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Executive Summary 
 
 
Owens Corning and other glass manufacturers have used oxy-fuel combustion 
technology successfully in furnaces to reduce emissions, increase throughput, reduce 
fuel consumption and, depending on the costs of oxygen and fuel, reduce energy costs.    
 
The front end of a fiberglass furnace is the refractory channel system that delivers glass 
from the melter to the forming process.  After the melter, it is the second largest user of 
energy in a fiberglass plant.  A consortium of glass companies and suppliers, led by 
Owens Corning, was formed to develop and demonstrate oxy/fuel combustion technology 
for the front end of a fiberglass melter, to demonstrate the viability of this energy saving 
technology to the U.S. glass industry, as a D.O.E. sponsored project. 
 
The project goals were to reduce natural gas consumption and CO2 green house gas 
emissions by 65 to 70% and create net cost savings after the purchase of oxygen to 
achieve a project payback of less than 2 years.   
 
Project results in Jackson, TN included achieving a 56% reduction in gas consumption 
and CO2 emissions.   A subsequent installation in Guelph ON, not impacted by unrelated 
operational changes in Jackson, achieved a 64% reduction.   Using the more accurate 
64% reduction in the payback calculation yielded a 2.2 year payback in Jackson.    
 
The installation of the demonstration combustion system saves 77,000 DT/yr of natural 
gas or 77 trillion Btu/yr and eliminates 4500 tons/yr of CO2 emissions.  This combustion 
system is one of several energy and green house gas reduction technologies being 
adopted by Owens Corning to achieve aggressive goals relating to the company’s  global 
facility environmental footprint. 
 

Page 6 of 28 



Introduction 
 
Oxy-fuel combustion technology has successfully been used by Owens Corning and 
others in glass furnaces to reduce emissions, increase throughput, reduce fuel 
consumption and, depending on the costs of oxygen and fuel, reduce energy costs.  
Conversion of glass melter combustion systems from air/fuel to oxy-fuel have occurred for 
over 15 years so the technology is now widely recognized as a low risk, proven way  to 
improve the furnace combustion process.  It is estimated that one quarter of U.S. glass 
manufacturers have converted melters to oxy firing1

 
After the furnace, the next largest energy consuming process in a reinforcement 
fiberglass plant is the front end.  Based on the successful conversion of several melters to 
oxy-fuel firing,  Owens Corning initiated a project to develop and demonstrate that  
oxy/gas combustion could be applied to a front end achieving energy reduction and 
related benefits.   
 
A consortium of glass manufacturers and glass industry suppliers including Osram 
Sylvania, BOC and Eclipse was formed to support and steer this project which was 
accepted for Department of Energy cost sharing sponsorship based on the technology’s 
potential to reduce energy consumption in one and possibly more sectors of the U.S. 
glass industry.  While the primary focus was fiberglass, other glass sectors originally 
identified for potential use included TV and lighting.   
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Background 
 
Why oxy/gas combustion is more efficient than air/gas combustion 
 
A) Eliminating the nitrogen 
 
A reinforcement fiberglass melter front end consists of long, narrow, covered refractory 
channels that deliver glass to the fiber forming process.  These front ends have 
traditionally used air/gas burners located in the sidewall of the refractory superstructure, 
firing into the combustion.  Conventional front end air/gas combustion systems supply an 
air/gas mixture to the burner as opposed to separate air and gas streams being combined 
at the burners.  This is done as the long lengths of combustion piping required for a front 
end make preheating the air supply impractical.  Given the impracticality of maintaining 
preheated air temperatures,  a mixture of air and gas is delivered in one common line to 
reduce the amount of piping involved.   
 
Air is comprised of approximately 1 part oxygen and 4 parts nitrogen with other minor 
constituent inert gases.   The 79% nitrogen component is inert and does not contribute to 
the combustion reaction.  Stoichiometric combustion occurs when the optimal  mixture of 
reactants is used and complete combustion is achieved (i.e. there is no unreacted oxygen 
or fuel left over).  The stoichiometric reaction equation for air/fuel combustion is shown in 
Fig 1.    
 
Lack of preheating air in an air/gas front end combustion system results in a significant 
portion of energy being consumed to heat the nitrogen in air from an ambient temperature 
to the temperature of the combustion space.   

 
 

Fig. 1   Air / Gas Stoichiometric Combustion: 
 
Nat. Gas  + Air(Oxygen & Nitrogen)    Carbon Dioxide +  Water  +  Nitrogen  +  heat 
CH4     + 2(02 + 4N2)           C02          + 2H20 +    8N2   + heat 

Use of oxy/fuel burners in a front end eliminates the inert nitrogen and the wasted heat 
load it represents.   See Fig. 2   
 
 
  Fig. 2  Oxy / Gas Stoichiometric Combustion: 
 
  Nat. Gas  +           Air                 Carbon Dioxide +  Water      + heat 
 CH4     +       202                     C02      + 2H20   + heat
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Background  
 
Why oxy/gas combustion is more efficient than air/gas combustion  - cont’d 
 
B) Hotter oxy flame 
 
The temperature of an air/gas flame is ~3600 F. The temperature of an oxy-gas  flame is 
~4900 F.  A hotter oxy/gas flame  positively impacts the radiant heat transfer in two ways.  
 

i) Higher heat flux from the flame 
 
Fig 3 is the Stephan Boltzman Law expressed with temperatures for the flame to glass 
radiant heat transfer process in a glass melting situation.   
 

( )&Q A T T
abs enclosure

= ⋅ ⋅ −ε σ 4 4

glassflame 

 
 Fig. 3  - Stephan Boltzman Law 
 
 
 
 
 
 
 

σ  = constant  
A   = surface area  

ε   = thermal emissivity, fraction of energy emitted  by flame  
T   = absolute temperature of emitting and receiving surfaces

 
 
 
 

 
 
 
 

Radiant energy emitted is proportional to the fourth power of the absolute temperature 
differential between the flame and the glass.  Thus, a higher flame temperature 
dramatically increases the radiant energy heat flux from the flame.     
 
It must be noted that the flame is not the only source of radiant energy.   The glass 
also receives radiant energy re-emitted from the refractory superstructure.   
Convective heating through the movement of hot combustion gases over the surface 
of the glass also contributes to the total heat transfer.   
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Background  
 
Why oxy/gas combustion  is more efficient than air/gas combustion - cont’d 
 
B) Hotter oxy flame 

 
ii) Glass Transmissivity  

 
Transmissivity is a physical characteristic of glass describing the ability of radiant 
energy to penetrate below the surface into the glass.  If the radiant energy has a 
shorter wavelength, glass transmissivity is better.  Radiant energy in the 1 to 2.5 
micron range is optimal.  Above 4 microns glass becomes significantly more “opaque” 
to radiant energy2.    
 
Fig. 4  Glass Transmissivity vs. Wavelength3

 
 

 
 
 
 
 
The spectral distribution of radiant energy from the hotter oxy/gas flame is biased to 
the shorter wavelength range and thus a greater portion of the radiated energy is 
accepted by the glass. This should also have a positive impact on reducing the 
vertical thermal gradient in the glass and improving thermal homogeneity. 

 
 

Thus, the hotter flame’s greater heat flux coupled with better glass transmissivity 
characteristics associated with shorter wavelength oxy/gas flame radiation both 
contribute to better heat transfer to the glass.  
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Background  
 
Barriers to implementing oxy/gas combustion on a front end 
 
The hurdles to implementation of oxy/fuel burners in a front end relate to the fact that 
front ends are relatively long, narrow troughs of glass that require a large quantity of 
closely spaced burners (< 1’ apart, both sides for an air/gas system)   to distribute the 
energy evenly.  The hurdles consisted of:  
 
a) Overheating  
Front end burners with outputs of 0.04 - 0.1 MM Btu/hr do not have the large flows of 
oxygen and gas (compared to melter oxy burners with outputs of 2-5 MM Btu/hr) for 
cooling of the burner.   As an oxy/fuel burner has a flame temperature of ~5000 F, vs. 
~3500 F for an air gas burner, overheating, soot formation and degradation of the burner 
or the burner block material can result.    
 
b)  Capital Cost  
The close spacing of side fire burners in a front end system results in a large capital cost 
for upgrading to oxy/fuel burners  if existing burners and blocks are substituted on a one-
for-one basis.  Side fire oxy/fuel burner systems are commercially available and have 
been successfully supplied for trial purposes by others (Eclipse & BOC/BH-F).  This 
project involved the installation of burners in a top fire configuration, parallel to centerline 
of the channel, as opposed to the traditional side fire configuration in which burner 
alignment is perpendicular to the centerline of the channel.  This allowed one top fire 
burner, with higher flow, to replace  10  to 20 air/gas burners.       
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Objectives 
 
Project Objectives 
The objectives of the project were:  
 

a) develop an oxy-fuel burner that would be suitable for use in a front end 
b) lab test the burner and integrate supporting combustion control hardware 
c) conduct extended pilot scale tests in a production environment to assess impact on 

the process and ensure there were no unforeseen issues that would hinder  burner 
use in a full scale installation 

d) demonstrate front end oxy firing on a full scale permanent  installation, verify energy 
savings and assess burner life 

 
 
The project was structured in three phases 
I) development: modeling & equipment design   
II) pilot/field trials 
III) full scale installation to demonstrate the technology 
 
 
 

Performance  Targets 
 
Technical 
 
The new combustion system should not have any negative impact on the process.  This 
translated into the metric of having a heat distribution that was as uniform as or more 
uniform than the existing system for a forehearth.    
 
In terms of gas consumption, the front end oxy/gas burner system was projected to 
use 65% to 70% less gas than an air/gas burner for the heating requirement of the glass 
due to elimination of the heating of nitrogen and the improved high temperature radiant 
heat transfer to the glass.    
 
As CO2 emissions are directly proportional to the amount of gas combusted, the 
reduction in CO2 emissions was projected to be 65 to 70%.   Based on the 
assumption that nitrogen could be kept out of the combustion space (no air leakage) 
lower NOx levels were also anticipated.  In melters, reductions in NOx of greater than 
70% have been achieved.    
 
Economic 
For the Jackson installation, the payback target was 1.8 years with an annual 
operating savings of $464,000 based on $6/DT gas costs. 
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Results 
 
Consortium evolution 
The original consortium for the project consisted of the following companies: 
 
Company      Glass Industry Sector or Supplier 
Owens Corning (award recipient)  fiberglass 
Osram Sylvania     lighting 
Thomson      TV 
BOC       Oxygen supplier 
Eclipse       Combustion equipment supplier 
 
In June 2004, Thomson Electronics withdrew from this D.O.E. sponsored project.  
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Results  
 
Phase I - Development: modeling & equipment design 
 
An early goal of the modeling done for the project was to determine whether a top fired 
configuration – chosen to reduce the burner quantities  and capital cost  – could 
distribute the heat in the forehearth as evenly as the existing air gas system.   
 
Fig. 5  Temperature distribution, forehearth glass surface – conventional air/gas firing 
 

 

End of 
forehearth 

Glass surface 

Conventional air/gas 
burner locations in the side 
of the superstructure, 
above the glass surface

                       © 2003 - 2007 Owens Corning 
 
The modeling indicated a temperature gradient over the surface of a forehearth with the 
existing air/gas firing system would be 50 F with the coldest surface temperature at the 
end of the forehearth. 
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Results  
 
Phase I - Development: modeling & equipment design  - cont’d 
 
Fig. 6 – Temperature distribution, forehearth glass surface – top fired, oxy/gas firing 
 

 

Glass surface

Top fire oxy/gas burner s 
penetrating through the 
forehearth superstructure 

                © 2003 -2007 Owens Corning
  
 
The modeling of the top fired oxy burner system indicated the temperature gradient over 
the glass surface of a forehearth would be 35 F, a 15 degree improvement in thermal 
homogeneity.   As the goal for the top fired oxy burner program was to ensure the heat 
distribution was as good as or better than the conventional side fired design, the 
concept was deemed acceptable for continued development.  
 
While this model was of the combustion space  and did not include the glass bath,  it 
could be extrapolated that the vertical gradient from the hot glass surface to the bottom 
of the  glass would likely be improved as well, given the transmissivity characteristics of 
glass with the shorter wavelength, hotter oxy/gas flame.     See Fig. 4 Glass 
transmissivity vs. wavelength. 
 
For the burner, a tube in tube design was developed in research conducted prior to 
starting the consortium based demonstration project.   Burner block geometry was 
modeled in conjunction with the burner to achieve acceptable block temperatures.  For 
the early trials, burner blocks were cast in an air set castable refractory.   This was later 
upgraded to a fired refractory for better thermal shock properties and melting 
temperature resistance.  
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Results  
 
Phase I - Development: modeling & equipment design  - cont’d 
 
Efforts to enhance burner performance through alternative burner designs continued on 
after the pilot installations were in operation.  In conjunction with Dr. Peter M. Walsh – 
Sandia National Laboratories / University of Alabama, through the D.O.E. GPLUS+ 
program, further trials were conducted to evaluate alternative burner designs for use 
with existing air/gas burner blocks as well as the top fired burner block.   Cross sectional 
areas of the gas tube bore and oxygen nozzle annual space were varied to evaluate 
flame shape and combustion density with a variety of velocity ratios.   A venturi concept 
to increase oxygen velocity at the burner exit was also tested.   Burners and blocks 
were equipped with thermocouples to allow for quantitative evaluation based on gas 
tube temperature as high burner temperatures were known to cause material 
degradation and/or carbon formation issues. Some of the burners experienced rapid 
melting failure during testing.  No changes to the basic design were adopted based on 
these trials.  The final report by Dr. Walsh, “Improvement of Oxyfuel Burner Design and 
Operations”, dated Feb 23, 2006, provides a thorough overview of previous work by 
others on oxygen/natural gas fired forehearths.  
 
Fig.  7  Flame of Venturi style burner 
 

 
       © 2003 -2007 Owens Corning 
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Results  
 
Phase I - Development: modeling & equipment design  - cont’d 
 
Fig.  8  Flame of Basic OC design burner 
 

 
        © 2003 -2007 Owens Corning 
 
The standard OC burner creates a flame with high luminosity and a narrow initial cone. 
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Results 
 
Phase II – Pilot/Field Trials 
 
Promising modeling results led to single burner, and multiple burner, short duration lab 
trials at the OC Granville Technical Center.  A shortened forehearth superstructure was 
constructed to allow burners to be tested at normal operating temperatures.   A zone 
skid for controlling and metering flow was jointly developed with Eclipse.   
 
Single burner trials of 8 hours duration were conducted to assess the burner flame for 
impingement on the burner block.  Minor design improvements to address gas tube to 
oxygen nozzle concentricity resulted.    
 
Production trials for the top fired design were initiated in Owens Corning’s Guelph, ON 
plant in 2003 as an earlier production curtailment had created an opportunity to drill 
holes in cover tiles on three forehearths.   These longer term trials provided several 
months of run time to test burner, block and zone skid for reliability.    
 
Fig. 9  Installing burners for the pilot installation in Guelph, ON 
 
 

 
                 © 2003-2007 Owens Corning 
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Results 
 
Phase II – Pilot/Field Trials – cont’d 
 
During these trials the first melt down failure occurred on a conventional forehearth.   
While the damage to the cover tile did not allow replacement of the burner block as it 
was fused to the cover tile, the remaining burners were re-profiled and production was 
able to continue without a conversion efficiency penalty.  This was a significant finding 
with respect to how robust the system was.    
 
Inspection of the burners after several months service indicated that high temperature 
oxidation of the tip of the gas tube was a nearly universal issue.   This resulted in a 
material upgrade for the gas tube from stainless steel to a high temperature alloy.      
 
Other issues included turbulence causing flame deflection and refractory overheating.  
This led to elimination of a few burners in locations of the combustion space where 
exhaust gases had large changes in direction.  
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Results 
 
Phase III - Full scale installation to demonstrate the technology 
 
The Phase III full scale permanent installation of front end oxy firing equipment was 
constructed in June & July 2004.  The construction work was done in conjunction with 
the rebuild of an Owens Corning melter in Jackson TN that was being converted to oxy 
firing and to a new glass formulation.  Thus, a supply of on-site generated oxygen was 
available.  An on-site oxygen supply (vs. a liquid oxygen supply) is critical to having 
favorable economics for the conversion to front end oxy-fuel firing. 
 
 
Fig. 10  Front End Oxy-Fuel burner in operation in Owens Corning’s Jackson TN plant 
 

 
                  © 2003 - 2007 Owens Corning 
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Results 
 
Energy & Operating Cost Reduction 
 
Energy savings data for the D.O.E. project sponsored installation in Owens Corning’s 
Jackson plant is summarized below.  Data for a subsequent full scale installation at 
Owens Corning’s Guelph ON plant is also shown.   
 

 
Table 1 – Energy & Operating Cost Reductions for  Jackson & Guelph  
 

Plant Front 
End 
Nat. 
Gas 
Used    

Reduction in 
Nat. Gas 

Used 
 

Front End 
Total 

Energy 
Used * 

Reduction in 
Total Energy 

Used 

Energy 
Saved 

Operating 
Cost 

Redcution** 

 [DT/hr] [%] [DT/hr] [%] [DT/yr] [$/yr] 
Target Natural 
Gas Energy 
Reduction 

  
65-70 

    

       
Jackson TN         
   Air/gas (Mar 04) 16.5  16.6    
 Oxy/gas (Dec04)   7.3 56 7.9 53 77,000 $333,000 
       
Guelph ON       
Air/gas (Mar 05) 24.9  25.1    
Oxy/gas ( Apr 05 )   9.0 64 9.8 61 135,000 $513,000 
 
*  including estimated electricity for combustion air blower or O2 plant operation 
** assuming an average cost for natural gas of $ 7.40 US / DT, oxygen cost included 
DT =  decatherm = 1,000,000 Btu 

 
The “raw data” of before and after conversion natural gas consumption is shown in the 
“Front End Nat. Gas Used column.    
 
The second column, “Reduction in Nat. Gas Used” compares the targeted energy 
savings to the actual results achieved.  While Jackson’s gas consumption reduction of 
56% was less than the goal of a 65 – 70% reduction, there were other operational 
changes that affected the gas consumption reduction result.    A 64% reduction in gas 
consumption was the measured result for a conversion in Guelph, ON that was not 
impacted by other operational changes.    
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Results 
 
Capital cost and payback 
 
Table  2 summarizes the financial results for the conversion of the front end combustion 
systems on 2 furnaces from air/gas to oxy/gas firing 
 

Table 2 Financial Results 
 Cost of 

Gas 
 

 [$/Dt] 

Reduction In 
Gas 

Consumption 
[%] 

Capital 
Cost3

 
[$] 

Net 
Savings 

 
[$/yr] 

Payback
 
 

[yrs] 
Project targets 6.0 65 850,000 464,000 1.8 
Jackson – actual results, not 
adjusted for other operational  
changes 

7.2 53 1,028,000 333,000 3.1 

Jackson – gas consumption 
adjusted per Guelph actual 
results  

7.2 64%2 1,028,000 458,000 2.2 

 
Notes: 

1) Cost of O2 not reported – proprietary information 
2) Gas consumption reduction in Guelph – data obtained in conversion of combustion 

system that was not affected by other operational changes 
3) Capital cost of project does not include R&D developmental costs or any 

superstructure refractory costs as the project was done at a rebuild when refractory 
would be replaced  

 
 
Fig. 11   Payback vs. Gas Cost 
 

Front End  Oxy Gas Payback vs Nat. Gas Cost
Jackson Conversion

with revised 64% reduction in gas consumption
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Results 
 
Environmental 
 
CO2 – Greenhouse gas reduction: 
As the amount of CO2 released in combustion is directly proportional to the amount of 
fuel burned, a  64% reduction in gas consumption reduces green house gas 
emissions by 64%.   For Jackson, the actual, unadjusted  natural gas savings 
(56% reduction) was 77,000 DT/yr or 77,000,000,000 Btu/yr.  See Table 1. 
 
Using conversion factors from Table 2.1b “Comparative data (by weight) for some 
typical fuels”, North American Combustion Handbook 4, a simple estimate of the amount 
of CO2 emission eliminated  by converting  one front end is: 
 
 
77,000,000,000 Btu x 1 lb nat. gas  x    2.55   lb CO2     x      1 ton                      
 yr         21,830 Btu            lb nat. gas              2000 lb 
 
=  4497 tons CO2/yr    
 
NOx 
Exhaust gas samples of the Jackson front end were collected.  Significantly higher 
levels of NOx were found compared to the air/gas system.   This was attributed to air 
leakage or ingress into the forehearth combustion space.  However, the increase, on a 
mass basis was significantly less than the reduction in NOx achieved by the converting 
the melter to oxy firing so the net impact of the total combustion system conversion 
made at the time of the rebuild was a net reduction.    
 
 
Manufacturing productivity and product quality 
 
Bulk glass to fiber conversion efficiency is considered proprietary information for the 
fiberglass industry so before and after conversion efficiency data is not provided.   In 
general terms, there was no negative impact on conversion efficiency or product quality 
for either the Jackson or Guelph installations. 
 
Proposal to investigate conducting a trial on a lighting glass front end 
 
At the December 2004 consortium meeting, the potential for conducting a trial of the 
technology at one of Osram Sylvania’s facilities was discussed based on preliminary 
positive results.  The issue of the use of air injection on lighting glass front ends to 
provide cooling when necessary, in addition to heating, was raised.   As air injection at 
burners was a requirement, and an increase in NOx was highly probable and deemed 
not acceptable, Osram Sylvania declined an offer by Owens Corning to model front end 
burners on a lighting glass furnace front end channel. Accordingly, no further 
development work was pursued.    
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Feedback to the U.S. glass industry  
 
The project proposal called for a technology workshop for Glass Manufacturing Industry 
Council (G.M.I.C.) members to be held at the end of the 2 year project.   At the 
December 2004 consortium meeting attended by all consortium members, including 
representation from the D.O.E., the topic of how best to how to conduct the workshop to 
disseminate project results was discussed.   Conducting a workshop at either the 
Owens Corning Jackson plant or Owens Corning’s Science and Technology Center 
were two options proposed.   As consortium members Eclipse and BOC both felt that a 
wider audience from the U.S. glass industry would be reached if a presentation were 
made at the Glass Problems Conference, this approach was adopted.  The author 
made two presentations at the Glass Problems conference in October 2005 in 
Champaign Urbana, IL, as part of a G.M.I.C. sponsored series of energy conservation 
presentations.  Energy savings, project costs, implementation challenges, net operating 
cost savings and payback were included in the presentation along with a technical 
explanation on why oxy firing is more efficient.   Input from consortium members was 
obtained to ensure content was appropriate and complete.    
 
Additional presentations on the project were made at the D.O.E. sponsored Ohio 
Technology Showcase in September /05 and the American Ceramic Society spring 
meeting in May 2006 to ensure project results were widely communicated.   
 
Commercialization 
 
Several meetings and conference calls were held in January through March 2006 to 
develop licensing and commercialization terms.  A royalty-based licensing structure in 
which Eclipse and BOC would market the technology was developed. Both of these 
consortium members are glass industry suppliers and have extensive contacts for 
supplying equipment in several sectors of the U.S. glass industry.  Accordingly, this was 
deemed a practical approach with the greatest likelihood of success.   A net savings vs. 
energy cost spreadsheet (including capital costs) was supplied by Owens Corning to 
assist with developing the value proposition for the technology for potential licensees.  
Operational training services provided for a fee to BOC and Eclipse was proposed to 
allow these companies to successfully commission the technology at a licensee’s site.  
OC could similarly provide consulting support to the licensee.  To ensure success of any 
future installation, it was agreed that the end user must be willing to model their front 
end system and conduct their own pilot trials.  
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Accomplishments 
 

A) Technical & financial  
 
For the Jackson, TN demonstration installation the following results were achieved: 

  
Reduced natural gas  consumption by 77,000 DT/yr 

 
Reduced operating costs by $458,000/yr 

 
Reduced  CO2 green house gas emissions by 4,497 tons/yr 

 
Implemented the technology without negatively impacting the manufacturing 
process 

 
B)  Communicating results to the U.S. glass industry 

  
Presentations of project results were made at three glass industry gatherings as 
well as two D.O.E. Industrial Technologies Program project reviews 

 
A marketing pamphlet outlining the technology and the project was created by 
the D.O.E.  

 
B) Patent status   
 

Two patents relating to the technology were applied for based on research done 
prior to starting the demonstration project. 

 
   OXYGEN-FIRED FRONT END FOR GLASS FORMING OPERATION 

US application published October 9, 2003 as 2003/0188554 
PCT application published October 16, 2003 as PCT/2003/084885 
PCT Status - Applications now being prosecuted in individual offices 
Status pending for the following countries:  Czech Republic, Poland, 
Norway, Mexico, Korea, India, Canada, Brazil, Great Britain, France, Spain, 
Germany and Belgium 

 
LOW HEAT CAPACITY GAS OXY FIRED BURNER 
US application filed June 9th 2004  
PCT Status - Applications now being prosecuted in individual offices 
Status pending for the following countries:  Brazil, Canada, China, India, 
Korea, Mexico, Norway, Great Britain, France, Spain, Germany, Belgium, 
Japan, Italy, Czech Republic, Finland, Netherlands and Turkey 
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Conclusions    
 
 
Front end oxy firing has been demonstrated at Owens Corning plants to be a viable 
energy and cost saving technology for the fiberglass sector of the U.S. glass industry.   
 
The project substantially met the majority of technical objectives including: energy 
reduction, operating cost savings, green house gas emissions reduction, and no adverse 
impact on production efficiency or product quality.   
 
The goals not met include: NOx emissions reduction and commercialization.  
 
Converting a front end to oxy/gas firing delivers a significantly higher reduction in gas 
consumption  than converting a glass furnace. This is due to the lack of preheating of 
combustion air for a front end air/gas combustion system.  A 64% reduction in gas 
consumption was achieved.  
 
Top firing, as opposed to traditional side firing, reduces the number of burners required to 
achieve satisfactory heat distribution which lowers capital cost.  
 
The economic attractiveness (payback) of front end oxy firing is dependent on:  

a) the cost of natural gas and oxygen – primary factors 
b) the equipment capital cost – secondary factor 
 
With natural gas costing $6/DT, a 3 year payback should be achievable.  With gas 
costing $8/DT a 2 year payback should be achievable.  (Based on 2004 capital costs.) 
 

Project participation by multiple parties increases the level of co-ordination and 
communication required  but provides alternative perspectives and more experience.  
This increases the probability of a successful outcome for a developmental project.  
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Recommendations  
 
 
Extensive modeling and pilot trials are key to ensuring the success of any future 
installation oxy-fuel front end combustion system. 
 
Front end oxy firing should be considered as an “add on” application to oxygen firing a 
glass melter.  This approach is essential to achieving acceptable financial results as a 
sufficient base load of oxygen is required to justify on site oxygen supply which provides 
oxygen at a much lower cost than delivered liquid oxygen. (The exception might be the 
case where a pipeline supply of lower cost oxygen was available to a glass plant).  
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