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Constraint on ρ̄, η̄ from B → K∗π
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A linear CKM relation, η̄ = tanΦ3/2(ρ̄ − 0.24 ± 0.03), involving a 1σ range for Φ3/2, 20◦ <

Φ3/2 < 115◦, is obtained from B0 → K∗π amplitudes measured recently in Dalitz plot analyses of

B0 → K+π−π0 and B0(t) → KSπ
+π−. This relation is consistent within the large error on Φ3/2

with other CKM constraints which are unaffected by new b → sq̄q operators. Sensitivity of the
method to a new physics contribution in the ∆S = ∆I = 1 amplitude is discussed.

I. INTRODUCTION

Two anomalous features measured in b → s penguin-
dominated processes have attracted substantial interest
in recent years [1]: (i) CP asymmetries ∆S inB0 → KSX
decays (X = π0, φ, η′, ρ0, ω,KSKS , π

0KS) show a hint
of systematic deviations from standard model predic-
tions, and (ii) the pattern of direct CP asymmetries in
B → Kπ decays is hard to explain using dynamical ap-
proaches based on 1/mb expansion. Are these merely
statistical fluctuations, a sign of our inabilities to reli-
ably calculate the relevant observables, or are they first
hints of new flavor-dependent CP-violating contributions
from new physics at a TeV scale?

In order to answer this question it is important to ob-
tain precise model-independent constraints on the CKM
parameters ρ̄ and η̄ [2] using penguin dominated ∆S = 1
B decays. Comparing these constraints with CKM con-
straints which are not affected by New Physics (NP) in
∆S = 1 decays, e.g., the determination of γ from tree-
dominated processes B → D(∗)K(∗) [3], may provide a
test for the presence of NP in b→ s penguin transitions.

In the present note we study a linear constraint in the
(ρ̄, η̄) plane following from a combination of B0 → K∗π
amplitudes. The method proposed in [4] and devel-
oped further in [5] will be summarized in Section II. The
necessary observables required for applying the method
have been measured recently in Dalitz plot analyses of
B0 → K+π−π0 [6] and B0 → KSπ

+π− [7]. They will be
used in Section III to determine the slope of the linear
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constraint, comparing this constraint with other CKM
constraints. Section IV discusses the sensitivity of this
test to New Physics effects, while Section V concludes.

II. THE METHOD

The main idea of the method [4, 5] is studying ∆I = 1
combinations of B → K∗π amplitudes which do not re-
ceive dominant contributions from QCD penguin oper-
ators, and thus carry a weak phase γ in the absence of
electroweak penguin (EWP) terms. In the present note
we focus our attention on the I = 3/2 final state,

3A3/2 = A(B0 → K∗+π−) +
√

2A(B0 → K∗0π0) . (1)

In the absence of EWP terms γ would be given by

γ = Φ3/2 ≡ −1

2
arg

(

R3/2

)

, (2)

R3/2 ≡ Ā3/2

A3/2
, (3)

where Ā3/2 is the amplitude for charge-conjugated states.

The phase Φ3/2 can be obtained by measuring magni-

tudes and relative phases of B0 → K∗+π− and B0 →
K∗0π0 amplitudes and their charge-conjugates. The ad-
vantage of B → K∗π over B → Kπ decays is that K∗π
quasi–two-body states occur in Dalitz plots of B → Kππ,
where overlapping resonances permit determining both
the magnitudes and relative phases of B → K∗π am-
plitudes. In contrast, the relative phases of B → Kπ
amplitudes cannot be measured directly.

The inclusion of EWP contributions modifies the ex-
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pression for R3/2 which becomes [5]

R3/2 = e−2i[γ+arg(1+κ)] 1 + c∗κr3/2

1 + cκr3/2
, (4)

κ ≡ −3

2

C9 + C10

C1 + C2

V ∗

tbVts
V ∗

ubVus
, cκ ≡ 1 − κ

1 + κ
, (5)

r3/2 ≡ (C1 − C2)〈(K∗π)I=3/2|O1 −O2|B0〉
(C1 + C2)〈(K∗π)I=3/2|O1 + O2|B0〉 . (6)

Here O1 ≡ (b̄s)V−A(ūu)V−A and O2 ≡ (b̄u)V−A(ūs)V−A

are the V-A current-current operators.
The straight line η̄ = ρ̄ tan Φ3/2, in the absence of

EWP terms, is shifted by these contributions along the ρ̄
axis by a calculable finite amount. The actual constraint
becomes [5]

η̄ = tanΦ3/2

[

ρ̄+ C[1 − 2Re(r3/2)] + O(r23/2)
]

, (7)

where (λ = 0.227)

C ≡ 3

2

C9 + C10

C1 + C2

1 − λ2/2

λ2
= −0.27 . (8)

A finite positive shift of the straight line (7) along the ρ̄
axis, given by −C = 0.27, is obtained using next to lead-
ing order values of Wilson coefficients Ci at µ = mb [8].
The theoretical error in this parameter is smaller than
1%. The complex parameter r3/2 was calculated in fac-
torization, which gives a real result of the order of several
percent, r3/2 ≤ 0.05 [4].

A similar but more conservative result is obtained for
r3/2 by applying flavor SU(3) to corresponding ∆S =
0 decay amplitudes. Noting that the operators in the
numerator and denominator in (6) transform as 6 and
15 of SU(3), one finds [5],

r3/2 =
|
√

B(ρ+π0) −
√

B(ρ0π+)|
√

B(ρ+π0) +
√

B(ρ0π+)

= 0.054 ± 0.045 ± 0.023 .

(9)

The first error is experimental. The second error is due
to SU(3) breaking, small ∆S = 0 penguin amplitudes
and small strong phase difference between B → ρπ decay
amplitudes which are neglected.

We have assumed that SU(3) breaking in ratios of
∆S = 1 amplitudes and corresponding ∆S = 0 ampli-
tudes introduces an uncertainty of 30% in these ratios.
The B → ρπ phase difference is expected to be sup-
pressed by 1/mb and αs(mb) [9, 10]. Indeed, evidence
for a small phase difference is provided by an isospin
pentagon relation obeyed by measured B → ρπ ampli-
tudes [5]. The error in (7) from neglecting this small
strong phase difference is negligible because Re(r3/2) de-
pends quadratically on this phase. We will use the cal-
culation (9) for r3/2 which is more conservative than the
one using factorization.
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FIG. 1: Geometry for Eq. (1) and its charge-conjugate, using
notations A+− ≡ A(B0 → K∗+π−), A00 = A(B0 → K∗0π0)
and similar notations for charge-conjugated modes.

A simple test following from Eq. (4) and a real value
of r3/2 is

|R3/2| = 1 . (10)

This quantity is expected to be approximately one also
for complex but small values of r3/2 as predicted in the
Standard Model. We expect that the approximation,

0.8 < |R3/2| < 1.2 , (11)

holds also in the presence of new physics contributions
which we assume to be small.

Combining in quadrature the two errors in r3/2, the
constraint (7) becomes

η̄ = tanΦ3/2 [ρ̄− 0.24 ± 0.03] . (12)

The dominant uncertainty in this linear constraint origi-
nates in r3/2. It leads to an uncertainty of merely ±0.03
in a parallel shift of the straight line along the ρ̄ axis.
This uncertainty is intrinsic to this method and cannot
be reduced significantly without an additional input [5].
The current experimental error in the measurement of
Φ3/2, which we discuss next, will be shown to introduce
a considerably larger uncertainty.

III. DETERMINING Φ3/2

Using Eqs. (1) and (2), the phase Φ3/2 can be deter-
mined by measuring the magnitudes and relative phases
of the B0 → K∗+π−, B0 → K∗0π0 amplitudes and their
charge-conjugates. A graphical representation of the tri-
angle relation Eq. (1) and its charge conjugate is given
in Fig. 1.

The above four magnitudes of amplitudes and the
two relative phases, φ ≡ arg[A(B0 → K∗0π0)/A(B0 →
K∗+π−)] and φ̄ ≡ arg[A(B̄0 → K̄∗0π0)/A(B̄0 →
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Mode Branching ratio ACP

K∗+π− 10.4 ± 0.9 −0.14 ± 0.12

K∗0π0 3.6 ± 0.9 −0.09 ± 0.24

TABLE I: Branching ratios in units of 10−6 and CP asymme-
tries in B0 → K∗π [6, 11].

K∗−π+)], determine the two triangles separately. These
quantities have been measured recently in a Dalitz plot
analysis of B0 → K+π−π0 and its charge-conjugate [6].
The relative phase ∆φ ≡ arg[A(B0 → K∗+π−)/A(B̄0 →
K∗−π+)], which fixes the relative orientation of the two
triangles, has been measured in a time-dependent Dalitz
plot analysis of B0 → KSπ

+π− [7].

Table I quotes CP-averaged branching ratios and CP
asymmetries for B0 → K∗+π−, B0 → K∗0π0 using
Refs. [6] and [11]. A value ∆φ = (−164±30.7)◦ was mea-
sured in B0(t) → KSπ

+π− [7]. The experimental situa-
tion is less clear for the phases φ and φ̄, measured recently
in an amplitude analysis performed for B0 → K+π−π0

and its charge-conjugate [6]. Four solutions correspond-
ing to minima in χ2 were found. Because of low statistics
essentially all values of φ in the range −180◦ ≤ φ ≤ 180◦

and most values of φ̄ in this range are allowed at 1σ.

In order to calculate the χ2 dependence on Φ3/2 we

use the χ2 dependence on φ and φ̄ given in Ref. [6], as-
suming gaussian errors for ∆φ and for branching ratios
and CP asymmetries in B0 → K∗+π− and B0 → K∗0π0.
Potential correlations between φ, φ̄ and branching ratios
and asymmetries are neglected. Two resulting χ2 plots as
function of Φ3/2 are shown in Fig. 2. The broken purple
curve corresponds to an unconstrained |R3/2|, while the
solid blue curve is obtained by imposing the constraint
(11), which is expected to hold in the Standard Model
and in the presence of small new physics contributions.
The latter curve defines a 1σ range,

20◦ < Φ3/2 < 115◦ . (13)

Thus, a large range of values is permitted for tan Φ3/2,
the slope of the linear constraint (12).

Fig. 3 shows the linear constraint (12) with the large
range of slopes (13) overlaid on CKMFitter results fol-
lowing from [11, 12] |Vub|/|Vcb| = 0.086±0.009, obtained
in semileptonic B decays, and values β = (21.5 ± 1.0)◦,
α = (88 ± 6)◦ and γ = (53+15

−18 ± 3 ± 9)◦ [13], obtained

in B → J/ψKS , B → ππ, ρρ, ρπ and B+ → D(∗)K(∗)+,
respectively. The latter constraints are unaffected by po-
tential NP in ∆S = 1 processes. They are consistent
with the new constraint obtained in B → K∗π, which
however involves a large experimental error in Φ3/2. The
theoretical error in this constraint [±0.03 in Eq. (12)]
is very small and is described by the difference between
dark and light shaded regions in Fig. 3.
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FIG. 2: χ2 dependence on Φ3/2 for unconstrained |R3/2| (bro-
ken purple line) and for 0.8 < |R3/2| < 1.2 (solid blue line).

A black horizontal line at χ2 = 1 defines 1σ ranges for Φ3/2.

FIG. 3: Constraint in the ρ̄− η̄ plane following from Eqs. (12)
and (13). The dark shaded region marked K∗π 1σ corre-
sponds to the experimental error on Φ3/2 given by the 1σ
range (13), while the light shaded region includes also the
error on r3/2 (9). Also shown are CKMfitter constraints ob-
tained using |Vub|/|Vcb|, β, α, γ and ∆md [12].

IV. SENSITIVITY TO NEW PHYSICS

As has already been stressed, new physics (NP) ∆S =
1 contributions may lead to an inconsistency between the
linear constraint (7) in penguin dominated B → K∗π de-
cays and values of |Vub|/|Vcb|, β, α and γ obtained in the
above-mentioned processes. The constraint (7) is affected
by ∆I = 1 NP operators, while NP contributions from
potential ∆I = 0 operators drop out. A general discus-
sion of ways for distinguishing between NP in ∆I = 0
and ∆I = 1 b→ s transitions can be found in Ref. [14].

In order to study the sensitivity of the Standard Model
constraint (7) to new ∆S = 1,∆I = 1 contributions, we
recall the origin of this constraint. The I = 3/2 ampli-
tude consists of complex tree and EWP terms, T and
PEW , both of which involve strong phases,

A3/2 = Teiγ − PEW . (14)



4

The ratio [5]

PEW
T

= |κ|1 − r3/2

1 + r3/2
(15)

involves the parameter κ defined in (5), which has some
dependence on CKM matrix elements whose central val-
ues correspond to |κ| ≃ 0.66.

Allowing for a NP term ANP exp(iψ), where ANP in-
volves a CP conserving strong phase while ψ is a new
CP-violating phase, the ∆I = 1 amplitude becomes

A3/2 = Teiγ − PEW +ANP e
iψ . (16)

The NP term can be reabsorbed quite generally in rede-
fined tree and electroweak penguin-like contributions, T̄
and P̄EW , without changing the structure (14) [15],

A3/2 = T̄ eiγ − P̄EW . (17)

Here

T̄ = T +ANP
sinψ

sinγ
,

P̄EW = PEW +ANP
sin(ψ − γ)

sin γ
. (18)

(Several NP terms in (16) would translate into a sum of
NP terms in (18).) The amplitudes T̄ and P̄EW can be
used to define a parameter r̄ in analogy to Eq. (15),

P̄EW
T̄

= |κ|1 − r̄

1 + r̄
. (19)

The effective parameter r̄ leads to a modification of the
linear constraint (7). For large values of r̄ this constraint
becomes nonlinear.

Assuming perfect measurements of B → K∗π ampli-
tudes including relative phases and a given value of κ, a
criterion for an observable NP amplitude is provided by
requiring that r̄ lies outside the range of values (9) al-
lowed for r3/2. Because of these small values, in general
this criterion holds also for rather small values of ANP
relative to T and PEW , which by themselves are subdom-
inant to a dominant penguin amplitude in B → K∗π. An
exception is a singular case where the weak phases ψ and
γ are related by

sin(ψ − γ)

sinψ
=
PEW
T

, (20)

for which P̄EW /T̄ = PEW /T is independent ofANP . One
expects low sensitivity to NP also in the near vicinity of
these discrete values of ψ. In the following discussion we
will assume a value γ = 60◦.

Denoting

qNP =
ANP
PEW

(21)
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FIG. 4: Values of |qNP | and ψ providing a signal for NP,
assuming γ = 60◦. NP corresponds to points outside the dark
area given by real values of r̄ obeying Eq. (22), or beyond the
extended light area given by complex r̄ with a phase in the
range (23).

and assuming real qNP , we plot in Fig. 4 values of |qNP |
as a function of ψ, for which r̄ is real and lies in the range

0.054 − 0.051 < r̄ < 0.054 + 0.051 . (22)

The points cover the dark area in Fig. 4. The region
outside this area, including for most values of ψ rather
small values of |qNP |, |qNP | < 0.2, implies a high sensi-
tivity to an observable NP amplitude. The spikes around
ψ ∼ ±90◦, implying very low sensitivity, correspond to
solutions of (20) and nearby lying values of ψ.

A more conservative criterion for an observable NP
amplitude is obtained by allowing qNP and r̄ to involve
complex phases. Since the strong phase of r3/2 is ex-
pected to be suppressed by 1/mb and αs(mb), we use a
range

− 30◦ < arg(r̄) < 30◦ . (23)

Combining this with the bounds (22) on |r̄| leads to the
light area in Fig. 4 which extends only slightly beyond
the dark area. The region outside this area corresponds
to potentially observable NP amplitudes. The small dif-
ference between the dark and light areas follows from the
fact that the sensitivity of the required value of qNP is
quadratic in arg(r̄) for small values of this phase.

V. CONCLUSION

Magnitudes and phases of B0 → K∗π decay am-
plitudes, extracted in Dalitz plot analyses for B0 →
K+π−π0 and B0 → KSπ

+π−, are used for obtaining the
linear constraint (12) in the ρ̄, η̄ plane, where Φ3/2 lies in
a 1σ range (13). This constraint is consistent with other
CKM constraints which are unaffected by NP ∆S = 1 op-
erators. The dominant error in the slope of the straight
line is purely experimental, while a much smaller the-
oretical uncertainty occurs in a parallel shift along the
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ρ̄ axis. This small theoretical uncertainty is shown to
imply in principle a high sensitivity to a New Physics
∆S = 1,∆I = 1 amplitude.

The method presented here has some similarity to a
method for determining γ in B+ → Kπ, which is based
on a complex triangle relation [16],

A(B+ → K0π+) +
√

2A(B+ → K+π0) = 3A3/2

= (T + C)(eiγ − δEW ) , δEW = 0.66 ± 0.05 . (24)

The determination of γ neglects a small annihilation am-
plitude in B+ → K0π+ and assumes flavor SU(3) for
calculating δEW and for relating T +C to the amplitude
measured in B+ → π+π0. SU(3) breaking corrections,
affecting γ to leading order, are treated by assuming fac-
torization. This method determines γ up to a two-fold
discrete ambiguity.

In contrast, in the method applied here to B0 → K∗π
SU(3) symmetry is assumed only for calculating the small

parameter r3/2, the equivalent of which vanishes in B →
Kπ in the SU(3) symmetry limit. This has a very small
effect on the parallel shift of the linear constraint (7)
along the ρ̄ axis. The determination of the slope of this
straight line involves no discrete ambiguity.
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