 -1.15 0.064

4-bit mag^(1/3),3-bit phase 0.22 0.96 0.21 0.93 -1.57 0.93 -2.28 -1.23 0.065
3-bit mag^(1/4),5-bit phase 0.25 0.83 0.21 0.91 -1.96 0.92 -2.7 -1.32 0.085
4-bit mag^(1/3),4-bit phase 0.25 0.81 0.2 0.96 -0.97 0.96 -1.43 -0.78 0.042

4,4-bit I/Q FFT, 4 stds 0.25 0.78 0.2 0.96 -1.05 0.96 -1.4 -0.55 0.055
8-bit 95% jpeg,4-bit phase 0.18 1 0.19 0.94 -1.45 0.94 -2.11 -1.15 0.059
8-bit mag^(1/2),2-bit phase 0.31 0.62 0.19 0.85 -3.13 0.85 -4.33 -2.19 0.14
6-bit mag^(1/2),2-bit phase 0.25 0.77 0.19 0.85 -3.14 0.85 -4.34 -2.2 0.141

4,4-bit I/Q of FFT 0.25 0.69 0.17 0.91 -2.04 0.92 -2.68 -1.05 0.101
3-bit ln mag,3-bit phase 0.19 0.91 0.17 0.91 -2.04 0.91 -2.89 -1.52 0.086

3-bit mag^(1/4),2-bit phase 0.16 0.87 0.14 0.78 -4.28 0.78 -5.64 -2.54 0.197
2-bit mag^(1/4),1-bit phase 0.09 0.58 0.05 0.51 -8.24 0.51 -10.08 -3.56 0.467  

 

 - 37 - 



Figure 16 shows the histograms of the RMS of the correlation difference for all cases that 
meet the green, tan, and yellow thresholds in all three columns.  The color of the subplot 
title indicates the threshold color code from the first colored column.  In many cases, 
there are two different behaviors.  To distinguish the two, we find the “histogram 
breakpoint” as the first bin without any occurrences, lying to the right of the primary 
hump.  The blue portion of the histogram shows occurrences to the left of this point, and 
the red portion shows occurrences to the right.  The text within each histogram shows the 
location of the breakpoint and the mean value for each portion of the histogram.  
Examination of a few cases indicates that the red portion of each histogram corresponds 
to cases where the registration is incorrect due to the image degradation, and the blue 
portion corresponds to cases where the registration is maintained.  The histograms have 
been cut off at the top to allow viewing the detail in the tails.   

Notice that the cases coded green have all the values clumped together with a small RMS 
correlation error.  The 8-bit square-root of magnitude, 4-bit phase case also has all the 
data grouped together with no registration errors, but the error is a little higher.  We 
conclude that 8 bits of square-root of magnitude data and at least 4 bits of phase are 
required for registration as reliable and accurate as with 16-bit magnitude, 16-bit phase 
data.  With only 4, 5, or 6 bits of square-root of magnitude data, or with other operations, 
we sometimes obtain good registration results, but they are not as reliable.  In these 
histograms, we can see the non-subjective part of the green color-coded cases: the 
histograms of performance of these cases are clustered tighter and are significantly lower 
than any other cases.  For this reason, we recommend 8-bit square-root of magnitude and 
6-bit phase data for projects which desire low-data-rate images with no CCD degradation.  
For projects which can allow a small amount of CCD degradation, we recommend 8-bit 
square root of magnitude and 4-bit phase data for a slightly smaller data rate.  For 
projects which desire 8 total bits per pixel at the expense of greater CCD degradation, we 
recommend 4-bit magnitude data with Lloyd’s quantizer and 4-bit phase data.  This is 
also the recommended choice for projects which can accommodate the loss in CCD 
performance but have processing throughput limitations or other reasons to avoid using 
lossless compression.  Note that the total compression for 8-bit square-root of 
magnitude/4-bit phase data is almost as good as the 4-bit Lloyd, 4-bit phase data when we 
include the effects of the lossless compression, but when we include only the lossy 
compression ratio the 4-bit/4-bit case is significantly better.   

 - 38 - 



 
Figure 16.  Histograms of the cases marked green, tan, and yellow  in Table 6. 

4.4.4 CCD results versus original correlation 

All of the CCD data analyzed in Section 4.4.3 was from a single flight with two scene 
locations.  We desire to compare these results to those at other locations.  The other 
locations we had available were from a series of three flights by a different radar.  From 
these flights, we processed 75 pairs, of which 4 had increasing correlation as the images 
degraded and 12 had generally poor registration.  In this section, we consider the 
remaining 59 image pairs.  Figure 17 shows a histogram of the un-degraded correlation of 
all 59 pairs.  There is a much wider spread of values than was seen in the previous data 
set.  We examined the motion records from each pair and found no evidence of 
differential motion that would degrade the correlation significantly.  The greatest 
difference in depression angles occurs in the cases colored blue in the histogram – those 
with the best correlation.  The common difference between the cases colored blue and 
those colored green and red is the amount of time between the reference pass and the 
comparison pass.  There is one case with a correlation of 0.59 that we might think should 
be included in the green set; however, its other characteristics (including time between 
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passes) align more closely with the blue cases.  We therefore consider it an anomalous 
member of the blue set.  We will see below that the blue and green cases behave rather 
similarly, so it is not terribly significant which set a particular case is grouped with. 
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Figure 17.  A histogram of correlation from 59 image pairs at several sites.  Colors indicate different 

groups of pairs discussed in the text. 

All the CCD pairs shown in blue in Figure 17 come from the same flight.  Those colored 
red and green come from flights 4 days apart.  During the four days between these flights, 
there was significant rain in the area, so the lower correlation is probably due to actual 
detected change.  The cases colored green and blue are from Sandia’s radar calibration 
range, while the red cases are from farmland and other areas some distance away near the 
Rio Grande.  We believe that the extreme low correlation observed in the red cases is due 
to an abundance of trees and their shadows in these areas, as well as ground cover that is 
more susceptible to change due to  rain (e.g. farmland vs. bare desert). 

Figure 18 compares the average correlation due to the lossy compression for the three 
groups of CCD pairs in Figure 17 and the data presented in the previous section.  In 
adjusting the axis to make some of the details more easily visible, we have cut off some 
of the lowest-correlation data.  Note that especially for the cases with correlation above 
about 0.94, the CCD pairs colored blue and green in Figure 17 very closely approximate 
the data in the previous section.  Those cases colored red in Figure 17 tend to be slightly 
higher.  We believe that this is because the red cases already have such low correlation 
that they are not affected as much by further degradations in the images.   

We believe it is significant that the change in correlation given the lossy compression is 
so nearly the same for cases with average correlation ranging all the way from 0.48 up to 
0.92.  Many if not all of the cases presented in the previous section have lower correlation 
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than would be expected given the clutter-to-noise ratio estimated in the images.  Since 
images with initial correlations over such a wide range have shown similar behaviors 
given these lossy compression schemes, we expect that image pairs producing a yet 
higher correlation will most likely behave in the same manner. 
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Figure 18.  A comparison of the three groups of CCD pairs in this section with the cases in the 

previous section. 
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5 A few Theoretical Notes 
This section covers several theoretical issues related to predicting the correlation in the 
presence of lossy compression schemes. 

5.1 The Effect of Window Size in Correlation Estimation 

This section briefly reviews the calculation of correlation in CCD and how the window 
size affects the estimate.  The comments in this section are well known in the CCD 
world, but we include them here as a reminder. 

Before we calculate the correlation, the two images must be co-registered so that one lies 
exactly on top of the other, to precision well below a pixel.  We then calculate the 
correlation as 

 
*

1 2

*
1 1 2 2

s s

s s s s
ρ =

⋅ *

∑
∑ ∑

 (6) 

where s1 and s2 represent the two complex, registered images.  The sums are taken over 
some window size in the image, typically using an odd number of pixels and the same 
number of pixels in each dimension.  5x5 and 7x7 are common values for the window 
size.   

Once we degrade CCD images through lossy compression as discussed in this document, 
we may desire to ask, “Why don’t we increase the window size to regain correlation at 
the expense of resolution in the CCD product?”  However, we must recall that 
Equation (6) is really averaging the correlation over a window size, not averaging to 
increase SNR.  Averages only increase SNR when the noise is a zero-mean random 
variable that is added to the signal.  Due to the multiplications involved in Equation (6), 
the undesired quantities never appear in this form.  Increasing the window size only 
decreases the variance of the estimate of the correlation, not affecting the mean at all. 

Confusion may arise due to a similar use of correlation in IFSAR.  IFSAR height 
mapping uses an equation similar to Equation (6), but takes the phase instead of the 
magnitude of the result.  In that case, increasing the window size results in lower height 
noise at a cost of worse resolution (or increased post spacing) in the resulting product.  
This is because the height noise is related to the variance in the correlation estimate.  As 
stated above, we can affect the variance but not the mean of the correlation estimate by 
changing the window size. 

Assuming we are already using the proper algorithms, there is no way to increase the 
average correlation in a particular image pair to compensate for lossy compression.  
Another way we might consider attempting this is to average in the image domain to 
bring up the SNR before doing the correlation.  This would work if the image were 
correlated over a large enough region to perform the average (and if the noise remained 
uncorrelated over this region).  Typical Sandia radars produce images with pixels 1.2 
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times smaller than the resolution cell.  This means that the images are only correlated to a 
distance of 1.2 pixels.  We could adjust the parameters during the collection so that the 
resulting images were more correlated, but this results in a larger number of pixels for a 
given resolution, negating the size gains we would have gotten from lossy compression.  
We also might think we can increase the correlation of a given image through reduced 
resolution sub-band processing or a similar method.  This might work if we could 
separate the noise from the signal during this process, but since we cannot do that (if we 
could, we would just keep the noise separate and have a perfect image anyway) we end 
up increasing the correlation of the noise in the same proportions as we do for the signal, 
with no net effect. 

5.2 The Effect of Phase Quantization 

Assume we have two GFF images of the same area, taken at different times (i.e. a CCD 
pair).  The ideal complex image for both cases is denoted s.  Due to many factors, the 
images created are different from the ideal (and different from each other).  These factors 
may include geometry differences, scene changes, focusing differences, and others.  We 
denote the difference from the ideal as n1 for the first image and n2 for the second image, 
and the actual images as  and 1 1s s n= + 22s s n= + .  Now assume that we quantize the 
phase for both images to Np bits.  Since the phase is a uniform random variable between 
-pi and +pi, the quantization noise introduced is a uniform random variable.  The phase is 
quantized as  
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2round
2

2
2

p

p

N

GFF

quantized N

p

p π

⎛ ⎞⋅
⎜ ⎟⎜ ⎟
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compared to the original phase, 

 162
2
GFF

original

p
p π ⎛= ⋅⎜

⎝ ⎠
⎞
⎟  (8) 

where pGFF is the 16-bit representation of the phase in the GFF file.  With a uniform 
distribution as the input, the round function produces an error uniformly distributed 
between -0.5 and +0.5.  Thus, the phase error is  

 ( )0.5... 0.5
2 ...

2 2p perror N N

U
p U

2 pN

π ππ
− + ⎛= ⋅ = −⎜

⎝ ⎠
⎞
⎟  (9) 

where U( ) represents a uniform distribution between the indicated values.  We denote the 
phase errors for the two images as p1 and p2. 

Now we desire to calculate the cross-correlation between the two images in CCD 
processing.  The equation used to calculate this is 
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where the sums are taken over some region of the image.  The intent of these sums is to 
average out noise in the estimate of correlation.  For this derivation, we assume that the 
summation symbol indicates a statistical expectation, forgetting that we really are 
summing over a small (say, 5x5 or 7x7) region of the image.  The correlation for our case 
is then 
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Since s, n1, and n2 are mutually uncorrelated, all the cross terms in the numerator go away 
in the expectation.  The magnitude-squares in the denominator have similar expansions 
and similar cross-terms which disappear in the expectation.  We also simplify by 
assuming that the two noise terms have identical statistics (i.e. the effective SNR of both 
images is the same).  Thus, the correlation simplifies to  

 
( )( )1 22

2
1
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s n
γ

−⋅
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+

∑
∑ ∑ 2  (12) 

The denominator in this form is the same as for the original non-quantized correlation, so 
we focus for the moment on the numerator.  Notice that we are taking the complex 
magnitude of a sum.  In the ideal case, each term of the sum is real.  However, we have 
added a phase term to each one.  From a statistical point of view, we may want to say that 
the sum vanishes because p1 and p2 (and their difference) are uncorrelated with s.  
However, since p1 and p2 are small, ( )1 2j p p−e  has a mean of 1.0 and a complex variation 
about this value.  With two non-zero-mean uncorrelated quantities, the expectation is the 
product of the two individual expectations, or  

 
( )1 22

2
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s n
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+ 2
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 (13) 

Now we focus on the term ( )1 2j p pe −∑ .  Since p1 and p2 are small, zero-mean, and 

uniformly distributed, their difference has a triangle-function probability distribution with 
a peak at zero.  If we picture the complex plane, each term in the sum is a vector of length 
one and direction nearly parallel to the real axis.  On average, the result of the entire sum 
is real, so only the real part of each term contributes.  The real part is ( )1 2cos p p− .  
Since the argument of the cosine is always small, we expand this in its Taylor series so 
that the entire term becomes 
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Notice that we have assumed that p1 and p2 are uncorrelated.  Recalling that the two 
phase-error terms are identically distributed, the correlation now simplifies to  
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We can now separate the correlation due to phase quantization from the original 
correlation as  

 quantizedPhase original phaseQuantizationγ γ γ=  (16) 

where 

 2
11phaseQuantization pγ = −∑  (17) 

This is simply one minus the variance in this zero-mean, uniformly distributed random 
variable.  Since we know the distribution from Equation (9), we can easily calculate the 
variance as 
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so that 
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5.2.1 Comparing Theory to Reality 

In this section, we compare the theoretical result derived above to experimental results.  
First, we created a set of synthetic images, following the models described above.  The 
original image s has Gaussian real and imaginary parts, as do the noise terms n1 and n2.  
These three terms are scaled to create a desired effective SNR, and we create the two 
synthetic images.  In order to more fully model the differences between real CCD images, 
we multiply the second image by a random phase and by a random magnitude between 
approximately 0.89 and 1.12 (±0.5 dB).  For each effective SNR, we create 32 such 
image pairs and test the correlation between them in the presence of phase quantization.  
The result is shown in Figure 19 (correlation) and Figure 20 (effective SNR).  For all 
cases, Figure 19 shows the correlation for a particular test normalized by the correlation 
for the corresponding original undegraded image pair.  Figure 20 shows this same value 
converted to log-space as effective SNR to separate the highly correlated cases.  The 
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squares indicate the theoretical value (not a function of original SNR or original 
correlation), while the lines indicate the average value obtained from the 32 synthetic 
image pairs.  The theoretical data matches the data from synthetic image pairs rather well, 
although it is slightly pessimistic for the 2- and 3-bit cases. 

In addition to testing synthetic data, we performed similar tests using the actual CCD 
image pairs used for the data presented in Section 1.  We performed a separate set of tests 
using 16-bit magnitude and N-bit phase, where N ranges from 3 to 16.  The results of 
these tests are presented as the stars in Figure 19 and Figure 20.  These tests have 
consistently higher correlation than the theoretical value or the synthetic data, which 
probably indicates that there is more correlation between the two phase errors in the real 
data than in the synthetic data.  We conclude that the theoretical expression in Equation 
(19) is a good estimate but slightly pessimistic compared to real images. 
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Figure 19.  Theoretical correlation due to phase quantization (squares) compared to synthetic images 

(lines) and actual CCD data (stars).  Numbers to the left of each line indicate number of phase bits 
stored. 
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Figure 20.  Theoretical effective SNR due to phase quantization (squares) compared to synthetic 

images (lines) and actual CCD data (stars).  The numbers at the right indicate the number of phase 
bits stored. 

 

5.3 The Effect of Magnitude Quantization 

As above, assume we have two GFF images of the same area, taken at different times (i.e. 
a CCD pair).  The ideal complex image for both cases is denoted s.  Due to many factors, 
the images created are different from the ideal (and different from each other).  These 
factors may include geometry differences, scene changes, focusing differences, and 
others.  We denote the difference from the ideal as n1 for the first image and n2 for the 
second image, and the actual images as 1 1s s n+ 2 and 2s s n= = + .  Now assume that we 
quantize the magnitude of each image in the following manner.  We take the Nr-th root of 
each image, divide by a scale factor kscale, then quantize this value to the nearest integer.  
We also clip the highest-magnitude pixels by limiting them to 2Nm-1 where Nm is the 
number of bits to store for the magnitude.  We denote the data stored and transmitted for 
each image as 

 ' '
rN
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i qi
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s
u n

k

⎛ ⎞
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cin ⎟  (20) 

where the “i”s are replaced by 1 and 2 for each image and the variables are 
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We show a negative sign on the clipping error to emphasize that it always makes the 
result smaller than the original.  We return to the image domain by multiplying by kscale, 
by undoing the Nr-th root operation, and by multiplying by the phase of the original 
image.  Thus the magnitude of the degraded image is 

 ' '

r

r

N
N

i

i scale qi ci
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s
t k n n

k

⎛ ⎞⎛ ⎞
⎜ ⎜= ⋅ + −
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Note that we can apply the clipping error after returning to the magnitude domain with no 
effect on the image quality degradation and with significantly simpler equations.  Thus, 
we remove  from the equation and replace it with  outside of the parentheses, so 
that the image magnitude simplifies to  

cin cin
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r r

N N
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where 

effective quantization error -0.5 ... 0.5

effective clipping error 
qi scale scale

ci

n k

n

= +

=
 

Note that the clipping error  is always positive or zero and thus has non-zero mean, 
while the quantization error is zero mean.  The magnitude-quantized complex image is 
then 

cin

 ( ) ( )r r
i ir r

N N
j jN N

i i qi ci i qi ciim s n n e s n e n e ijφ φ φ⎛ ⎞= + − ⋅ = + ⋅ − ⋅⎜ ⎟
⎝ ⎠

 (23) 

Where the variables are defined as 

  (24) 
i

image-doman representation of the actual image as stored and transmitted
phase of the original (noisy but undegraded) image

iim

φ
=
=

We desire to calculate the cross-correlation between the two images in CCD processing.  
The equation used to calculate this is 

 
*

1 2

*
1 1 2 2

im im

im im im im
γ =

⋅ *

∑
∑ ∑

 (25) 

where the sums are taken over some region of the image.  The intent of these sums is to 
average out noise in the estimate of correlation.  For these derivations, we assume that the 
summation symbol indicates a statistical expectation, forgetting that we really are 
summing over a small (say, 5x5 or 7x7) region of the image.  We here encounter two 
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difficulties.  First, it is difficult to simplify this equation for a general .  We thus leave 
the simplification to the subsections below, where we consider one value of  in each 
subsection.  Second, the clipping noise term  is difficult to handle because it is highly 
correlated with the original signal s (in fact, it is a function of ).  In many cases, it is 
also of the same magnitude as .  Due to these complications, for the present we assume 
that  is zero.  In Section 

rN

rN

s

s

N

cin

i i

i

cin 5.4, we return to this term and examine its effects and the 
difficulty in predicting the correlation in the presence of clipping. 

In each of the following subsections, we calculate the power in the quantization noise that 
is added to the image during the compression process, .  We convert this to 
correlation by recalling an equation that can be derived from Equation 

qi

(25), 
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( ) ( ) ( ) ( )

2
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1 2

E

E E E E

s

s n s n
γ =

+ ⋅ +
 (26) 

In comparisons with existing image data, we calculate the signal and noise power of the 
image as 
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s
n
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 (27) 

where SNR is the signal-to-noise ratio, determined from the undegraded correlation.  Note 
that the estimate of the signal power obtained from the two images may be different; thus, 
the i subscript in the first of these equations numbers the estimate of the power, not the 
signal whose power we refer to.  We then calculate the correlation due to the magnitude 
quantization as 

 
( ) ( )

( ) ( ) ( ) ( )

2 2

1 2

2 2 2 2
1 1 21 2

E E

E E E E
magQuant

q q

s s

s n N s n N
γ

⋅
=

+ + ⋅ + + 2

 (28) 

Whenever necessary, we assume a uniform clutter region within which each signal si has 
Rayleigh-distributed magnitude with a mean value determined by the average RCS of the 
clutter.  The Rayleigh parameter β is determined as 

 ( ) 2mean RCSβ
π

= . (29) 
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5.3.1 Linear Magnitude Case 

We now evaluate Equation (23) and the resulting correlation with =1.  In this case, 
each image is represented as  

rN

 ( ) ij
i i qi i qiim s n e s n e ijφ φ= + ⋅ = + ⋅  (30) 

The additional noise introduced by the compression is easily separated as 

 ,
ij

compression i qin n e φ= ⋅  (31) 

We are interested in the noise power, which we can obtain as the mean of the square of 
the compression noise, or  

 ( ) ( )2 2
,Eqi compression i qiN n n= = E  (32) 

where E( ) denotes statistical expectation.   

The quantization noise is uniform from -0.5kscale to +0.5kscale, so  

 
2

12
scale

qi

k
N =  (33) 

 

5.3.2 Square Root of Magnitude Case  

We now evaluate Equation (23) and the resulting correlation with =2.  Notice that for 
this and all following cases, we use 

rN

1kscale = .  In this case, each image is represented as  

 ( )2
22i ij j

i i qi i qi i qiim s n e s n s e n e ijφ φ= + ⋅ = + ⋅ ⋅ ⋅ + ⋅ φ  (34) 

The additional noise introduced by the quantization is easily separated as 

 2
, 2 ij

compression i qi i qin n s e n ijeφ φ= ⋅ ⋅ ⋅ + ⋅  (35) 

We are more interested in the noise power, which we can obtain as the mean of the 
square of the quantization noise, or  

 ( ) ( )2 2 3
,E E 4 4qi compression i qi i qi i qiN n n s n s n= = ⋅ ⋅ + ⋅ ⋅ 4+  (36) 
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We assume that the quantization noise is independent of the signal and has zero mean.  
The noise power then reduces to 

 ( ) ( ) ( )24 E E Eqi qi i qiN n s= ⋅ ⋅ + 4n  (37) 

As derived in Appendices A.1 and A.2, the additional noise power reduces to 

 1
3 2 8qiN

πβ= ⋅ ⋅ +
1
0

 (38) 

5.3.3 Cube Root of Magnitude Case  

We now evaluate Equation (23) and the resulting correlation with =3.  In this case, 
each image is represented as  

rN

 ( ) 2 13
2 33 3 33 3i ij j

i i qi i qi i qi i qiim s n e s n s n s n eφ φ⎛ ⎞⎛ ⎞= + ⋅ = + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (39) 

The additional noise introduced by the quantization is easily separated as 

 
2 1

2 33 33 3 ij
qi qi i qi i qin n s n s n e φ⎛= ⋅ ⋅ + ⋅ ⋅ + ⋅⎜

⎝ ⎠
⎞
⎟  (40) 

We are interested in the noise power, which we can obtain as the mean of the square of 
the quantization noise.  Again, we assume that the quantization noise is independent of 
the signal and has zero mean.  The noise power then reduces to  

 ( ) 4 22 2 43 3E E 9 12qi qi qi i qi i qiN n n s n s n
⎛= = ⋅ ⋅ + ⋅ ⋅ +⎜
⎝ ⎠

6 ⎞
⎟  (41) 

Using the derivations in Appendices A.1 and A.2, this becomes 

 ( ) ( )
2 1

2 23 33 5 3 42 2
4 3 20 3 448qiN β β⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
1  (42) 

5.3.4 Fourth Root of Magnitude Case  

We now evaluate Equation (23) and the resulting correlation with =4.  In this case, 
each image is represented as  

rN

 ( ) 3 14 22 3 44 4 44 6 4i ij j
i i qi i qi i qi i qi i qiim s n e s n s n s n s n eφ φ⎛ ⎞⎛ ⎞= + ⋅ = + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (43) 

The additional noise introduced by the quantization is easily separated as 
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3 122 3 44 44 6 4 ij

qi qi i qi i qi i qin n s n s n s n e φ⎛ ⎞= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (44) 

We are interested in the noise power, which we can obtain as the mean of the square of 
the quantization noise.  Again, we assume that the quantization noise is independent of 
the signal and has zero mean.  The noise power then reduces to  

 ( ) 3 12 2 4 62E E 16 68 28qi qi qi i qi i qi i qiN n n s n s n s n
⎛ ⎞= = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +⎜ ⎟
⎝ ⎠

82  (45) 

Using the derivations in Appendices A.1 and A.2, this becomes 

 ( ) ( ) ( )
3 1 1

2 2 24 2 44 7 17 3 1 52 2 2
3 4 20 2 16 4 2304qiN β β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ + ⋅ ⋅ ⋅Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1  (46) 

 

5.3.5 Log of Magnitude Case  

For the case where we take the log instead of a root of the magnitude, we proceed slightly 
differently from the above.  We begin with the same assumptions.  Then, instead of 
taking a root, we take the log, 

 ( )logit s= + in  (47) 

We then quantize this value to the nearest integer.  We also clip the highest-magnitude 
pixels by limiting them to 2Nm-1 where Nm is the number of bits to store for the 
magnitude.   

 ( )' logi i qit s n cin= + +  (48) 

Notice that the quantization is very different when done in the log domain as compared to 
the linear magnitude domain.  On the other hand, the action of the clipping function in the 
two domains is identical if we adjust parameters appropriately.  Thus, we now assume 
that we do the clipping after returning to the magnitude domain.  In the magnitude 
domain, we multiply by the phase of the original image to return to a complex image 

 ( )( )( ) ( )( )exp log expi ij
i i qi ci i qi cim s n n e s n n e j

i
φ φ= + + ⋅ = ⋅ + ⋅  (49) 

The additional noise term is easily approximated as its Taylor series, 

 ( )
2

exp 1
2
qi

qi qi

n
n n≈ + +  (50) 
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We can obtain the noise power as the mean of the square of the quantization noise.  We 
make the same assumptions on independence that we made in the previous sections.  We 
also assume for the moment that there is no clipping.  The noise power then reduces to  
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( ) ( ) ( ) ( )

22 4
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2 22 4

E E E
2 4
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⎟⎟
⎠⎠  (51) 

Using the derivations in Appendices A.1 and A.2, this becomes 

 ( ) ( )2 2 21 1 1 12 2
6 160 6 160 480qiN 283β β β ⎛ ⎞= ⋅ ⋅Γ + ⋅ ⋅Γ = + =⎜ ⎟

⎝ ⎠
β  (52) 

 

5.3.6 Transform-Based Methods 

In this study, we have examined two transform-based lossy compression methods: JPEG 
compression and quantizing the FFT of the complex image.  Both of these methods are 
too complex to be examined theoretically in this document.  We thus do not compare the 
trial results to any theoretical result. 

5.3.7 Lloyd’s Quantizer  

Lloyd’s quantizer is a data-dependent quantizer.  There is nothing theoretical that can 
easily be said about the performance of compression based on this quantizer beyond the 
fact that the error is expected to be better than the corresponding uniform quantizer (if the 
parameters are chosen correctly).  Thus, we will compare the cases using Lloyd’s 
quantizer to the theoretical value for a uniform quantizer with the same non-linear 
operation, and expect to see better performance. 

 

5.4 Comments on Magnitude Clipping 

We now return to the clipping noise terms in Equation (23).  For the moment, we ignore 
the quantization noise characterized in the previous section and focus only on the 
clipping.  Using Equation (23) in Equation (25), we obtain 

 
( )( )1 2

1 2

*
1 1 2 2

2

1 1 2 2

j j
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j j
c c

s n e s n e

s n e s n e

φ φ

φ φ
γ

−− ⋅ − ⋅
=

− ⋅ ⋅ − ⋅

∑
∑ ∑

2
 (53) 

We will attempt to simplify this equation in two different ways and show the error in 
each. 
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5.4.1 Assume Independence 

We assume for simplicity that the quantization noise and the clipping noise are mutually 
independent and are each independent with respect to s1 and s2.  We also assume that the 
two images have identical noise characteristics.  Then the correlation reduces to  

 
2*

1 2
2 2 22

1 1ci ci

s s s

s n s n
γ = =

+ + +
∑

2n

∑
∑ ∑ ∑ ∑ ∑

 (54) 

In beginning this discussion, we note that the clipping noise will in actuality be strongly 
correlated with the image it comes from (and thus with the other image as well for high 
SNR).  Thus, the estimate of correlation obtained in this manner is expected to 
significantly underestimate real data.  

We can rearrange Equation (54) so that the correlation is given in terms of the original 
correlation without magnitude quantization, as 
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where Pi is the total (signal plus noise) power in the original images.   

As a formal definition of nci,  
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Appendix A.3 derives the average power in the clipping noise as 
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For highly clipped cases, this value approaches the power in the original image (signal 
plus noise).  Thus, the predicted correlation for these cases is close to 0.5, the correlation 
which corresponds to a signal-to-noise ratio of 0 dB.  However, the actual correlation is 
only slightly lower than the case with no clipping.  Figure 21 shows the predicted and 
actual effective SNR and correlation for a set of tests using 77 of the images pairs 
referred to in Section 1.  In this example, we clip the magnitude, with no quantizing 
beyond the original 16-bit magnitude and phase image.  For each image, we measure the 
actual noise introduced (the difference between the original image and the clipped image) 
and use this value to calculate the correlation that would be expected if this were 
independent random noise.  The actual correlation is much higher than this predicted 
value, indicating that the noise thus introduced is highly correlated between the two 
images. 
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Figure 21.  Predicted and actual correlation and effective SNR due to clipping the magnitude. 

5.4.2 Assume Identical Correlation  

Now, we return to Equation (53) but without the assumption of independence.  Assuming 
the noise in the two images is independent and identically distributed, we can expand the 
multiplication and write the correlation as 

 
( )1 21 2* *

1 2 1 2 1 2 1 2
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 (59) 

We now assume that the correlation of the clipping noise from image 1 with image 2 is 
the same as the correlation between the original images.  This allows us to separate the 
clipping noise and the image magnitudes into two different expectations.  Similarly, we 
assume that the correlation between the clipping noise from the two images is the same as 
the correlation between the original images.  We then write the entire correlation as 
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We then divide top and bottom by the original signal plus noise power, and factor out the 
original correlation from the entire expression.  
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Now we again use the assumption that the noise terms from the two channels are 
identically distributed to simplify to 
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so that the correlation due to clipping the magnitude is approximated as 
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These equations have a nice form: the original correlation multiplied by a new term that 
represents the correlation due to the clipping noise.  However, they do not accurately 
predict the correlation seen in tests with real data.  The reason for this is that both the 
numerator and denominator of Equation (59) contain several terms whose magnitude is 
large but whose sum is much smaller than any individual term.  Errors in approximating 
such values are magnified.  For one image tested, the individual terms were on the order 
of 107, while the sum was on the order of 104.  With such a sum, a 1% error in 
approximating one of the terms has the potential to cause a 900% error in the sum.  While 
it is not known which is the most significant cause of the error, we have introduced the 
following approximations: 

• Assume that the correlation between clipping noise and an image is the same as the 
correlation between the two images. 

• Assume that the image magnitudes have a Rayleigh distribution (the real images 
examined in this study are significantly different from this). 
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5.5 The Effect of Adding Independent Gaussian Noise 

In our studies to determine why the correlation predictions in the previous subsection are 
so inaccurate, we added independent Gaussian noise to the image pairs to confirm that 
this type of noise affects the correlation in the expected way.  We discovered that the 
image pairs from the November 1, 2004 flight test do not behave as expected in the 
presence of added Gaussian noise.   

One of the reasons for all of this theoretical work is to confirm that the results reported in 
Section 1 are valid even though the data used to generate most of those results is suspect.  
The correlation in these image pairs is significantly smaller than would be expected given 
the actual estimated signal-to-noise ratio.  Some amount of work has gone into the 
problem of determining why the correlation is so low, but to our knowledge no 
conclusions have been reached as of this writing.  We include this information in part to 
help in that effort.   

Given the image and signal models in Section 5.3, the theoretical correlation after adding 
noise is 

 
11 11
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gaussian original
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S
PS S N

NS N N P N
S N
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+ + ++

+

γ  (64) 

where the capital letters indicate average power in each signal, and  is the original 
signal-plus-noise power.  Notice that the expected correlation is independent of any 
assumptions on signal-to-noise ratio and only depends on the original correlation, the 
original image power, and the additional noise power. 

totP

Figure 22 shows the results of a set of tests where we added independent noise with 
Gaussian real and imaginary parts to each image in a pair, then calculated the new 
correlation.  The different colors of dots represent different amounts of noise added to the 
original images, and the blue lines represent the points where the real and theoretical 
values match.  The left two plots show the results from a set of 22 IFSAR image pairs in 
the Buck Well region.  The right two plots show the results from 86 of the CCD image 
pairs from the November 1, 2004 flight.  The top plots show the effective SNR, and the 
bottom plots show the correlation.   
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Figure 22.  Comparing theory to reality for the CCD correlation and the IFSAR correlation. 

Notice that the IFSAR data responds to the added noise as expected, but the CCD data 
loses correlation more quickly than we would expect.  The “tails” extending down from 
the left edge of the CCD data are due to cases where registration errors have been 
introduced.  To be sure that these are the only cases where registration is an issue, we ran 
a similar set of tests with the registration held constant for all cases of a particular image.  
The results were identical to those in Figure 22 except for the tails.   

5.6 Comparing Theory to Reality  

We now combine the theoretical results of Sections 5.2 and 5.3 to obtain expected 
correlation values corresponding to the values achieved in Sections 2-1.  The results of 
the comparison are shown in Table 7.  For each lossy compression scheme, we show the 
predicted correlation, the actual average correlation, and the difference (actual minus 
predicted).  We recall that we did not derive theoretical correlations for any of the 
transform-based methods, so we leave them out of the comparison.  We also do not have 
a good prediction for correlation in the presence of clipping, so we assume in all cases 
that there is no clipping.  The predicted values shown in the cases with Lloyd’s quantizer 
are actually the values for the square-root uniform quantizer with the same numbers of 
bits.  We would expect Lloyd’s quantizer to perform better.   
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Table 7.  Comparing the predicted correlations to the actual correlations for the tests in Sections 2-1

 Predicted Actual Difference 
16-bit mag,16-bit phase 1.0000 1.0000 0.0000 

8-bit mag^(1/2),12-bit phase 0.9963 0.9966 0.0003 
8-bit mag^(1/2),8-bit phase 0.9962 0.9966 0.0003 

9-bit mag/2, 4-bit phase 0.9871 0.9898 0.0027 
8-bit mag/2, 4-bit phase 0.9871 0.9896 0.0025 

8-bit mag^(1/2),6-bit phase 0.9955 0.9960 0.0005 
8-bit mag/4, 4-bit phase 0.9869 0.9895 0.0026 

8-bit 95% jpeg,8-bit phase -- 0.9474 -- 
5-bit mag^(1/2),6-bit phase 0.9955 0.9952 -0.0003 
6-bit mag^(1/2),6-bit phase 0.9955 0.9955 -0.0000 

7-bit mag/8, 4-bit phase 0.9861 0.9880 0.0019 
6,6-bit I/Q of FFT -- 0.9931 -- 

8-bit 90% jpeg,8-bit phase -- 0.9250 -- 
4-bit mag^(1/2),6-bit phase 0.9955 0.9931 -0.0024 
8-bit 80% jpeg,8-bit phase -- 0.8872 -- 
4-bit mag^(1/3),6-bit phase 0.9964 0.9690 -0.0274 
8-bit mag^(1/2),4-bit phase 0.9835 0.9870 0.0035 
8-bit 95% jpeg,6-bit phase -- 0.9469 -- 
6-bit mag^(1/2),4-bit phase 0.9835 0.9865 0.0030 
5-bit mag^(1/2),4-bit phase 0.9835 0.9862 0.0027 

4,4-bit I/Q FFT, 2 stds -- 0.9404 -- 
3-bit Lloyd's, 5-bit phase 0.9931 0.9780 -0.0151 
6-bit Lloyd's, 3-bit phase 0.9451 0.9594 0.0144 
4-bit Lloyd's, 4-bit phase 0.9835 0.9837 0.0002 

4,4-bit I/Q FFT, 1 stds -- 0.7883 -- 
8-bit 90% jpeg,6-bit phase -- 0.9245 -- 
5-bit Lloyd's, 3-bit phase 0.9451 0.9578 0.0127 

4-bit mag^(1/2),4-bit phase 0.9835 0.9841 0.0006 
5-bit mag^(1/2),3-bit phase 0.9451 0.9577 0.0126 

4,4-bit I/Q FFT, 3 stds -- 0.9690 -- 
3-bit ln mag,5-bit phase 0.9306 0.9429 0.0123 

3-bit mag^(1/4),4-bit phase 0.8706 0.9063 0.0357 
3-bit ln mag,4-bit phase 0.9216 0.9361 0.0144 

4-bit mag^(1/3),3-bit phase 0.9460 0.9323 -0.0136 
3-bit mag^(1/4),5-bit phase 0.8791 0.9130 0.0338 
4-bit mag^(1/3),4-bit phase 0.9844 0.9602 -0.0242 

4,4-bit I/Q FFT, 4 stds -- 0.9560 -- 
8-bit 95% jpeg,4-bit phase -- 0.9384 -- 
8-bit mag^(1/2),2-bit phase 0.7914 0.8499 0.0585 
6-bit mag^(1/2),2-bit phase 0.7914 0.8494 0.0580 

4,4-bit I/Q of FFT -- 0.9081 -- 
3-bit ln mag,3-bit phase 0.8857 0.9089 0.0233 

3-bit mag^(1/4),2-bit phase 0.7006 0.7799 0.0793 
2-bit mag^(1/4),1-bit phase 0.1566 0.5104 0.3539 

 

Notice that the predicted and actual values are fairly close for all cases.  In general, the 
difference between them increases as the number of bits decreases.  This is expected 
because our small-value and independent noise assumptions become less valid.  Notice 
that the 4-bit magnitude, 4-bit phase case with Lloyd’s quantizer is slightly worse than 
the predicted value and slightly worse than the corresponding case with the square-root 
uniform quantizer.  This is one case where multiple performance measures are required – 
the uniform quantized case is not usable because of the extreme clipping of any bright 
pixels in the magnitude image, but the case with Lloyd’s quantizer has a usable 
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magnitude image and only slightly worse correlation.  Lloyd’s quantizer is better than the 
listed predicted value for those cases with 5 or more bits of magnitude, but worse for 
cases with fewer bits.  Perhaps this is because the clipping noise introduced by the 
uniform quantizer with few bits has less effect on the correlation than the quantization 
noise introduced by Lloyd’s quantizer in the same cases.  Referring back to Table 6, at 4 
bits magnitude, 4 bits phase, Lloyd’s quantizer is slightly worse than the uniform 
quantizer for all measures of performance except the RMS of the difference in the 
correlation map, which is slightly better.  The RMS difference is more strongly affected 
by the error the clipping causes around bright points, compared to the other measures 
which tend to average out such errors. 

 - 61 - 



 



6 Conclusions and Recommendations 
This document presented the results of a series of tests examining over 600 CCD image 
pairs using 44 different lossy compression schemes.  We also derived theoretical 
predictions for the correlation for most of these compression schemes.  The results 
presented here are averages over many different image pairs, so some cases can be 
expected to be significantly better or worse.  Given all this information, this section gives 
recommendations for future CCD projects and for future work on the present topic. 

6.1 Recommendations for Limited-Bandwidth CCD Programs 

We make the following suggestions for programs which desire to perform CCD and 
which have limited image bandwidth: 

• Use some form of lossless compression.  While we have not done a detailed study on 
the relative effectiveness of the various lossless compression schemes, zlib seems to 
provide a good balance between simplicity, compression time, and compression ratio.  
This library is available in source form and is easily portable (for Tactical IFSAR, it 
was compiled for at least Mercury, Solaris, Windows, and Linux).   

• For projects which require no loss in CCD performance, use 8-bit square-root of 
magnitude and 6-bit phase data.   

• For projects which can allow a small degradation in CCD performance, use 8-bit 
square-root of magnitude and 4-bit phase data.  

• For projects which require an 8-bit pixel at the cost of a larger degradation in CCD 
performance, use Lloyd’s quantization scheme with 4 bits on the square root of the 
magnitude and use 4-bit phase data.  With zlib compression, this scheme is only 
slightly smaller than 8-bit square-root of magnitude and 4-bit phase data, but without 
lossless compression there is a more significant size difference. 

6.2 Recommendations for Future Work on this Topic  

• Complete the theoretical analysis:  magnitude clipping, transform-based methods, and 
Lloyd’s quantizer. 

• Try some image pairs with more bright (high reflectivity) stuff in the image.  We do 
have some corner reflectors and vehicles in these images, which may be good 
enough.  The biggest difference would probably be that images with a lot of bright 
regions would not compress as small in the lossless step. 
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Appendix A A few statistical derivations 
A.1 Expectations of a Rayleigh Random Variable  

Many of the theoretical formulas for correlation derived in Section 1 include powers of 
the image magnitude, which we model as a Rayleigh random variable.  We here derive 
the expectation of expressions of the form ax  where a is positive and x is a Rayleigh-
distributed random variable.  The probability density function for such variables is  

 ( )
2
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The desired expectation is then 
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We make the substitution  

 

2

22

2

2

x
t

x t

dx dt
t

β

β
β

=

= ⋅

=

 (67) 

resulting in  
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We note that the integral is in the form of the gamma function, 
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So our expectation can be written in terms of the gamma function as  
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A.2 Expectations of a Uniform Random Variable  

Our theoretical correlations require expectations of several functions of a uniform 
random variable.  For all cases, the uniform random variable we use has a lower limit 
equal to the negative of the upper limit. For most cases, these limits are ±0.5.  We use 
these assumptions to help simplify the derivations.  Again, we will find the expectation of 
an expression ax  where x is now uniformly distributed.  The probability density function 
is now 

 ( ) 1 ,f x xα β
β α

= < <
−

 (71) 

Our integral is then 
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We simplify at this point by recalling that we have said that β α= − . 

 ( ) ( )( )
( ) ( )

( )( )

1 11

E
1 1

a aa
a x

x
a a

α

α

α α
2α α α

− + ++ − −
= =

+ − − − +
 (73) 

If a is odd, the numerator cancels and the expectation is zero.  If a is even, the expression 
simplifies to  
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A.3 Average Power in Rayleigh Clipping Noise 

We now calculate the average power in the noise introduced by clipping the Rayleigh-
distributed magnitude.  The clipping noise is repeated here from Equation (57). 
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The integral here has a different form compared to Equation (66) only by the lower limit.   
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This simplifies to 
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We rewrite this as  
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We can integrate the parts of Equation (78) separately. 
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Here erfc represents the complementary error function, or one minus the error function.  
We can approximate this function in the cases where its argument is especially large or 
small.  The small-value approximation is 

 ( ) ( ) ( )2 2 2 21 1exp exp exp
2 2 2 2 2a

c a c c a c
c x e x dx ea ea

e e e e e 2 e

π π∞ ⋅ ⋅
⋅ ⋅ − ⋅ = ⋅ − + ⋅ − ⋅ − = ⋅

⋅ ⋅ ⋅ ⋅∫ (83) 

 - 69 - 



The large-value approximation is 
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Finally, we arrive at the result by combining the terms and simplifying 
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If we now insert the values for our constants a, b, c, d, and e, we arrive at 

 

( ) ( )

( )( ) ( )

2

22
22 2

2

E 2 2 1

2 1
             2 2 1 exp

2

r
mr

r
mr

r
mr

NNN
ci scale

NNN
N scaleNN

scale

n k

k
k

π β

β
β

= − ⋅ ⋅ ⋅ −

⎛ −⎜+ − + −
⎜ ⎟
⎝ ⎠

⎞
⎟

 (86) 

for small values of a e  and ( )2E cin 0=  otherwise.  For large values of a e , there is no 
clipping, which explains why the clipping noise goes away.  Notice that for any pixels 
which are clipped, the quantization noise is included in both  and .  However, for 
such cases, the clipping noise dominates the quantization noise, so adding a small amount 
of additional quantization noise should have little effect. 

cin qin
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