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Abstract

The meticulous development of the differential equations of motion (EOM) and related analysis for syn-
chrotron oscillation has extended over decades [see, for example, references [1], [2], and [3]], but the parallel
treatment of the difference equations (turn-by-turn mapping) is less developed. The author has written the differ-
ence equations for the mapping[4], that is to say the difference equation EOM, but has not carried the fundamental
development much further. A companion paper[5] is an effort to reconcile difference EOM and differential EOM.
Practically one finds that both techniques generally give the same numerical solution when applied to precisely
the same physical system. However, it is incorrect to assume that the two methods are mathematically equivalent;
there are circumstances in which the distinction between them is material. This note develops the commonality
of the two formalisms.

Introduction

The complete nonlinear turn-by-turn map (difference equation EOM) was developed by the author using an idealized
representation of a sychrotron[4]. In a companion paper[5], an attempt was made to connect the difference EOM to
the typical differential treatment. Practically the latter paper succeeded, but there were a couple of points bypassed
with plausibility arguements. In current efforts to supplement computer modeling of coupled bunch motion with
a peturbative solution of the time-dependent Vlasov equation, the distinction between finite time differences and
differentials has been an obstacle that has prompted reconsideration of this topic.

A natural way to develop the two methods in a parallel fashion may be to write the conservation of phase space
area, that is, the basis of the Vlasov equation, in difference form. This idea is not developed further, but a direct
application to numerical solutions seems reasonable. The agenda here is to obtain differential EOM as close as
practicable to the mapping. In the next section it is argued that the difference equations are more fundamental and
that discrepency between them and the cognate differential equations results from the assumptions made in deriving
the differential equations. The three sections following are devoted to deriving the difference equations. Following
that is a section constructing the differential equations and a section on the Hamiltonian and Vlasov equation. Before
summarizing in the final section, I indicate how multibunch distributions can be included in the Vlasov equation
framework.

The Root of the Distinction

A fundamental difference between the differetial EOM and a turn-by-turn mapping is the intial assumption in the
prior case that the acceleration and the motion around the ring are simultaneous, whereas in the latter case it is
assumed that beam spends most of a circulation period in force-free drift and receives one or a few practically
instantaneous energy increments per beam turn. Furthermore, parameter changes are assumed to be adiabatic. The
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subject of adiabaticity is a an area of ongoing controversy;in tune with what appears to be the temper of current
papers, I exhibit the adiabaticity parameterα and assert that for|α| ≤ .25 a process may be regarded as adiabatic:

α =
d
d t

ln SB(a)
d
d t

ln Ωs(a)
, (1)

wherea(t) is any parameter,SB is the area of the phase stable region (so-called bucket area), andΩs is the small
amplitude synchrotron oscillation angular frequency. Thenumber .25 is a bit arbitrary, but it is rather conventional.
As long as there is some finite value ofα for which nonadiabatic effects are negligible, the following discussion
is justified. Because the accelerators considered are synchrotrons not betatrons, the isolated energy kick model is
closer to the physical system. However, there are quantities continuous in time that may change fast enough that the
adiabatic assumption is not justified. The remedy is to replace the single turn map by iteration of partial turn maps
for each of whichα is acceptably small. Conceptually this is moving in the direction of the differential EOM by
going part way to the Lim∆ t → 0.

Forest[6] has demonstrated that any drift-kick algorithm for solving the differrential EOM is an approximate but
fully symplectic integrator. Conversely, the differential equation is a symplectic approximate contiuous representa-
tion of some mapping. Therefore, one may use standard analytical techniques developed in the context of differential
equations over many years by many individuals. There will beno violation of area conservation in doing so. What
is yet missing is what differential Hamiltonian to use. Given the distinction between the initial assumptions, it is not
obvious that the standard Hamiltonian is the closest continuous representation of the difference equations. There-
fore, I follow the course from the difference equations to the differential Hamiltonian followed in the differential
equations paper[5] with improved mathematical detail. Thesteps are to find closely cognate differential EOM and
construct a Hamiltonian from them.

Derivation of the Difference EOM

In following sections a careful but elementary derivation of the single-particle difference equations (single turn map)
for the longitudinal degree of freedom of beam particles in an idealized synchrotron is given. The map is applicable
to the simulation of effects of rf parameter programs or collective forces.[7]

A particle circulating in a synchrotron on a trajectory of mean radiusR = C/(2π) has average angular velocity

ω = v/R , (2)

wherev is the speed of the particle. Suppose for simplicity that there is a single accelerating gap. If the frequency
and amplitude of the rf is set so that the particle receives whatever energy increment is required to keepR fixed at
Rs as the magnitude of the average vertical magnetic field〈By〉 changes, then the particle is called a synchronous
particle, the orbit it follows is the synchronous orbit, andits trajectory is a synchronous trajectory. Imagine looking
at the output of a beam current pickup with an oscilloscope that has its time base synchronized to the rf system. The
signal from the synchronous particle is at a fixed location onthe sweep turn after turn. The observed current pulse is
the sum of signals from many particles with non-synchronoustrajectories. In the conventional operating mode there
will be a stable current pulse about the synchronous time over many beam turns; that is, the particle motion is such
that trajectories near a synchronous trajectory at one timeremain near it for long times. This stability results from
so-called “phase focusing” arising from the slope of the rf waveform at the synchronous phase. When the slope has
the same sign asdω

dE
, the change in circulation frequency with respect to particle energy, it provides a force directed

toward the synchronous particle. For a sinusoidal voltage waveform there are two phases per period at which the
amplitude yields the correct energy increment. However, the slope of the waveform has opposite sign at these points.
The term “synchronous phase” is reserved for the phase at which the slope of the waveform leads to phase focusing.
If the rf system goes throughh cycles during the particle circulation period, there areh synchronous trajectories.1

1Depending onh and the momentum aperture there may be alsoh − 1 faster moving synchronous particles and/orh + 1 slower moving
ones, but this possibility is not usually realized in practice.
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Table 1: Meaning of symbols in equations and text

Symbol Meaning
α adiabaticity parameter
SB the area of a phase stable region, the so-called bucket area
p◦ the momentum [MeV/c] on the reference trajectory
τ◦ period of a particle following the reference trajectory [s]
h harmonic number of a synchronous rf system
φs synchronous phase of rf [deg]
V̂ maximum amplitude of the rf waveform
ωs, ωs,n angular frequency of beam circulation
Ωs,Ωs,n angular frequency of synchrotron oscillation
R mean radius of an orbit
Rs, Rs,n mean radius of the orbit of a synchronous particle
R◦ mean radius of the reference orbit
Ri,n mean radius of the orbit of theith particle on thenth turn
C the length of an orbit;C ≡ 2πR
Ci,n the length of the orbit of theith particle on thenth turn
v the mean orbital speed
vs, vs,n the mean synchronous speed
τs, τs,n period of circulation of a synchronous particle
τi,n time coordinate ofith particle on thenth turn relative to the synchronous time
τij ,n time coordinate ofith particle injth bunch onnth turn relative to thejth synchronous time

Because in the typical circumstance particle trajectoriesare restricted to the neighborhood of a synchronous
trajectory by phase focusing, it is convenient to write the equations for general trajectories in differences of energy
and coordinate from a synchronous trajectory so that one hasa conventional oscillatory system for the typical case
of synchronous acceleration. However, there are other regimes of longitudinal motion of interest like, for example,
the perturbed drifting motion in phase displacement acceleration. In this case the synchronous trajectory moves
rapidly through the region of longitudinal phasespace occupied by beam particles and may start and end outside the
physical aperture. Then the (hypothetical) synchronous particle is quite distinct from the beam particles, and, if the
equations of motion are to be useful in this case also, they must not depend on assumptions about small differences
between the synchronous trajectory and the trajectories ofbeam particles. The derivation below retains the idea of
synchronous particle and difference coordinates but avoids differential approximations for differences of quantities
between the particle trajectory of interest and the synchronous trajectory.

The definition of “synchrotron” generally includes a statement about the constancy of the reference or syn-
chronous trajectory. In what follows this restriction willbe loose, allowing small changes in the radiusRs of the
synchronous orbit independent of the reference orbit of radius R◦ to which the guide field properties are referred.
Furthermore, although the derivation is written for a single accelerating gap and a difference step of one circulation
period to keep the notation simple, the generalization to multiple gaps and shorter or longer time steps is straightfor-
ward.
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1 Fundamental Equations in (t,E) Coordinates

Consider the sequence of arrival times of thei-th particle at the one rf gapti,1, ti,2, . . . , ti,n, where the end of the
n-th turn is marked by then-th crossing of the gap. There is a recursive relation

ti,n = ti,n−1 +
Ci,n

vi,n

= ti,n−1 +
2πRi,n

βi,nc
, (3)

whereCi,n is the length of the orbit for thei-th particle,Ri,n is the average radius of its orbit, andvi,n is its average
speed. Define finite differences∆R and∆β by

R = (1 + ∆R/Rs,n)Rs,n (4)

β = (1 + ∆β/βs,n)βs,n . (5)

Then

ti,n = ti,n−1 +
2πRs,n

βs,nc
·
1 + ∆Ri,n/Rs,n

1 + ∆βi,n/βs,n

= ti,n−1 + τs,nSi,n , (6)

whereτs,n is the circulation period for the synchronous particle and the Si,n = ωs,n/ωi,n ≈ 1 may be called the
“slip factor”. The slip factor is 1 + the fraction of a synchronous circulation period which the particle of interest
gains or loses with respect to the synchronous particle per turn. At the end of a turn the particle receives an energy
increment which depends, of course, on the voltage on the gapat that time:

Ei,n = Ei,n−1 + eV (φn) = Ei,n−1 + eV (hωs,nτs,nSn) , (7)

where synchronization ofφ has been taken into account so that the contribution of2Nπh from N prior turns has no
effect. Also because of synchronization the rf frequency ishωs,n.

These equations can be read as a mappingM of a point (ti,n−1, Ei,n−1) to another point (ti,n, Ei,n) in the
(t, E) plane. The equations are supposed to represent a conservative process; thus, the mapping should conserve
phasespace area. The Jacobian determinant is

J(M) =
∂(ti,n, Ei,n)

∂(ti,n−1, Ei,n−1)
=

∣

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

∣

≡ 1 . (8)

Therefore, phasespace area is conserved and the sequence ofti,n, Ei,n for differentn lie on a curve of constantH
for some HamiltonianH. The mapM is in the form of an acceleration-free drift in which the coordinatet changes
followed by an impulse in which only the conjugate momentumE changes. Forest[6] points out that any map with
these properties will be area preserving. It also represents an approximate, but exactly symplectic, integrator of a
related continuous Hamiltonian system. In the present case, however, the related system is considered a continuous
approximation to an impulsive system of interest.

So far an idealized system has been treated essentially exactly. However, the system described is not a very
exact model of a physical synchrotron. Dôme[8] points out that to describe fully the longitudinal dynamics in a
synchrotron one must consider the contribution to the forceon the particle from the changing magnetic field,i. e.,
what is generally called betatron acceleration. This forceacts continuously around the the machine. It is, however,
small compared to the rf force. If one uses an impulsive approximation for the betatron acceleration one makes
a small discretization error in a small term. Furthermore, because changes in the betatron acceleration will be
adiabatic, its explicit inclusion is not required. The truesynchronous phase will be very slightly different from
the synchronous phase calculated fromṗ alone, but for typical cases this discrepency is small and irrelevent to the
purpose of the calculation. In a case where it is a central consideration, the betaron acceleration contribution can be
included as described in ref. [5].
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2 Convenient Coordinates

The difference equations eqs. 6 and 7 are based on comparing the circulation speed of thei-th particle to that of
the synchronous particle but nonetheless are written in coordinates of integrated circulation time and total energy. It
is more natural to consider differences in arrival time and energy between thei-th and the synchronous particle:

τi,n = ti,n − ts,n

= t1,n −
n

∑

m=1

τs,m

= ti,n−1 + τs,nSi,n − τs,n −
n−1
∑

m=1

τs,m

= τi,n−1 + (Si,n − 1)τs,n . (9)

The differenceεi,n between the energy of thei-th particle and the synchronous particle satisfies

εi,n = εi,n−1 + eV (hωs,n[τi,n + ts,n]) − eV (ωs,nts,n)

= εi,n−1 + eV (hωs,nτi,n + φs,n) − eV (φs,n) , (10)

whereφs,n is the synchronous phase,i. e., the phase of the rf at the arrival time of the synchronous particle. Theφ
coordinate is redefined so that the particle atφ = 0 receives the synchronizing energy increment. Then,

εi,n = εi,n−1 + eV (hωs,nτi,n) − eV (0) . (11)

The steps above have been taken considering a single bunch. When there are multiple bunches or rf systems with
different harmonic number running concurrenly, it is convenient to use the h=1τ and designate byτij theτ relative
to the synchronous phase for thejth bunch. The synchronous phase recurs at the centers

(j − 1/2) τs,n/h, j = 1, . . . , h

of theh bucket intervals.

τij ,n = τi,n − (j −
1

2
)
τs,n

h
(12)

Note from the definition ofSn, that when a particle is traveling faster than the synchronous particle,τi,n < τi,n−1.
Thus particles travel in the−τ sense. This definition is not entirely conventional, but it is convenient. If it is desired
to have the particles circulate in the+τ sense, the slip factor can be written accordingly. Theτ equation eq. 9
becomes

τij ,n − τij ,n−1 = (Sij ,n − 1)τs,n. (13)

If N cavities are equally spaced about the ring, have the same voltage, and are phased to have the same phase
for the synchronous particle, the effect is represented by mapping each turn withN applications of the map with
1/N of the total voltage and1/N of the phase slip in each iteration. One can see that in principle it is possible to
treat an arbitrary spacing of cavities with differing dispersion between them by representing each of the sections
with different coefficients in the difference equations. Simply because the accelerator being modeled has more than
one rf gap does not mean, of course, that one should necessarily use multiple maps per turn. The phase slip between
gaps is usually very small so that the approximation of one per turn is generally excellent. Because the differential
equation, which in some sense corresponds to an infinite number of gaps per turn, generally gives results consistent
with the one-turn map, one will map more than once per turn only in unusual circumstances. The small amplitude
synchrotron tune is a measure of the phase change per turn; ifit exceeds O(10−2), a mapping step of one turn is
rather coarse, and it could be important to represent more accurately the actual distribution of the cavities.

Just as the circumference can be subdivided by multiple cavities, the drift can be broken into as many segments
as the adequate discrete approximation to any continuouslydistributed force may require. In particular, when one
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evaluates the effect of beam spacecharge in high intensity and/or low energy accelerators, it may not be adequate
to approximate the force with a single kick per turn. Koscielniak has found[9] spurious clumping and breakup of
the distribution when the integration step for the spacecharge force is too large. However, the drift equation can be
applied separately for each of the requisite number of segments with spacecharge kicks interspersed. Techniques for
finding the spacecharge forces from the particle distribution are discussed elsewhere,e. g., in refs. [10] and [11].

3 Construction of Cognate Differential Equations

The reader should note that the differential equations are to be “constructed”, not derived. The following treatment
is probably respectable to physicists but may be imperfect mathematically. However, the goal is only to construct
an appropriate Hamiltonian to allow use of the tools of analysis for perturbation calculations for checking results
of mapping. The grounding of the construction in the difference equations establishes strong parallels between the
differential EOM and the map. The difference equations usedare the single bunch forms eq. 9 and eq. 11 to keep
the notation simple. They may be recast as

∆τn = (Sn − 1)τs,n (14)

and
∆εn = eV̂ [f(φ) − f(0)] , (15)

wheref(φ) has amplitude one and is periodic with period2π/h. Dividing each side of eqs. 14 and 15 byτs,n one
has

∆ τ

∆ t
= Sn − 1 (16)

and
∆ ε

∆ t
=

eV̂ [F (τ)]

τs,n

, (17)

where∆ t has been taken asτs,n andf(φ) − f(0) has been expressed as a function ofτ . τs,n is much smaller than
2π/Ωs,n so one can say

∆

τs,n

∼
d

d t
.

Making the approximation natural in the differential equation context that the rf potential is distributed around the
ring and the ansatz that it is the same in the intervalsτs,n

x
1 ≤ x < ∞,

∆

τs,n/x
≈

d

d t
. (18)

The Limit ∆ t → 0 is the same as Limitx → ∞. Thus one may (plausibly) write

τ̇ = S − 1 (19)

and

ε̇ =
eV̂ [F (τ)]

τs

. (20)

Using the lowest order term in the Taylor series forF andS − 1 one can write the differential equations eqs. 19
and 20 in an intuitively appealing form.

τ̇ =
ηs

β2
sEs

ε (21)

ε̇ =
ωs

2π
eV̂ cos(hωsτ) (22)

6



When V is sinusoidal,

ε̇ =
hω2

s

2π
eV̂ cos(φs)τ . (23)

With a change of variable2

ε =
ωsβ

2Es

η
ǫ (24)

and simplication using the small amplitude synchrotron frequency

Ω2

s = −
ehω2

sη cosφs

2πβ2Es

, (25)

eqns. 21 and 23 become
τ̇ = Ωsǫ (26)

and
ǫ̇ = −Ωsτ . (27)

4 The Hamiltonian and Vlasov equation

The Hamiltonian for the linearized differential equations26 and 27 is

H10 =
Ωs

2
(τ2 + ǫ2) , (28)

where the “1” represents the order of approximation and the “0” is a place holder for a perturbation index so that
the order index will not be confused with the order of some perturbation. Theǫ energy variable will be retained and
Sn − 1 will be modified to

G(ǫ) = Sn(ε) − 1 −
η

β2
sEs

ε . (29)

The first term inF (τ) also will be written separately so that the full nonlinear differential equations may be repre-
sented as

τ̇ = Ωs[ǫ + G(ǫ)] (30)

and
ǫ̇ = −Ωs[τ + F (τ)] . (31)

Therefore, to any order inτ andǫ

H0 =
Ωs

2

[

τ2 + ǫ2 + 2

(
∫ ǫ

G(ǫ′)d ǫ′ +

∫ τ

F (τ ′)d, τ ′

)]

. (32)

Notice that no term in either EOM is a mixed product of powers of ǫ andτ .
When the EOM are in the canonical Hamiltonian form

q̇ =
∂H

∂p
; ṗ = −

∂H

∂q
, (33)

the general form of the time-dependent Vlasov equation is

∂Ψ

∂t
+

∂H

∂p

∂Ψ

∂q
−

∂H

∂q

∂Ψ

∂p
, (34)

2suggested by Ruebén Méndez Rodrı́guez (priv. comm.) in a slightly different context
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whereΨ is the phase space density distribution. Usually it is prudent and adequate to look for a peturbative solution.
A typical way to proceed is to find aΨ◦ satisfying the time independent equation

q̇
∂Ψ◦

∂q
+ ṗ

∂Ψ◦

∂p
= 0 , (35)

where the EOM are used to replace the coordinate partials ofH by time derivatives. Then the Hamiltonian is
separated asH0 + H1 and the solution isΨ = Ψ0 + Ψ1. The perturbation ansatz is that for weak perturbation or
small timeΨ ≈ Ψ0. StationaryΨ0 is guaranteed ifΨ0 = Ψ0(H0). Because generally well localized bunches are
wanted, the elliptical, also known as Hoffman-Pedersen[12], distribution is frequently used:

Ψ0(τ, ǫ) =
3N

2πτ̂3

{

τ̂2 − ǫ2 − τ2
}

1

2

, (36)

whereτ̂ is the half bunch length andN is the number of particles in the bunch. For small amplitudesor linearized
EOM in general, the bunch is symmetric with extent±τ̂ aboutφs. However, the definition of the elliptical distribu-
tion is not limited to a parabolic potential. The linear charge density is

λ(τ) =
3N

4τ̂3
[τ̂2 − τ2] . (37)

Application to Multibunch Distributions

As suggested in sec. 2, the inclusion of multiple bunches is more a notational challenge than a conceptual one. Ba-
sicly the same machinery is used, but the bookkeeping is moreinvolved. For single particle motion, the Hamiltonian
for h bunches is a sum ofh nearly identical expressions like that forH0 in eq. 32. Purely local collective forces
like that from comoving images or spacecharge can be included in each single bunch term. When the bunches are
coupled by wake fields, the collective effect can be added as an H1 which is almost always taken as a perturbation
to the uncoupled motion. The perturbative solution consists in essence of solving the single bunch problems that
include a potential, which varies from bunch to bunch, calculated from the unperturbed beam current

Ib,0 = λ(τ)vs = vs

h
∑

j=1

λ0(τj) , (38)

wherevs is the synchronous velocity and the subscript 0 indicates that λ is evaluated fromΨ0. Adopting the
elliptical distribution for each bunch and assuming them tobe identical, only one single bunch distribution is needed
to constructΨ0. This perscription is adequate for calculating thresholdsand initial growth rates for coupled bunch
instability, but a detailed calculation of the unstable motion is most practically approached from the EOM.

Summary

The EOM for synchrotron oscillation have been considered both as finite difference equations (map) and as ordinary
differential equations. It has been shown that the two approaches are very closely related but differ by a fundamental
distinction which is ocasionally important in practice. Ithas been argued that, properly parameterized, a map is
more fundamental than the cognate differential equations and is a more faithful model of the physical system. The
possibility of an easily negotiated investigation of some finite approach to the limit∆ t → ∞ is developed in
ref. [13]. In this reference a scaling of the map by a parameter that is the reciprocal of thex appearing eq. 18 is
introduced. Because the purpose of that paper is to expand the time step to save computing time, values ofx < 1.
are emphasized, but the possibility ofx > 1 is noted.
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