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Abstract

Global sensitivity analysis (GSA) measures the variation of a model output as a

function of the variations of the model inputs given their ranges. In this paper we

consider variance-based GSA methods that do not rely on certain assumptions about

the model structure such as linearity or monotonicity. These variance-based methods

decompose the output variance into terms of increasing dimensionality called “sensitiv-

ity indices”, first introduced by Sobol’ [25]. Sobol’ developed a method of estimating

these sensitivity indices using Monte Carlo simulations. McKay [13] proposed an effi-

cient method using replicated Latin hypercube sampling to compute the “correlation

ratios” or “main effects”, which have been shown to be equivalent to Sobol’s first-order

sensitivity indices. Practical issues with using these variance estimators are how to

choose adequate sample sizes and how to assess the accuracy of the results. This pa-

per proposes a modified McKay main effect method featuring an adaptive procedure

for accuracy assessment and improvement. We also extend our adaptive technique to

the computation of second-order sensitivity indices. Details of the proposed adaptive

procedure as wells as numerical results are included in this paper.

1 Introduction

Sensitivity analysis (SA) studies how variations of a model output describing certain (for

example, physical, biological, or social) processes can be accounted for by variations in the

control or model parameters (collectively called input factors or input parameters). In the

∗This work was performed under the auspices of the U.S. Department of Energy Lawrence Livermore

National Laboratory under Contract No. DE-AC52-07NA27344.
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context of the present discussion, we restrict ourselves to sensitivity analysis of deterministic

simulation models, which give identical results when presented with the same set of parameter

values. Sensitivity analysis is increasingly recognized as an important tool for model building

and validation. In general, sensitivity analysis is useful for all processes where it is important

to know which input factors mostly contribute to output variability.

Sensitivity analysis methods are generally classified as either local or global. Local SA

methods compute or approximate the partial derivatives of model outputs with respect to

individual input factors at some nominal settings. Global SA, on the other hand, studies

the effects of input variations on model outputs in the entire allowable ranges of the input

space. Saltelli et al. [24, 27] have defined global SA methods by two properties:

1. The inclusion of influence of scales and shapes of the probability density functions for

all inputs; and

2. The sensitivity estimates of individual inputs are evaluated while varying all other

inputs (multi-dimensional averaging).

In this paper we are primarily concerned with global SA methods which can generally be

decomposed into four steps:

1. Define credible ranges and distributions of input factors,

2. Create a sample of input factor values,

3. Evaluate the model for each sample point, and

4. Estimate the effect of each input factor on the model output.

Global SA methods can further be classified as either qualitative or quantitative. For

applications with large number of input factors (tens to hundreds), the “curse of dimensional-

ity” dictates that the computational cost for quantitative global SA becomes insurmountable.

The purpose of qualitative SA studies is to identify (as opposed to quantify) the most im-

portant input factors using a relatively inexpensive set of simulation experiments, a process

called “parameter screening”. The goal is to enable the quantitative SA studies to focus on

the smaller subset of most important input factors.

Quantitative SA methods, which apportion the output variability to individual input

variabilities, typically require large number of simulation runs. When simulation models

themselves are computationally intensive, the computational cost of quantitative SA may

become prohibitive. To make quantitative SA more tractable, response surface modeling

(not within the scope of this paper) is often used to construct inexpensive surrogates in

place of the original simulation models.

Among the quantitative SA methods, variance-based methods have received the most

attention. The main idea of the variance-based methods is to evaluate the variance compo-

nents for all of the individual or groups of input factors. By decomposing the model function
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into a sum of elementary functions, Sobol’ [25] has shown that a decomposition of the model

output variance is possible (for independent input factors). These variance components are

called Sobol’ indices, and can be used for any complex model functions. When the model

is purely linear, the Sobol’ indices are equivalent to the standardized regression coefficient

in classical analysis. For models with K inputs, the number of Sobol’ indices is 2K − 1. In

practice, only the first and second-order Sobol indices are estimated. For large K, Homma

and Saltelli [6] proposed the the “total sensitivity indices” which can be computed by using

Monte Carlo simulations or the extended Fourier Amplitude Sampling Test (FAST) method.

This paper focuses on efficient and accurate methods for computing the first- and second-

order sensitivity indices. Specifically, McKay’s [13] main effect analysis is an efficient method

for computing the first-order sensitivity indices. However, a difficulty when applying this

method is the determination of a suitable sample size to achieve sufficient accuracy. One

often resorts to very large samples to ensure sufficient accuracy. Here, we propose an im-

proved McKay main effect analysis with an adaptive accuracy assessment and improvement

capability. We also propose an efficient method for computing the second-order sensitivity

indices using replicated orthogonal arrays and the corresponding second-order sensitivity

indices. Again, an adaptive refinement technique is used to facilitate accuracy assessment

and improvement.

In Section 2 we provide a brief introduction to variance-based sensitivity analyses. Section

3 gives details of McKay’s main effect analysis. Section 4 proposes improvements to McKay’s

method for accuracy assessment and improvement. Section 5 presents an efficient method

based on replicated orthogonal arrays for computing second-order sensitivity indices. Section

6 describes an adaptive strategy similar to the improved main effect analysis for computing

the second-order sensitivity indices. Numerical results are interspersed in Section 4 and 6.

Finally, a brief summary will be given in Section 7.

2 Variance-based Sensitivity Measures

Let Y = F (X) be a mathematical model that maps a set of K input parameters X ∈ <K

to a scalar output Y . Let E(Y ) and V (Y ) denote the mean and variance of the distribution

of Y given probability distributions of X. A sensitivity measure for a given input Xi can be

obtained by assuming a complete knowledge of the true value of Xi and assessing the effect

of this knowledge on the output variance. To do this, we fix Xi at Xi = X∗
i and compute the

corresponding conditional variance V (Y |Xi = X∗
i ). Since this complete knowledge of X∗

i is

in general not available, we compute, E(V (Y |Xi)), which is the average of the conditional

variances given the probability distribution of Xi. Intuitively, E(V (Y |Xi)) measures the

variance of Y when Xi is known, and so V (Y ) − E(V (Y |Xi)) (the added variance due to

the variability of Xi) is a reasonable indicator to quantify the importance of input Xi. This

indicator is equivalent to the statistical quantity called variance of conditional expectation
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(or VCE) via the following variance decomposition property:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)). (1)

The first term on the right hand side of this relation is the variance of conditional expec-

tation (VCE), conditioned on Xi; and the second term is the error or residual term. Here

V (E(Y |Xi)) measures the variability in the conditional expected value of Y as the input Xi

takes on different values. The residual term represents the variability in Y not accounted

for by the input Xi.

McKay defined the correlation ratio [13] (or main effect) by normalizing the VCE’s with

V (Y ):

η2(Xi) =
V (E(Y |Xi))

V (Y )
. (2)

A high correlation ratio implies that Xi is important in influencing the output variability.

If all input factors are uncorrelated and there are no multi-way interactions, the sum of the

correlation ratios is 1.

In [25], Sobol’ derived a first-order sensitivity index and his derivation is based on the

decomposition of Y = F (X) into a sum of terms of increasing dimensionality:

F (X1, X2, · · · , XK) = F0 +
∑

i

Fi(Xi) +
∑

i<j

Fij(Xi, Xj) + · · ·+ F12···,K(X1, X2, · · · , XK) (3)

where the integral of every term over any of its own input variables is zero. Sobol’ showed

that, when all inputs are orthogonal to each other, this decomposition is unique and that

V (Y ) is the sum of the variances of each term in the decomposition:

V (Y ) =
∑

i

Vi +
∑

i<j

Vij +
∑

i<j<k

Vijk + · · ·+ V12···K (4)

where Vi is the variance of Fi, Vij is the variance of Fij, and so on. The total number of terms

for K inputs is thus 2K − 1. The Vi’s can be shown to be equivalent to McKay’s correlation

ratios by the following relationship:

Vi = V (Y )η2(Xi) = V (E(Y |Xi)).

Similarly, Vij’s are the (pure) two-way interactions such that

Vij = V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)).

In the event that the inputs are correlated, the above relationships no longer hold. How-

ever, variance-based measures are still useful sensitivity indicators. Input correlation will

not be covered in this paper.
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3 Main Effect Analysis

Main effects (or sensitivity indices) can be computed by directly evaluating the K integrals

for the K inputs. McKay [13] proposed a more efficient estimation method based on the use

of a single replicated Latin hypercube sampling (r-LHS) design for all K inputs. It should

be noted that even with this efficiency improvement the main effect analysis is still very

expensive requiring a substantial number (for example, thousands) of function evaluations.

For models that are themselves expensive to evaluate, a common strategy to make main effect

analysis feasible is to first create a response surface model (also called surrogate model, meta-

model, or emulator) and perform subsequent analyses on the substantially less expensive

approximate model.

In the r-LHS design, each Xi takes on distinct values Xij, j = 1, · · · , S where S is the

number of levels (or symbols). These values are to be replicated R times in total so that the

final design has N = SR sample points.

Based on this design, the mean and variance of Y can be estimated by, for any i in

{1, · · · , K},

Ȳ =
1

SR

S
∑

j=1

R
∑

r=1

Y (r)(Xi = Xij), (5)

and

V (Y ) =
1

SR

S
∑

j=1

R
∑

r=1

[

Y (r)(Xi = Xij)− Ȳ
]2
, (6)

respectively, where Y (r)(Xi = Xij) is the output corresponding to Xi = Xij in the r-th

replication. (that is, the R replications amount to keeping input i at some fixed value and

varying all others). The estimator of the conditional expectation for Xi = Xij is given by

Ȳ (Xi = Xij) =
1

R

R
∑

r=1

Y (r)(Xi = Xij) (7)

Finally, the formula for the variance of conditional expectation (VCE) is given by:

VCE(Xi) =
1

S

S
∑

j=1

[

Ȳ (Xi = Xij)− Ȳ
]2
−

1

SR2

S
∑

j=1

R
∑

r=1

[

Y (r)(Xi = Xij)− Ȳ (Xi = Xij)
]2
, (8)

and the correlation ratio for input i can be computed by normalizing VCE(Xi) with the

output variance. A variant of the VCE is the biased VCE which is defined as:

VCEb(Xi) =
1

S

S
∑

j=1

[

Ȳ (Xi = Xij)− Ȳ
]2
. (9)

The correlation ratio is a useful estimator for input importance for general models. In

addition, the scatter plots (the K plots, each with respect to individual inputs) from the

replicated Latin hypercube samples provide useful visual information on how the output
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Figure 1: An example scatter plot from replicated Latin hypercube sampling

behaves as Xi takes on different values Xij (for example, by inspecting the line joining the

means of all levels, namely, Xij’s in the Xi scatter plot.) In addition, when R is sufficiently

large (say, > 50), the parameter space is sufficiently explored so that the envelops encom-

passing the output data in the scatter plots give additional qualitative information about

parameter interactions (that Xi is interacting with some other inputs), although they of-

fer no additional information on which other inputs Xi interacts with (It requires two-way

interaction analysis described in Section 4 to quantify pair-wise interactions). An exam-

ple is given in Figure 1 where the function is: Y = X1 + X1 ∗ X2 + X2
3 with four inputs

Xi, i = 1, 2, 3, 4;Xi ∈ [0, 1]. Here, we observe in the scatter plots for X1 and X2 that the

envelopes enclosing the data points are not uniform, indicating that these two input factors

have interactions with other inputs. This observation agrees well with the example function.

Furthermore, we observe that X3 is nonlinear and X4 has negligible effect on the output.

4 An Improved Main Effect Analysis

To create a replicated Latin hypercube sample, both S (number of levels) and R (number

of replications) have to be specified (such that N = SR) by users. In [14], McKay investi-
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gated the variability of correlation ratio estimates as a function of sampling variability and

concluded that sufficiency of the sampling design (specifically, S and R) is very important

to achieve the desired precision. Specifically, large N may be needed to adequately estimate

the correlation ratios. In addition, if the biased correlation ratio estimator is used, large

bias may result when R is small. Saltelli et al. [24] recommended that S should be larger

than R to give good accuracy. Despite this recommendation, it should be noted that the

adequacy of a sampling design is model dependent and thus not generally known a-priori.

In this section we propose a more robust main effect analysis to address this issue.

Our improved main effect analysis is based on an iterative procedure consisting of an

adaptive sampling scheme and an accuracy assessment tool to monitor the convergence

of the correlation ratios. Our adaptive sampling scheme borrows from our earlier work

on refinement of stratified designs [32]. Our improved method currently considers only

adaptively increasing S (by a factor of 2 per refinement) for accuracy improvement while

keeping R fixed. To offset the effect of bias [14], we use a moderate sized R and also the

unbiased correlation ratio estimator.

In the rest of this section, we first show how to adaptively refine a replicated Latin

hypercube design. We will then describe the iterative procedure utilizing this adaptive

sampling scheme. A few examples will be given to study the effectiveness of this improved

method.

4.1 Refinement for Replicated Latin Hypercube

We first denote a replicated Latin hypercube by an 3-tuple LH(N ,K,S) whereN ,K and S are

the sample size, number of input parameters, and number of symbols or levels, respectively.

The number of replications can be recovered by R = N/S. We begin with a fixed R (for

example, R = 50) and an initial S (for example, S = 4). The basic idea in the refinement

algorithm follows two major steps. The first step involves refining each grid cell (in a K-

dimensional grid with S partitions in each dimension) into an 2K subgrid. Then for each

cell that already contains a sample point, a LH(2, K, 2) (with size 2, K inputs, and 2 levels)

containing the existing sample point is created for the grid cell. The refined sample can

be shown to preserve its property as a replicated Latin hypercube. A selective random

permutation is then applied to the newly created sample points to improve the statistical

property of the entire refined sample while leaving the original sample points unchanged. The

detailed refinement algorithm (Algorithm RefineLH) consists of the following steps (given an

initial replicated LH sample matrix Z):

Pattern reconstruction: Transform the sample matrix Z (an N × K matrix) to the

corresponding LH pattern matrix A by (S is the current number of levels and R is the

number of replications)

A(i, j) = d(Z(i, j)− Lj)/ ˆδXj)e, i = 1, · · · , N ; j = 1, · · · , K,

where Lj and Uj are the lower and upper bound of input j, and ˆδXj = (Uj − Lj)/S.
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Replication separation: Partition A into R individual LH pattern matrices Am,m =

1, · · · , R (each Am is an S ×K matrix). Then, for each Am,

Level refinement: Form another pattern matrix Bm (called base pattern matrix) from

Am by

Bm(i, j) = (dAm(i, j)e − 1) ∗ 2.

New sample insertion: Create the new pattern matrix Ãm: for each row i of B,

1. Form a new LH pattern matrix Ci of size 2×K.

2. Set Ci ← Ci + [1 1]TBm(i),

3. Permute Ci to have one row matching Am(i) (by first exchanging entries of row 1

of Ci with entries in the same column so that row 1 matches Am(i)).

4. Load Ãm row 2× (i− 1) + 1 to row 2× i with Ci.

Sample randomization: Perform random permutation to each column of Ãm but only

to the newly created rows.

Sample concatenation: Append all Ãm,m = 1, · · · , R matrices to form the final Ã pat-

tern matrix.

Sample Generation: Map the pattern matrix (which has number of levels = 2S now) to

the new sample matrix Z̃ by scaling and translation with respect to the input ranges.

Z̃(i, j) = Ã(i, j) ∗ δXj + Lj + ε(i, j)

where ε(i, j) is a small random perturbation and its value depends on Ã(i, j) to preserve

the replicated LH property.

An example of refining a LH sample is given in [32].

4.2 An Adaptive Algorithm for Main Effect Analysis

The refinement technique can be used in an iterative procedure to improve the accuracy of

main effect analysis. The algorithm is as follow:

1. Select an initial replicated LH sample with sample size N0 = S0R. Prescribe a precision

0 < ε < 1. Set Iteration = 0.

2. Set Iteration = Iteration + 1. Then evaluate the model using the current sample.

3. Use the sample inputs and outputs to compute the VCE’s.

4. If Iteration > 1, do the following: for each VCE(Xi), compute the error ei by finding

the difference between the current and the last VCE(Xi); else set ei = ε.
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5. If max ei < ε, terminate.

6. Apply the Refine algorithm to create the refined LH sample. Then go to step 2.

An alternative termination criterion for this procedure can be a prescribed maximum

number of model evaluations. Using this criterion, the main effect analysis should give not

only the VCE(Xi)’s, but also the estimated error bounds.

4.3 Numerical Results

In this section we demonstrate the effectiveness of our modified main effect algorithm on two

test examples- one monotonic and one non-monotonic functions.

4.3.1 A Monotonic Test Problem

The first test problem is the monotonic Sobol’ function [24] given by:

Y = exp





6
∑

j=1

bjXj



− I6 (10)

where b1 = 1.5, b2 = b3 = b4 = b5 = b6 = 0.9,

I6 =
6

∏

j=1

ebj − 1

bj

,

and Xj is uniformly distributed in [0, 1]. The true correlation ratios for X1 is 0.287 and

0.1057 for Xj, j = 2, · · · , 6.

We simulate our iterative algorithm 100 times, each with an initial S of 4 and R = 50.

Figure 2 shows the convergence history of the 6 correlation ratios as a function of S. Due

to the randomness in the initial LH design and subsequent refinements, each of the 100

simulations goes through a different convergence path. The blue ’x’ in the plots are actual

correlation ratios computed at different refinment levels. We observe firstly from the plots

that all simulations exhibit similar paths converging to the true values as S is increased

through refinement. In general, the spread of the correlation ratios shrinks as S is increased,

demonstrating that larger sample sizes increase the confidence of the estimations. The reason

that some envelopes expand a little initially is that the many sample point duplications due

to the initial number of levels being too small (S = 4) limit the spread of the results.

4.3.2 A Non-monotonic Test Problem

The second test problem is the Ishigami function [24]:

Y = sin(X1) + 7sin2(X2) + 0.1X4
3sin(X1) Xi ∈ [−π, π], i = 1, 2, 3 (11)
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Figure 2: Sobol’ function: convergence history for the η2’s (black horizontal lines- true

values)

which has the following statistics

Ȳ = 3.5; V (Y ) = π4/50 + π8/1800 + 1/2 + 49/8 ≈ 13.8445

η(X1) = 0.3139; η(X2) = 0.4424; η(X3) = 0.0

Again, We simulate our iterative algorithm 100 times, each with an initial S of 4 and R = 50.

Figure 3 shows the convergence history of the 3 correlation ratios as a function of S. Again,

we observe that the correlation ratios converge to their true values as S is increased through

refinement. We again observe that in general the spread of the correlation ratios in general

shrinks as S is increased.

5 Two-way Interaction Analysis

In this section we extend the idea for main effect analysis to two-way interaction studies for

uncorrelated inputs. In this case, we employ the following relationship

V (Y ) = V (E(Y |Xi, Xk)) + E(V (Y |Xi, Xk)) (12)
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where Xi and Xk are two distinct inputs under consideration. The first term on the right

hand side is the variance of the conditional expectation VCE(Xi, Xk) of Y , conditioned on

Xi and Xk. Again, the second term is the error or residual term measuring the estimated

variance of Y by fixing Xi and Xk. In addition, the correlation ratio for the input pair

(Xi, Xk) is

η2(Xi, Xk) = V (E(Y |Xi, Xk))/V (Y ). (13)

A high correlation ratio shows that Xi and Xk taken together are important contributors to

the output variability. The variance due to the interaction term alone is defined as

V (Xi, Xk) = V (E(Y |Xi, Xk))− V (E(Y |Xi))− V (E(Y |Xk)). (14)

V (Xi, Xk) can be computed using many different techniques, for example, by directly

evaluating the corresponding integral. Here we illustrate its evaluation with the use of

replicated orthogonal array sampling. Using orthogonal array design with a strength of 2,

Xi and Xk take on values Xij, j = 1, · · · , S and Xkl, l = 1, · · · , S where S is the number of

symbols (or levels). Based on this design, the mean and variance of Y can be estimated by,
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for any i and k in {1, · · · , K}, i 6= k,

Ȳ =
1

S2R

s
∑

j=1

S
∑

l=1

R
∑

r=1

Y (r)(Xi = Xij, Xk = Xkl)), (15)

and

V (Y ) =
1

SR

S
∑

j=1

S
∑

l=1

R
∑

r=1

[

Y (r)(Xi = Xij, Xk = Xkl)− Ȳ
]2
, (16)

where Y (r)(Xi = Xij, Xk = Xkl) is the output corresponding to Xi = Xij and Xk = Xkl

in the r-th replication (that is, keeping the two inputs at some fixed values and varying all

others). The variance estimator for the expectation conditioned on Xi = Xij and Xk = Xkl

is

Ȳ (Xi = Xij, Xk = Xkl) =
1

R

R
∑

r=1

Y (r)(Xi = Xij, Xk = Xkl) (17)

To approximate the variance of conditional expectation VCE(Xi, Xk), we use

VCE(Xi, Xk) =
1

S2

S
∑

j=1

S
∑

l=1

[

Ȳ (Xi = Xij, Xk = Xkl)− Ȳ
]2
− (18)

1

S2R2

S
∑

j=1

S
∑

l=1

R
∑

r=1

[

Y (r)(Xi = Xij, Xk = Xkl)− Ȳ (Xi = Xij, Xk = Xkl)
]2
,

and the two-way correlation ratio for input pair (i, k) is obtained by normalizing VCE(Xi, Xk)

with the output variance V (Y ). Again, we can also compute the corresponding biased

estimator by ignoring the second term in the above equation.

Finally, we arrive at the following pure two-way interaction effect

V (Xi, Xk) = VCE(Xi, Xk)− VCE(Xi)− VCE(Xk) (19)

where VCE(Xi) and VCE(Xi) can be obtained from the main effect analysis.

This same idea can be applied to the analysis of higher order interaction. For example,

to analyze 3-way interaction, a replicated orthogonal array design of strength 3 can be

used together with the corresponding formulas for computing the variance of conditional

expectations.

5.1 An Improved Two-way Interaction Analysis

Our improved two-way interaction analysis is based on an iterative procedure consisting of

an adaptive orthogonal array sampling scheme (based on our earlier work in [32]) and an

accuracy assessment tool (similar to the one in our improved main effect analysis) to monitor

the convergence of the correlation ratios. As opposed to replicated Latin hypercube designs

which have a sample size growth factor of ≈ 2 per refinement, the sample size growth factor
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for orthogonal arrays is O(K2). Therefore, our improved procedure is less practical than the

improved main effect analysis for large K (for example, K > 5).

In the rest of this section, we first present the refinement algorithm for orthogonal arrays.

We will then describe how to embed this refinement algorithm in the iterative procedure. A

few examples will be given to study the effectiveness of our improved method.

5.2 Refinement for Replicated Orthogonal Arrays

We first denote a replicated orthogonal array by an 4-tuple OA(N ,K,S,t) where N , K, S

and t are the sample size, number of parameters, number of symbols or levels, and strength,

respectively. The number of replications can be recovered by R = N/(S2). We begin with a

fixed R (for example, R = 50) and an initial S (the minimum S depends on K). The basic

idea in the refinement algorithm is similar to that of the Latin hypercube and it consists of

the following two steps: (1) refine each grid cell (in a K-dimensional grid with S partitions in

each dimension) into an SK subgrid; and (2) for each grid cell that already contains a sample

point, an OA(S2, K, S, t) including the existing sample point is created. The refined sample

can be shown to preserve its property as a replicated orthogonal array. A selective random

permutation is then applied to the newly created sample to improve the statistical property

of the refined sample while leaving the original sample points unchanged. The refinement

algorithm (Algorithm RefineOA) consists of the following steps:

Pattern reconstruction: same as in Algorithm RefineLH.

Replication separation: same as in Algorithm RefineLH.

Level refinement: For each pattern matrix Am,m = 1, · · · , R, for another pattern matrix

Bm (called base pattern matrix) from Am by

Bm(i, j) = (dAm(i, j)e − 1) ∗ 2.

New sample insertion: Create the new pattern matrix Ãm: for each row i of B,

1. Form a new OA pattern matrix Ci with OA(S2, K, S, 2).

2. Set Ci ← Ci + [1 1]TBm(i),

3. Permute Ci to have one row matching Am(i) (by first exchanging entries of row 1

of Ci with entries in the same column so that row 1 matches Am(i)).

4. Load Ãm row S2 × (i− 1) + 1 to row S2 × i with Ci.

Sample randomization: same as in Algorithm RefineLH.

Sample concatenation: same as in Algorithm RefineLH.

Sample Generation: same as in Algorithm RefineLH.

An example of refining an OA sample is given in [32].
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5.3 An Adaptive Algorithm for Two-way Interaction Analysis

The OA refinement technique can be used in an iterative procedure to improve the accuracy

of interaction analysis. The algorithm is as follow:

1. Select an initial replicated OA sample with sample sizeN0 = S2
0R. Prescribe a precision

0 < ε < 1. Set Iteration = 0.

2. Set Iteration = Iteration + 1. Then evaluate the model using the current sample.

3. Use the sample inputs and outputs to compute the VCE’s.

4. If Iteration > 1, do the following: for each VCE(Xi, Xk), compute the error eik by

finding the difference between the current and the last VCE(Xi, Xk); else set eik = ε..

5. If max eik < ε, terminate.

6. Apply the Refine algorithm to create a refined OA sample. Then go to step 2.

5.4 Numerical Results

In this section we demonstrate the effectiveness of our modified interaction analysis on two

test examples- one monotonic and one non-monotonic functions.

5.4.1 A Monotonic Test Problem

The first test problem is the following polynomial function given by:

Y = X1 +X1X2 +X3X
3
4 (20)

where Xj is uniformly distributed in [0, 2].

We simulate our iterative algorithm 100 times, each with an initial S of 2 and R = 50.

Figure 4 shows the convergence history of the 3 two-parameter correlation ratios as a function

of N = S2R. Again, because of the randomness in the initial orthogonal array design and

subsequent refinements, each of the 100 simulations goes through a different convergence

path. We again observe that the correlation ratios of all 100 simulations converge to their

true values as S is increased through refinement. In addition, the spread of the correlation

ratios shrinks as S is increased, showing again that larger sample sizes increase the confidence

of the estimations.

5.4.2 A Non-monotonic Test Problem

The second test problem is the Ishigami function [24]:

Y = sin(X1) + 7sin2(X2) + 0.1X4
3sin(X1) Xi ∈ [−π, π], i = 1, 2, 3
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Figure 4: Polynomial function: convergence history for the η2’s (black horizontal lines- true

values)

Once again we simulate our iterative algorithm 100 times, each with an initial S of 2 and

R = 50. Figure 5 shows the convergence history of the 3 two-way correlation ratios as a

function of S. Again, the same trends are observed as before.

6 Summary

In this paper we propose robust first- and second-order variance-based methods for global

sensitivity analysis. Specifically, the use of refinement techniques in stratified sampling

methods such as Latin hypercube and orthogonal array together with the corresponding

analyses has enabled the accuracy assessment and improvement of the correlation ratios. We

have demonstrated the effectiveness of these methods through a few numerical examples.
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