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Abstract

The meticulous development of the differential equations of motion (EOM) and related analysis for syn-
chrotron oscillation has extended over decades [see, for example, references [1], [2], and [3]], but the parallel
treatment of the difference equations (turn-by-turn mapping) is less developed. The author has written the differ-
ence equations for the mapping[4], that is to say the difference equation EOM, but has not carried the fundamental
development much further. A companion paper[5] is an effort to reconcile difference EOM and differential EOM.
Practically one finds that both techniques generally give the same numerical solution when applied to precisely
the same physical system. However, it is incorrect to assume that the two methods are mathematically equivalent;
there are circumstances in which the distinction between them is material. This note develops the commonality
of the two formalisms.

I ntroduction

The complete nonlinear turn-by-turn map (difference equation EOM) was developed by the author using an idealized
representation of a sychrotron[4]. In a companion paper[5], an attempt was made to connect the difference EOM to
the typical differential treatment. Practically the latter paper succeeded, but there were a couple of points bypassed
with plausibility arguements. In current efforts to supplement computer modeling of coupled bunch motion with

a peturbative solution of the time-dependent Vlasov equation, the distinction between finite time differences and

differentials has been an obstacle that has prompted reconsideration of this topic.

A natural way to develop the two methods in a parallel fashion may be to write the conservation of phase space
area, that is, the basis of the Vlasov equation, in difference form. This idea is not developed further, but a direct
application to numerical solutions seems reasonable. The agenda here is to obtain differential EOM as close as
practicable to the mapping. In the next section it is argued that the difference equations are more fundamental and
that discrepency between them and the cognate differential equations results from the assumptions made in deriving
the differential equations. The three sections following are devoted to deriving the difference equations. Following
that is a section constructing the differential equations and a section on the Hamiltonian and Vlasov equation. Before
summarizing in the final section, | indicate how multibunch distributions can be included in the Vlasov equation
framework.

The Root of the Distinction

A fundamental difference between the differetial EOM and a turn-by-turn mapping is the intial assumption in the
prior case that the acceleration and the motion around the ring are simultaneous, whereas in the latter case it is
assumed that beam spends most of a circulation period in force-free drift and receives one or a few practically
instantaneous energy increments per beam turn. Furthermore, parameter changes are assumed to be adiabatic. Th
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subject of adiabaticity is a an area of ongoing controversyune with what appears to be the temper of current
papers, | exhibit the adiabaticity parameteand assert that fdry| < .25 a process may be regarded as adiabatic:

%IDSB(Q)

1
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wherea(t) is any parameter§ is the area of the phase stable region (so-called bucke, @@, is the small
amplitude synchrotron oscillation angular frequency. mhmber .25 is a bit arbitrary, but it is rather conventional.
As long as there is some finite value @ffor which nonadiabatic effects are negligible, the follogridiscussion

is justified. Because the accelerators considered are ytnahs not betatrons, the isolated energy kick model is
closer to the physical system. However, there are quantib@tinuous in time that may change fast enough that the
adiabatic assumption is not justified. The remedy is to mEpthe single turn map by iteration of partial turn maps
for each of whicha is acceptably small. Conceptually this is moving in the ctimn of the differential EOM by
going part way to the LimA ¢ — 0.

Forest[6] has demonstrated that any drift-kick algoritlomgolving the differrential EOM is an approximate but
fully symplectic integrator. Conversely, the differehéguation is a symplectic approximate contiuous represent
tion of some mapping. Therefore, one may use standard &slgchniques developed in the context of differential
equations over many years by many individuals. There wilhbeiolation of area conservation in doing so. What
is yet missing is what differential Hamiltonian to use. Gitbe distinction between the initial assumptions, it is not
obvious that the standard Hamiltonian is the closest coatia representation of the difference equations. There-
fore, | follow the course from the difference equations te thfferential Hamiltonian followed in the differential
equations paper[5] with improved mathematical detail. $teps are to find closely cognate differential EOM and
construct a Hamiltonian from them.

Derivation of the Difference EOM

In following sections a careful but elementary derivatidithe single-particle difference equations (single turrpjna
for the longitudinal degree of freedom of beam particlesrindealized synchrotron is given. The map is applicable
to the simulation of effects of rf parameter programs oreative forces.[7]

A particle circulating in a synchrotron on a trajectory ofaneadiusk = C'/(27) has average angular velocity

w=v/R , (2

wherew is the speed of the particle. Suppose for simplicity thatehe a single accelerating gap. If the frequency
and amplitude of the rf is set so that the particle receiveatexter energy increment is required to kdefixed at

R, as the magnitude of the average vertical magnetic {iBlg) changes, then the particle is called a synchronous
particle, the orbit it follows is the synchronous orbit, atgdtrajectory is a synchronous trajectory. Imagine logkin
at the output of a beam current pickup with an oscilloscop¢ltls its time base synchronized to the rf system. The
signal from the synchronous patrticle is at a fixed locatioth@sweep turn after turn. The observed current pulse is
the sum of signals from many particles with non-synchrortaajectories. In the conventional operating mode there
will be a stable current pulse about the synchronous time mamy beam turns; that is, the particle motion is such
that trajectories near a synchronous trajectory at one tamain near it for long times. This stability results from
so-called “phase focusing” arising from the slope of the af/eform at the synchronous phase. When the slope has
the same sign a% the change in circulation frequency with respect to plrtmergy, it provides a force directed
toward the synchronous particle. For a sinusoidal voltageeform there are two phases per period at which the
amplitude yields the correct energy increment. Howeverstape of the waveform has opposite sign at these points.
The term “synchronous phase” is reserved for the phase atwitée slope of the waveform leads to phase focusing.
If the rf system goes through cycles during the particle circulation period, there Agynchronous trajectoriés.

Depending orh and the momentum aperture there may be &lso1 faster moving synchronous particles andiof 1 slower moving
ones, but this possibility is not usually realized in preeti



Table 1: Meaning of symbols in equations and text

Symbol  Meaning

Q@ adiabaticity parameter

Sp the area of a phase stable region, the so-called bucket area
Do the momentum [MeV/c] on the reference trajectory

To period of a particle following the reference trajectory [s]

h harmonic number of a synchronous rf system

O synchronous phase of rf [deg]

1% maximum amplitude of the rf waveform

ws,wsn  angular frequency of beam circulation
Qs,Qs,, angular frequency of synchrotron oscillation

R mean radius of an orbit

R, Rs,, mean radius of the orbit of a synchronous particle
R, mean radius of the reference orbit

Rin mean radius of the orbit of thé" particle on the:'" turn
C the length of an orbitC' = 27 R

Cin the length of the orbit of thé" particle on the:*" turn

v the mean orbital speed

vs, Vs the mean synchronous speed

Tes Tsm period of circulation of a synchronous patrticle

Tin time coordinate of*" particle on thex*® turn relative to the synchronous time

Tijn time coordinate of*" particle inj*" bunch om!" turn relative to the'*" synchronous time

Because in the typical circumstance particle trajectosiesrestricted to the neighborhood of a synchronous
trajectory by phase focusing, it is convenient to write thaations for general trajectories in differences of energy
and coordinate from a synchronous trajectory so that ona lcasiventional oscillatory system for the typical case
of synchronous acceleration. However, there are othemesgbf longitudinal motion of interest like, for example,
the perturbed drifting motion in phase displacement acatita. In this case the synchronous trajectory moves
rapidly through the region of longitudinal phasespace pmmliby beam particles and may start and end outside the
physical aperture. Then the (hypothetical) synchronoutici&is quite distinct from the beam particles, and, if the
equations of motion are to be useful in this case also, thest mat depend on assumptions about small differences
between the synchronous trajectory and the trajectorié®af particles. The derivation below retains the idea of
synchronous particle and difference coordinates but awtiifierential approximations for differences of quaesti
between the particle trajectory of interest and the synabue trajectory.

The definition of “synchrotron” generally includes a staggrnabout the constancy of the reference or syn-
chronous trajectory. In what follows this restriction whk loose, allowing small changes in the radRisof the
synchronous orbit independent of the reference orbit atisaB, to which the guide field properties are referred.
Furthermore, although the derivation is written for a stngtcelerating gap and a difference step of one circulation
period to keep the notation simple, the generalization ttiiph& gaps and shorter or longer time steps is straightfor-
ward.



1 Fundamental Equationsin (t,E) Coordinates

Consider the sequence of arrival times of thth particle at the one rf gay 1, ¢; 2, . . . , t; , Where the end of the
n-th turn is marked by the-th crossing of the gap. There is a recursive relation

Ci,n 27TRZJL
= ti,n—l

)
Vin ﬁi,nc

ti,n = ti,n—l + (3)

whereC; ,, is the length of the orbit for théth particle,R; ,, is the average radius of its orbit, angd, is its average
speed. Define finite differencésk and A S by

R = (1+AR/Rsn)Rsp (4)
5 = (1 +A6/5s,n)ﬂs,n . (5)
Then
27TRs7n ) 1+ ARZ‘,”/RSW
58,710 1+ Aﬂi,n/ﬂs,n
whereT ,, is the circulation period for the synchronous particle amels; , = w,,/wi, ~ 1 may be called the
“slip factor”. The slip factor is 1 + the fraction of a synchiaus circulation period which the particle of interest

gains or loses with respect to the synchronous particleyser At the end of a turn the particle receives an energy
increment which depends, of course, on the voltage on thegduat time:

tin =tin-1+

=tin-1+ Ts,nSi,n s (6)

Ei,n = Lign—1 + 6V(¢n) = Ei,n—l + ev(hws,nTs,nSn) ) (7)

where synchronization af has been taken into account so that the contributid\ath from NV prior turns has no
effect. Also because of synchronization the rf frequendy.s,,.

These equations can be read as a mapputgpf a point ¢;,,—1, F; ,—1) to another pointt ,, E; ,) in the
(t, ) plane. The equations are supposed to represent a comsemaicess; thus, the mapping should conserve
phasespace area. The Jacobian determinant is

o a(ti,rw Ei,n) .
J(M) B 8(ti,n—17Ei,n—1) B

‘El. (8)

Therefore, phasespace area is conserved and the sequengelyf, for differentn lie on a curve of constant/

for some Hamiltoniar?. The mapM is in the form of an acceleration-free drift in which the adioatet changes
followed by an impulse in which only the conjugate momentlahanges. Forest[6] points out that any map with
these properties will be area preserving. It also represemtapproximate, but exactly symplectic, integrator of a
related continuous Hamiltonian system. In the present, ¢temseever, the related system is considered a continuous
approximation to an impulsive system of interest.

So far an idealized system has been treated essentiallylyexblowever, the system described is not a very
exact model of a physical synchrotron. Ddme[8] points tiait to describe fully the longitudinal dynamics in a
synchrotron one must consider the contribution to the farcehe particle from the changing magnetic figldg.,
what is generally called betatron acceleration. This farcis continuously around the the machine. It is, however,
small compared to the rf force. If one uses an impulsive appration for the betatron acceleration one makes
a small discretization error in a small term. Furthermorecause changes in the betatron acceleration will be
adiabatic, its explicit inclusion is not required. The treynchronous phase will be very slightly different from
the synchronous phase calculated fromlone, but for typical cases this discrepency is small amdevent to the
purpose of the calculation. In a case where it is a centradideration, the betaron acceleration contribution can be
included as described in ref. [5].



2 Convenient Coordinates

The difference equations egs. 6 and 7 are based on compheimiy¢ulation speed of thieth particle to that of
the synchronous particle but nonetheless are written indimates of integrated circulation time and total energy. |
is more natural to consider differences in arrival time anergy between théth and the synchronous patrticle:

Tin = tin—Tlsn

n
= tip— Z Ts,m
m=1

n—1
ti,n—l + Ts,nSi,n — Ts,;n — Z Ts,m
m=1
= Tin-1+t (Sz,n - 1)Ts,n . (9)
The difference; ,, between the energy of thieth particle and the synchronous particle satisfies

€in = Eip—1t ev(hws,n[Ti,n + ts,n]) - ev(ws,nts,n)
= &in—1 + eV(hws,nTi,n + Qbs,n) - ev(¢s,n) ; (10)

whereg; ,, is the synchronous phadeg., the phase of the rf at the arrival time of the synchronoutgha The¢
coordinate is redefined so that the particle at 0 receives the synchronizing energy increment. Then,

€in = Ein-1+ eV (hwsnTin) —eV(0) . (11)

The steps above have been taken considering a single buridn thvere are multiple bunches or rf systems with
different harmonic number running concurrenly, it is cameat to use the h=% and designate by;; the r relative
to the synchronous phase for tjf€ bunch. The synchronous phase recurs at the centers

(G—1/2)1sp/h, j=1,...,h

of the h bucket intervals.
1. Tsm

Tigmn = Ti;n — (J— §)T (12)
Note from the definition of5,,, that when a particle is traveling faster than the synchuermarticle,r; , < 7; 1.
Thus particles travel in the  sense. This definition is not entirely conventional, bus ikonvenient. If it is desired
to have the particles circulate in thier sense, the slip factor can be written accordingly. Thequation eq. 9
becomes

n— 1)Tsn. (13)

If N cavities are equally spaced about the ring, have the sartegeoland are phased to have the same phase
for the synchronous particle, the effect is represented agpmmg each turn withiv applications of the map with
1/N of the total voltage and/N of the phase slip in each iteration. One can see that in ptendiis possible to
treat an arbitrary spacing of cavities with differing disgien between them by representing each of the sections
with different coefficients in the difference equationsmfly because the accelerator being modeled has more than
one rf gap does not mean, of course, that one should nedgssaimultiple maps per turn. The phase slip between
gaps is usually very small so that the approximation of oneyra is generally excellent. Because the differential
equation, which in some sense corresponds to an infinite eauoflgaps per turn, generally gives results consistent
with the one-turn map, one will map more than once per turg onlinusual circumstances. The small amplitude
synchrotron tune is a measure of the phase change per turexiéeeds O(0~2), a mapping step of one turn is
rather coarse, and it could be important to represent mawately the actual distribution of the cavities.

Just as the circumference can be subdivided by multipldieaythe drift can be broken into as many segments
as the adequate discrete approximation to any continualisigbuted force may require. In particular, when one

Ti;m = Tizn—1 = (S,

5



evaluates the effect of beam spacecharge in high intensfoalow energy accelerators, it may not be adequate
to approximate the force with a single kick per turn. Kosuggk has found[9] spurious clumping and breakup of
the distribution when the integration step for the spaceghéorce is too large. However, the drift equation can be
applied separately for each of the requisite number of satgwéth spacecharge kicks interspersed. Techniques for
finding the spacecharge forces from the particle distrilbuéire discussed elsewheeeg., in refs. [10] and [11].

3 Construction of Cognate Differential Equations

The reader should note that the differential equationsabet‘constructed”, not derived. The following treatment
is probably respectable to physicists but may be imperfethematically. However, the goal is only to construct
an appropriate Hamiltonian to allow use of the tools of asialyor perturbation calculations for checking results
of mapping. The grounding of the construction in the differe equations establishes strong parallels between the
differential EOM and the map. The difference equations wsedhe single bunch forms eq. 9 and eq. 11 to keep
the notation simple. They may be recast as

AT, = (Sn - 1)Ts,n (14)

and .
Aep = eV[f(9) = f(O)] , (15)

where f(¢) has amplitude one and is periodic with perid/ .. Dividing each side of egs. 14 and 15 hy,, one
has

AT
—=5,-1 16
N (16)
and .
Ae  eV[F(T)]
AT 4"

whereA t has been taken as,, and f(¢) — f(0) has been expressed as a function of; ,, is much smaller than

27 /€, SO ONe can say
A d

Tom Tt

Making the approximation natural in the differential eqoatcontext that the rf potential is distributed around the
ring and the ansatz that it is the same in the inter\f@?s 1 <x < oo,

Tsj/x ~ % . (18)
The Limit At — 0 is the same as Limit — oo. Thus one may (plausibly) write
F=8-1 (19)
and .
- V)] @0

Using the lowest order term in the Taylor series foand.S — 1 one can write the differential equations eqgs. 19
and 20 in an intuitively appealing form.

. s
- = 250 cos(hwsT) (22)
€= g eV cos(hwsT



When V is sinusoidal,

. hw? A
€= gev cos(¢ps)T . (23)
With a change of variabfe
2
_ w0 Es (24)
n
and simplication using the small amplitude synchrotrodiency
9 _ehwgn coS¢s
Qs - 27Tﬁ2Es ’ (25)
egns. 21 and 23 become
7= Qe (26)
and
€= —Qs7 . 27)
4 TheHamiltonian and Vlasov equation
The Hamiltonian for the linearized differential equatid@Gand 27 is
Hloz%(72+62) ) (28)

where the “1” represents the order of approximation and €fids‘a place holder for a perturbation index so that
the order index will not be confused with the order of someéupbation. The: energy variable will be retained and
S, — 1 will be modified to

G(e) = Sp(e) —1— 277ESE . (29)

The first term inF'(7) also will be written separately so that the full nonlinedfedential equations may be repre-
sented as

7 = Q4le + G(e)] (30)
and
¢ =—Q4r+ F(1)] . (31)
Therefore, to any order in ande
Hy = % [7‘2 + e 42 (/ G()dé€ —l—/ F(r')d, Tlﬂ : (32)

Notice that no term in either EOM is a mixed product of powetrs andr.
When the EOM are in the canonical Hamiltonian form

) ) |

_ 7 = _ 33
i=3, 1P g (33)
the general form of the time-dependent Vlasov equation is
/)
ov 0HO OH 0V (34)

9t Op0g g 0p

2suggested by Ruebén Méndez Rodriguez (priv. comm.) liglatly different context




whereV is the phase space density distribution. Usually it is pntd&d adequate to look for a peturbative solution.
A typical way to proceed is to find &, satisfying the time independent equation

0T, 0V,
q 94 +p R =0, (35)

where the EOM are used to replace the coordinate partiald bfy time derivatives. Then the Hamiltonian is
separated a#ly + H; and the solution isl = ¥, + ¥,. The perturbation ansatz is that for weak perturbation or
small timeW¥ ~ W,. StationaryV, is guaranteed ift, = ¥((H). Because generally well localized bunches are
wanted, the elliptical, also known as Hoffman-Pedersehdi&tribution is frequently used:

_ 3N ~2 2 2 %
Uo(1,€) = 573 {T —ef =7 } , (36)
where7 is the half bunch length an is the number of particles in the bunch. For small amplitustelnearized
EOM in general, the bunch is symmetric with exterit aboutp,. However, the definition of the elliptical distribu-
tion is not limited to a parabolic potential. The linear dedensity is

3N

A7) = 15

(72 =77 . (37)

Application to Multibunch Distributions

As suggested in sec. 2, the inclusion of multiple bunchesaiera notational challenge than a conceptual one. Ba-
sicly the same machinery is used, but the bookkeeping is menbsed. For single particle motion, the Hamiltonian
for h bunches is a sum df nearly identical expressions like that fék, in eq. 32. Purely local collective forces
like that from comoving images or spacecharge can be indlideach single bunch term. When the bunches are
coupled by wake fields, the collective effect can be addedhdg,avhich is almost always taken as a perturbation
to the uncoupled motion. The perturbative solution coasistessence of solving the single bunch problems that
include a potential, which varies from bunch to bunch, daked from the unperturbed beam current

h
Ib,O = >\(7—)'Us = Us Z /\O(Tj) ) (38)
i=1

where v, is the synchronous velocity and the subscript O indicatas Xhs evaluated from¥ry. Adopting the
elliptical distribution for each bunch and assuming therdadentical, only one single bunch distribution is needed
to construct¥y. This perscription is adequate for calculating threshalad initial growth rates for coupled bunch
instability, but a detailed calculation of the unstable imis most practically approached from the EOM.

Summary

The EOM for synchrotron oscillation have been considerdt bs finite difference equations (map) and as ordinary
differential equations. It has been shown that the two aggires are very closely related but differ by a fundamental
distinction which is ocasionally important in practice. hlis been argued that, properly parameterized, a map is
more fundamental than the cognate differential equatiodsi®a more faithful model of the physical system. The
possibility of an easily negotiated investigation of sommetdi approach to the limiN¢ — oo is developed in

ref. [13]. In this reference a scaling of the map by a paramiég is the reciprocal of the appearing eq. 18 is
introduced. Because the purpose of that paper is to expanihtle step to save computing time, valuescof: 1.

are emphasized, but the possibilityzof> 1 is noted.
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