
Experiments to Understand HPC Time to Development
(Final report for Department of Energy contract DE-FG02-04ER25633)

Report DOE/ER/25633-1

Victor Basili1,2
Marvin Zelkowitz1

with contributions by

Lorin Hochstein4, Taiga Nakamura6, Sima Asgari1,
Jeffrey K. Hollingsworth1, Forrest Shull2, Rola Alameh1

Jeffrey Carver3, Martin Voelp1, Nico Zazworka1, Philip Johnson 5

1University of Maryland, College Park 2Fraunhofer Center, Maryland
3Mississippi State University 4University of Nebraska - Lincoln

5University of Hawaii 6IBM Japan

November 14, 2007

Abstract
In order to understand how high performance computing (HPC) programs are developed,
a series of experiments, using students in graduate level HPC classes and various research
centers, were conducted at various locations in the US. In this report, we discuss this
research, give some of the early results of those experiments, and describe a web-based
Experiment Manager we are developing that allows us to run studies more easily and
consistently at universities and laboratories, allowing us to generate results that more
accurately reflect the process of building HPC programs.

Table of Contents

1 Introduction... 2
1.1 Classroom as software engineering lab... 3

2 Experiment methodology.. 5
2.1 Collection of folklore data .. 7
2.2 Defect studies.. 8

3 Experimental Results .. 8
4 Tool Development .. 12

4.1 Experiment Manager... 13
4.2 HPCBugBase .. 14

5 Conclusions... 15
5.1 Student research .. 15
5.2 Publications... 15
5.3 Summary ... 16

6 Acknowledgement .. 16
7 References... 18
Appendix: List of HPC folklore.. 20

 1

1 Introduction
The DARPA High Productivity Computing Systems (HPCS) project has goals of “providing a new

generation of economically viable high productivity computing systems for national security and for the
industrial user community,” and initiating “a fundamental reassessment of how we define and measure
performance, programmability, portability, robustness and ultimately, productivity in the HPC domain”1.

In order to reassess the definitions and measures in a scientific domain it is necessary to study the
basis and source of those definitions and measures. These sources are usually found in the related
literature and various documentations existent in the community. However the large amount of tacit
information that is merely in people’s minds often remains neglected.

Historically, there has been little interaction between the HPC and the software engineering
communities. The Development Time Working Group of the HPCS project is focused on development
time issues. The group has both software engineering researchers as well as HPC researchers. The
strategy of the working group is to apply empirical methods to study parallel programming issues. We
have applied similar methods in the past to researching development time issues in other software
domains [BA02].

Much of the literature in the Software Engineering community concerning programmer productivity
was developed with assumptions that do not necessarily hold in the High Performance Computing (HPC)
community:
1. In scientific computation insights culled from results of one program version often drives the needs

for the next. The software itself is helping to push the frontiers of understanding rather than the
software being used to automate well-understood tasks.

2. The requirements often include conformance to sophisticated mathematical models. Indeed,
requirements may often take the form of an executable model in a system such as Mathematica, and
the implementation involves porting this model to HPC systems.

3. "Usability" in the context of an HPC application development may revolve around optimization to the
machine architecture so that computations complete in a reasonable amount of time. The effort and
resources involved in such optimization may exceed initial development of the algorithm.

Due to these unique requirements, traditional software engineering approaches for improving productivity
may not be directly applicable to the HPC environment.

As a way to understand these differences, we are developing a set of tools and protocols to study
programmer productivity in the HPC community. Our initial efforts have been to understand the effort
involved and defects made in developing such programs. We also want to develop models of workflows
that accurately explain the process that HPC programmers use to build their codes. Issues such as time
involved in developing serial and parallel versions of a program, testing and debugging of the code,
optimizing the code for a specific parallelization model (e.g., MPI, OpenMP) and tuning for a specific
machine architecture are all topics of study. If we have those models, we can then work on the more
crucial problems of what tools and techniques better optimize a programmer’s performance to produce
quality code more efficiently.

Since 2004 we have been conducting human-subject experiments at various locations across the U.S.
in graduate level HPC courses and with interviews with professional programmer at HPC centers (Figure
1). Graduate students in a HPC class are fairly typical of a large class of novice HPC programmers who
may have years of experience in their application domain but very little in HPC-style programming.
Multiple students are routinely given the same assignment to perform, and we conduct experiments to
control for the skills of specific programmers (e.g., experimental meta-analysis) in different
environments. Due to the relatively low costs, student studies are an excellent environment to debug
protocols that might be later used on practicing HPC programmers.

1 http://www.highproductivity.org

 2

1.1 Classroom as software engineering lab

The classroom is an appealing environment for conducting software engineering experiments, for

several reasons:
• Most researchers are located at universities. Being close to your subjects is often necessary to obtain

accurate results.
• Training can be integrated into the course. No extra effort is then required by the subjects since there

is the assumption that the training is a valuable academic addition to the classroom syllabus.
• Required tasks can be integrated into the course.
• All subjects are performing identical programming tasks, which is not generally true in industry. This

provides an easy source for replicated experiments.
In addition to the results that are obtained directly by these studies, such experiments are also useful

for piloting experimental designs and protocols which can later be applied to industry subjects, an
approach which has been used successfully elsewhere (e.g., [BA94] [BA97] [BA99]).

While there are threats to validity of such studies by using students as subjects as proxies for
professional programmers (e.g., the student environment may not be representative of the ones faced by
professional programmers), there are additional complexities that are specific to research in this type of
environment. We encountered each of these issues when conducting research on the effects of parallel
programming model on effort in high-performance computing [HO05b]:
 1. Complexity. Conducting an experiment in a classroom environment is a complex process that
requires many different activities (e.g., planning the experimental design, identifying appropriate artifacts
and treatments, enrolling students, providing for data collection, checking for process compliance,
sanitizing data for privacy, analyzing data). Each such activity identifies multiple points of failure, thus
requiring a large effort to organize and run multiple studies. If the study is done at multiple universities in
collaboration with other professors, these professors may have no experience in organizing and
conducting such experiments.
 2. Research vs. pedagogy. When the experiment is integrated into a course, the experimentalist
must take care to balance research and pedagogy [CA03]. Studies must have minimal interference with
the course. If the students in one class are divided up into treatment groups and the task is part of an
assignment, then care must be taken to ensure that the assignment is of equivalent difficulty across
groups. Students who consent to participate must not have any advantage or disadvantage over students
who do not consent to participate, which limits additional overhead required by the experiment. In fact,
each university’s Institutional Review Board (IRB), required in all USA universities performing
experiments with human subjects, insists that participation (or non-participation) must have no effect on
the student’s grade in the course.
 3. Consistent replication across classes. To build empirical knowledge with confidence,
researchers replicate studies in different environments. If studies are to be replicated in different classes,
then care must be taken to ensure that the artifacts and data collection protocols are consistent. This can
be quite challenging because professors have their own style of giving assignments. Common projects
across multiple locations often differ in crucial ways making meta-analysis of the combined results
impossible [MI00].
 4. Participation overhead for professors. In our experience, many professors are quite willing to
integrate software engineering studies into their classroom environment. However, for professors who are
unfamiliar with experimental protocols, the more effort required of them to conduct a study, the less
likely it will be a success. In addition, collaborating professors who are not empirical researchers may not
have the resources or the inclination to monitor the quality of captured data to evaluate process
conformance. Therefore, empirical researchers must try to minimize any additional effort required to run
an empirical study in the course while ensuring that data is being captured correctly.

 3

The required IRB approval, when attempted for the first time, seems like a formidable task. Help in
understanding IRB approval would greatly aid the ability of conducting such research experiments.
 5. Participation overhead for students. An advantage of integrating a study into a classroom
environment is that the students are already required to perform the assigned task as part of the course, so
the additional effort involved in participating in the study is much lower than if subjects were recruited
from elsewhere. However, while the additional overhead is low, it is not zero. The motivation to conform
to the data collection process is, in general, much lower than the motivation to perform the task, because
process conformance cannot be graded. In addition, the study should not subvert the educational goals of
the course. Putting the experiment in the context of the course syllabus is never easy.

This can be particularly problematic when trying to collect process data from subjects (e.g. effort,
activities, defects), especially for assignments that take several weeks. (e.g., We saw a reduction in
process conformance over time when subjects had to fill out effort logs over the course of multiple
assignments).
 6. Automatic data collection of software process. To reduce subject overhead and increase data
accuracy, it is possible to collect data automatically from the programmer’s environment. Capturing data
at the right level of granularity is difficult. All user-generated events can be captured (keyboard events,
mouse events), but this produces an enormous volume of data that may not abstract to useful information.
Allowing this raw data to be used can create privacy issues, such as revealing account names, with the
ability to then determine how long specific users took to build a product or how many defects they made.

All development activities taking place within a particular development environment (e.g., Eclipse)
simplifies the task of data collection, and tools exist to support such cases (e.g. Marmoset [SP05]).
However, in many domains development will involve a wide range of tools and possibly even multiple
machines. For example in the domain of high-performance computing, preliminary programs may be
compiled on a home PC, final programs are developed on the university multiprocessor and are ultimately
run on remote supercomputers at a distant datacenter. Programmers typically use a wide variety of tools,
including editors, compilers, build tools, debuggers, profilers, job submission systems, and even web
browsers for viewing documentation.
 7. Data management. Conducting multiple studies generates an enormous volume of heterogeneous
data. Along with automatically collected data and manually reported data, additional data includes
versions of the programs, pre- and post-questionnaires, and various quality outcome measures (e.g.
grades, code performance, defects). Because of privacy issues, and to conform to IRB regulations, all data
must be stored with appropriate access controls, and any exported data must be appropriately sanitized.
Managing this data manually is labor-intensive and error-prone, especially when conducting studies at
multiple sites.

Limitations of student studies include the relatively short programming assignments possible due to
the limited time in a semester and the fact these assignments must be picked for the educational value to
the students as well as their investigative value to the research team.

 4

Figure 1. Studies conducted.

In this report, we present both the methodology we have developed to investigate programmer
productivity issues in the HPC domain (Section 2), some initial results of studying productivity of novice
HPC programmers (Section 3).

2 Experiment methodology
In each class, we obtained consent from students to be part of our study. There is a requirement at

every U.S. institution that studies involving human subjects must be approved by that university’s
Institutional Review Board (IRB). The nature of the assignments was left to the individual instructors for
each class since instructors had individual goals for their courses and the courses themselves had different
syllabi. However, based on previous discussions as part of this project, many of the instructors used the
same assignments (Table 1), and we have been collecting a database of project descriptions as part of our
Experiment Manager website (See Section 3.1). To ensure that the data from the study would not impact
students’ grades (and a requirement of almost every IRB), our protocol quarantined the data collected in a
class from professors and teaching assistants for that class until final grades had been assigned.

Embarrassingly parallel:
 Buffon-Laplace needle problem, Dense matrix-vector multiply
Nearest neighbor:
 Game of life, Sharks & fishes, Grid of resistors, Laplace's equation, Quantum dynamics
All-to-all:
 Sparse matrix-vector multiply, Sparse conjugate gradient, Matrix power via prefix
Shared memory:
 LU decomposition, Shallow water model, Randomized selection, Breadth-first search
Other:
 Sorting

Table 1: Sample programming assignments

We need to measure the time students spend working on programming assignments with the task that
they are working on at that time (e.g. serial coding, parallelization, debugging, tuning). We used three
distinct methods: (1) explicit recording by subject in diaries (either paper or web-based); (2) implicit
recording by instrumenting the development environment; and (3) sampling by an operating system
installed tool (e.g., Hackystat [Jo04]). Each of these approaches has strengths and limitations. But
significantly, they all give different answers. After conducting a series of tests using variations on these

 5

techniques, we settled on a hybrid approach that combines diaries with an instrumented programming
environment that captures a time-stamped record of all compiler invocations (including capture of source
code), all programs invoked by the subject as a shell command, and interactions with supported editors.
Elsewhere [Ho05], we describe the details of how we gather this information and convert it into a record
of programmer effort.

After students completed an assignment, the data was transmitted to the University of Maryland,
where it was added to our Experiment Manager database. Looking at the database allows post-project
analysis to be conducted to study the various hypotheses we have collected via our folklore collection
process.

For example, given workflow data from a set of students, the following hypotheses that are the
subjective opinion of many in the HPCS community, collected via surveys at several HPCS meetings, can
be tested [As05]:

Hyp 1: The average time to fix a defect due to race conditions will be longer in a shared memory
program compared to a message-passing program. To test this hypothesis we can measure the time to fix
defects due to race conditions.

Figure 2. Research Plan.

Hyp. 2: On average, shared memory programs will require less effort than message passing, but the
shared memory outliers will be greater than the message passing outliers. To test this hypothesis we
measure the total development time.

Hyp. 3: There will be more students who submit incorrect shared memory programs compared to
message-passing programs. To test this hypothesis we can measure the number of students who submit
incorrect solutions.

Hyp. 4: An MPI implementation will require more code than an OpenMP implementation. To test
this hypothesis we can measure the size of code for each implementation.

The classroom studies are the first part of a larger series of studies we are conducting (Figure 2). We
first run pilot studies with students. We next conduct classroom studies, and then move onto controlled
studies with experienced programmers, and finally conduct experiments in situ with development teams.
Each of these steps contributes to our testing of hypothesizes by exploiting the unique aspects of each
environment (i.e., replicated experiments in classroom studies and multi-person development with in situ
teams). We can also compare our results with recent studies of existing HPC codes [PO05].

 6

2.1 Collection of folklore data
One of the main goals of the development time working group of HPCS project is to leverage HPC

community’s knowledge of development time issues. In order to do so, we are soliciting expert opinion
on issues related to HPC programming by collecting elements of folklore through surveys, generating
discussion among experts on these elements of the lore to increase precision of statements and to measure
degree of consensus and finally generate testable hypotheses based on the lore that can be evaluated in
empirical studies.

Figure 3: Folklore and defect solicitation process

Before starting the exploratory experiment of collecting peoples’ anecdotal beliefs through surveys,
we needed an initial set of such anecdotes to both encourage thinking and also use as examples of what
we are interested in.

To gather the folklore in HPC, a member of the study group, who is an HPC professor, conducted an
informal scan of several sources including lecture notes used in introductory HPC classes at the
University of Maryland as well as scanning the Internet for related keywords (including "HPC tribal lore”
and "HPC folklore"). The goal of this process was not to be exhaustive, but instead to gather a sense of
the type of information that a beginning HPC programmer might find. This initial list of 10 ideas (the left
column of the table in Appendix 1) was recorded and used as the basis for our first survey.

We then asked 7 HPC specialists and professors who regularly teach HPC classes to comment on the
initial list. They were asked to give an “agree”, “disagree” or “don’t know” answer to each candidate,
give their comments or change suggestions and add any folklore that they are aware of but is not on the
list.

The folklore number 11 in Appendix 1 was added by one of the participants at this stage. Generally
the comments revolved around clarifying the domain to which the bit of lore applied. For example was

 7

the bit of lore talking about a user programming model such as OpenMP or hardware architecture such as
a multi-threaded machine.

In order to clarify the questionable points we scheduled a discussion session among the participants.
This discussion resulted in some modifications in the way folklore sentences were phrased. The right
column of the table in Appendix 1 is the result of this modification.

At some point during the discussion, the participants agreed that “MPI programs don't run well when
you use lots of small messages because you get latency-limited”. In order to include this in the folklore
list, the lore number 12 was added to the list.

At the next step of the study, a survey form was compiled from the current list of 12 folklore and
distributed to the participants at the “High Productivity Computing Systems, Productivity Team Meeting”
held in January 2005. In order to avoid any bias, some of the randomly selected lore were rephrased to
imply the logically inverse sentence. Two sets of survey forms were compiled and distributed randomly.

2.2 Defect studies
 As part of our effort to understand development issues, our classroom experiments have moved
beyond effort analysis and have started to look at the impact of defects (e.g. incorrect or excessive
synchronization, incorrect data decomposition) on the development process. By understanding how,
when, and the kind of defects that appear in HPC codes, tools and techniques can be developed to
mitigate these risks to improve the overall workflow. As we have shown [Ho05], automatically
determining workflow is not precise, so we are working on a mixture of process activity (e.g., coding,
compiling, executing) with source code analysis techniques. The process of defect analysis we are
building consists of the following main activities:
• Analysis:

1. Analyze successive versions of the developing code looking for patterns of changes represented
by successive code versions (e.g., defect discovery, defect repair, addition of new functionality).

2. Record the identified changes.
3. Develop a classification scheme and hypotheses.
For example, a small increase in source code, following a failed execution, following a large code

insertion could represent the pattern of the programming adding new functionality followed by a test and
then defect correction. Syntactic tools that find specific defects can be used to aid the human-based
heuristic search for defects.
• Verification:
We then need to analyze these results at various levels. Verification consists of the following steps,
among others:
1. If we can somehow obtain the “true” defect sets, we can directly compare our analysis results with

them to evaluate the analysis results quantitatively.
2. Multiple analysts can independently analyze the source code and record identified defects.
3. Examine individual instances of defects to check if each defect is correctly captured and documented.
4. Provide defect instances and classify them into one of the given defect types. This can be used to

check the consistency of the classification scheme.
[Na06] explores this defect methodology in greater detail.

3 Experimental Results
An early result needed to validate our process was to verify that students could indeed produce good

HPC codes and that we could measure their increased performance. Table 2 is one set of data that shows
that students achieved speedups of approximately 3 to 7 on an 8-processor HPC machine. (CxAy means
class number x, assignment number y. This coding was used to preserve anonymity of the student
population.)

 8

Data set Programming Model Speedup on 8 processors
Speedup measured relative to serial version:
C1A1 MPI mean 4.74, sd 1.97, n=2
C3A3 MPI mean 2.8, sd 1.9, n=3
C3A3 OpenMP mean 6.7, sd 9.1, n=2
Speedup measured relative to parallel version run on 1 processor:
C0A1 MPI mean 5.0, sd 2.1, n=13
C1A1 MPI mean 4.8, sd 2.0, n=3
C3A3 MPI mean 5.6, sd 2.5, n=5
C3A3 OpenMP mean 5.7, sd 3.0, n=4

Table 2: Mean, standard deviation, and number of subjects for
computing speedup on Game of Life program.

 Measuring productivity in the HPC domain is part of understanding HPC workflows; however,
what does productivity mean in this domain [IJ04]? The following is one model that we can derive from
the fact that the critical component of HPC programs is the speedup achieved by using a multiprocessor
HPC machine over a single processor [Ze05]:

Productivity is defined as the relative speedup of a program using an HPC machine compared to a single
processor divided by the relative effort to produce the HPC version of the program divided by the effort to
produce a single processor version of the program.

Program 1 2* 3 4 5
Serial effort (hrs) 3 7 5 15
Total effort (hrs) 16 29 10 34.5 22
Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1
Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5
Speedup 1.58 4.76 5.87 6.71 8.90
Relative Effort 2.29 4.14 1.43 4.93 3.14
Productivity 0.69 1.15 4.11 1.36 2.83

*- Reference serial implementation
Table 3. Productivity experiment: Game of Life

Table 3 shows the results for one group of students programming the Game of life (a simple

nearest neighbor cellular automaton problem where the next generation of “life” depends upon
surrounding cells in a grid and a popular first parallel program for HPC classes) [Ga70]. The data
shows that our definition of productivity had a negative correlation compared to both total effort and
HPC execution time, and a positive correlation compared to relative speedup. While the sample size
is too small for a test of significance, the relationships all indicate that productivity does behave as we
would want a productivity measure to behave for HPC programs, i.e., good productivity means lower
total effort, lower HPC execution time and higher speedup.

 9

 Serial MPI OpenMP Co-Array
Fortran

StarP XMT

Nearest-Neighbor Type Problems
Game of Life C3A3 C3A3

C0A1
C1A1

C3A3

Grid of Resistors C2A2 C2A2 C2A2 C2A2
Sharks & Fishes C6A2 C6A2 C6A2
Laplace’s Eq. C2A3 C2A3
SWIM C0A2
Broadcast Type Problems
LU Decomposition C4A1
Parallel Mat-vec C3A4
Quantum Dynamics C7A1
Embarrassingly Parallel Type Problems
Buffon-Laplace Needle C2A1

C3A1
C2A1
C3A1

 C2A1
C3A1

Other
Parallel Sorting C3A2 C3A2 C3A2
Array Compaction C5A1
Randomized Selection C5A2

Table 4. Some of the early classroom experiments on specific architectures.

Table 4 shows the distribution of programming assignments across different programming
models for the first 7 classes (using the same CxAy coding used in Table 2). Multiple instances of
the same programming assignment lend the results to meta-analysis to be able to consider larger
populations of students. Table 5 summarizes the number of times each technology has been
applied to each programming problem. More details are given in [Ho05] and [Al07].

Table 5. Multiple classrooms studies for each technology.

 10

Dataset Programming Model Application Lines of Code

Serial mean 175, sd 88, n=10
MPI mean 433, sd 486, n=13 C3A3

 OpenMP

Game of
Life

 mean 292, sd 383, n=14
Serial 42 (given)
MPI mean 174, sd 75, n=9 C2A2

 OpenMP
Resistors

 mean 49, sd 3.2, n=10
Table 6. MPI program size compared to OpenMP program size.

For example, we can use this data to partially answer an earlier stated hypothesis (Hyp. 4: An

MPI implementation will require more code than an OpenMP implementation). Table 6 shows the
relevant data giving credibility to this hypothesis (but this data is not statistically significant yet).

1. An alternative parallel programming model is the PRAM model, which supports fine-grained
parallelism and has a substantial history of algorithmic theory [Vi98]. XMT-C is an extension of the
C language that supports parallel directives to provide a PRAM-like model to the programmer. A
prototype compiler exists that generates code which runs on a simulator for an XMT architecture. We
conducted a feasibility study in a class to compare the effort required to solve a particular problem.
After comparing XMT-C development to MPI, on average, students required less effort to solve the
problem using XMT-C compared to MPI. The reduction in mean effort was approximately 50%,
which was statistically significant at the level of p<.05 using a t-test [Ho06].

2. While OpenMP generally required less effort to complete (Figure 4), the comparison of defects
between MPI and OpenMP, however, did not yield statistically significant results, which contradicted
a common belief that shared memory programs are harder to debug. However, our defect data
collection was based upon programmer-supplied effort forms, which we know are not very accurate.
This led to the defect analysis mentioned previously [Na06], where we intend to do a more thorough
analysis of defects made.

Figure 4. Time saved using OpenMP over MPI for 10 programs.

(MPI used less time only in case 1 above).

3. We are collecting low-level behavioral data from developers in order to understand the "workflows"

that exist during HPC software development. A useful representation of HPC workflow could both
help characterize the bottlenecks that occur during development and support a comparative analysis

 11

of the impact of different tools and technologies upon workflow. One hypothesis we are studying is
that the workflow can be divided into one of five states: serial coding, parallel coding, testing,
debugging, and optimization.

In a pilot study at the University of Hawaii in Spring of 2006, students worked on the Gauss-
Seidel iteration problem using C and PThreads in a development environment that included
automated collection of editing, testing, and command line data using Hackystat. We were able to
automatically infer the "serial coding" workflow state as the editing of a file not containing any
parallel constructs (such as MPI, OpenMP, or PThread calls), and the "parallel coding" workflow
state as the editing of a file containing these constructs. We were also able to automatically infer the
"testing" state as the occurrence of unit test invocation using the CUTest tool. In our pilot study, we
were not able to automatically infer the debugging or optimization workflow states, as students were
not provided with tools to support either of these activities that we could instrument.
 Our analysis of these results leads us to conclude that workflow inference may be possible in an
HPC context. We hypothesize that it may actually be easier to infer these kinds of workflow states in
a professional setting, since more sophisticated tool support is often available which can help support
inferencing regarding the intent of a development activity. Our analyses also cause us to question
whether the five states that we initially selected are appropriate for all HPC development contexts. It
may be that there is no "one size fits all" set of workflow states, and that we will need to define a
custom set of states for different HPC organizations in order to achieve our goals.

 Additional early classroom results are given in [Ho05b].

Figure 5. Experiment Manager Structure.

4 Tool Development

In order to conduct this research, a series of tools are being developed:
 1. Websites

1. HPCBugBase.org – Defect database
2. http://hpcs.cs.umd.edu – HPCS Development time website

 2 Data collection
3. UMDINST – Shell-level time stamps from compilation and execution
4. Experiment Manager - Collect self-reported effort data

 12

5. Shell Logger – Capture all shell commands
6. Hackystat – Low level time stamps for many tools

 3 Data conversion
7. Raw data importer – Import UMDINST data to database
8. DB Sanitizer – Remove privacy data from DB

 4 Visualization and analysis
9. Automatic Performance Measurement System – Automatically run scripts of programs.
10. UCSB execution harness – Execute programs under controlled conditions
11. CodeVizard – View source code evolution
12. Data Analyzer – Visualization of UMDINST and Experiment Manager data
13. Activity graph – View workflow information

The websites (1.1., 1.2) allow for others to track our research and collect defects via a wiki. The
HPCBugBase is described in more details in Section 4.2 below.
 The data collection tools (2.3 to 2.6) are focused around the UMD experiment manager, explained in
section 4.1 that follows. Hackystat is a product of Philip Johnson of the University of Hawaii, but we
have worked with Philip in addressing issues his tool originally didn’t process. The data conversion tools
(3.7, 3.8) are internal conversion tools within the experiment manager used to handle data from a variety
of sources and to handle privacy issues required by federal and state laws. The visualization tools (4.9
through 4.13) are still under development, and the lack of continued funding prevents their completion. A
prototype of the data analyzer (tool 4.12) is part of the Experiment Manager explained below.

4.1 Experiment Manager
As stated earlier, we have collected effort data from student developments and begun to collect data

from professional HPC programmers in 3 ways: manually from the participants, automatically from
timestamps at each system command, and automatically via the Hackystat tool, sampling the active task
at regular intervals. All 3 methods provide different values for “effort,” and we developed models to
integrate and filter each method to provide an accurate picture of effort.

Our collection methods evolved one at a time. To simplify the process of students (and other HPC
professionals) providing needed information, we developed an experiment management package
(Experiment Manager) to more easily collect and analyze this data during the development process. It
includes effort, defect and workflow data, as well as copies of every source program during development.
Tracking effort and defects should provide a good data set for building models of productivity and
reliability of HEC codes.

We evolved the Experiment Manager framework (Figure 5) to mitigate the complexities described in
the previous section. The framework is an integrated set of tools to support software engineering
experiments in HPC classroom environments. While aspects of the framework have been studied by
others, the integration of all features allows for a uniform environment that has been used in over 25
classroom studies over the past 4 years. The framework supports the following.

1. Minimal disruption of the typical programming process. Study participants solve programming
tasks under investigation using their typical work habits, spreading out programming tasks over several
days. The only additional activity required is filling out some online forms. Since we do not require them
to complete the task in an alien environment or work for a fixed, uninterrupted length of time, we
minimize any negative impact on pedagogy or subject overhead.

2. Consistent instruments and artifacts. Use of the framework ensures that the same types of data will
be collected and the same types of problems will be solved, which increases confidence in meta-analysis
across studies at different universities.

3. Centralized data repository with web interface. The framework provides a simple, consistent
interface to the experimental data for experimentalists, subjects, and collaborating professors. This
reduces overhead for all stakeholders and ensures that data is consistently collected across studies.

4. Sanitization of sensitive data. The framework provides external researcher with access to the data
sets that have been stripped of any information that could identify subjects, to preserve anonymity and

 13

comply with the protocols of human subject research as set out by Institutional Review Boards
(IRBs) at American universities.

The Experiment Manager has 3 components:
1. UMD server: This web server is the entry portal to the Experiment Manager for students, faculty and

analysts and contains the repository of collected data.
2. Local server: A local server is established on the user machine (e.g., the one used by students at a

university) that is used to capture experimental data before transmission to the University of
Maryland.

3. UMD analysis server: A server stores sanitized data available to the HPCS community for access to
our collected data. This server avoids many of the legal hurdles implicit with using human subject
data (e.g., keeping student identities private).
For the near future, our efforts will focus on the following tasks:
• Evolve the interface to the Experiment Manager web-based tool to simplify use by the various

stakeholders (i.e., roles).
• Continue to develop our tool base, such as the defect data base and workflow models.
• Build our analysis data base including details of the various hypotheses we have studied in the

past.
• Evolve our experience bases to generate performance measures for each program submitted in

order to have a consistent performance and speedup measure for use in our workflow and time to
solution studies.

Further details of the Experiment Manager are covered in [Ho08].

4.2 HPCBugBase

A database and corresponding web-based tool has been created to collect and manage defects found in
HPC programs. The tool is at http://www.HPCBugBase.org. It is a public wiki allowing for the creation
of a defect-based experience base. Figure 6 is the home page of this bug base. Table 7 presents the initial
defect classification taxonomy being developed. More information about the HPC Bug Base is found is
[Na06] and [Na07].

Figure 6. HPCBugBase home page

 14

Table 7. HPC Defect classification

5 Conclusions

5.1 Student research
 Many students have been supported by this research. One MS degree was partially supported: Rola
Alameh, 2007; as well as 3 PhD dissertations were partially supported: Lorin Hochstein, 2006, Taiga
Nakamura, 2007, and Daniela Cruzes, 2007.

5.2 Publications

The following publications were partially sponsored by this grant:

1. Zelkowitz M., V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth, and T. Nakamura,
Productivity measures for high performance computers, Computer Society International
Symposium on Software Metrics, Como, Italy, September, 2005.

2. Hochstein L., V. Basili, M. Zelkowitz, J. Hollingsworth and J. Carver, Combining self-reported
and automatic data to improve effort measurement, Joint 10th European Software Engineering
Conference and 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005), Portugal, September.

3. Hochstein L., J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, M. Zelkowitz, HPC
Programmer Productivity: A Case Study of Novice HPC Programmers, Supercomputing 2005,
Seattle, WA, November 2005 .

 15

4. Shull F., J. Carver, L. Hochstein, and V. Basili, Empirical study design in the area of high
performance computing (HPC), Computer Society International Symposium on Empirical
Software Engineering, Noosa Heads, Australia, November, 2005, 305-314.

5. Lorin Hochstein, Victor R. Basili, "An Empirical Study to Compare Two Parallel Programming
Models". 18th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '06).
July 2006, Cambridge, MA.

6. Taiga Nakamura, Lorin Hochstein, Victor R. Basili, "Identifying Domain-Specific Defect Classes
Using Inspections and Change History", Proceeding of 5th ACM-IEEE International Symposium
on Empirical Software Engineering (ISESE'06), September 21-22, 2006, Rio de Janeiro, Brazil.

7. Lorin Hochstein, Development of an empirical approach to building domain-specific knowledge
applied to high-end computing, PhD dissertation, University of Maryland, Computer Science,
August 2005.

8. Jeffrey C. Carver, Lorin Hochstein, Richard P. Kendall, Taiga Nakamura, Marvin V. Zelkowitz,
Victor R. Basili and Douglass E. Post, Observations about Software Development for High End
Computing, CTWatch, November 2006.

9. Lorin Hochstein, Taiga Nakamura, Victor R. Basili, Sima Asgari, Marvin V. Zelkowitz, Jeffrey
K. Hollingsworth, Forrest Shull, Jeffrey Carver, Martin Voelp, Nico Zazworka, Philip Johnson,
Experiments to Understand HPC Time to Development, CTWatch, November 2006.

10. Nicole Wolter, Michael O. McCracken, Allan Snavely, Lorin Hochstein, Taiga Nakamura and
Victor Basili, What’s working in HPC: Investigating HPC User Behavior and Productivity,
CTWatch (2)4A:9-17, November, 2006.

11. Andrew Funk, Victor Basili, Lorin Hochstein and Jeremy Kepner, Analysis of parallel software
development using relative development time productivity metric, CTWatch (2)4A:46-51,
November 2006.

12. Rola Alameh, Nico Zazworka, Jeffrey K. Hollingsworth, Performance Measurement of Novice
HPC Programmers’ Code, Workshop on Software Engineering of High Productivity Computers
2007, May 2007, Minneapolis, MN.

13. Taiga Nakamura, Recurring software defects in high end computing, PhD dissertation, University
of Maryland, Computer Science, May, 2007.

14. Daniela Cruzes, Secondary Analysis on Experimental Software Engineering Studies, PhD
dissertation, Salvador University (UNIFACS), Salvador, Brazil, 2007

15. Rola Alameh, Investigating the effects of HPC novice programmer variations on code
performance, MS thesis, University of Maryland, Computer Science, December 2007 (to appear).

5.3 Summary

 Over the past 3 years we have been developing a methodology for running HPC experiments in a
classroom setting and obtaining results we believe are applicable to HPC programming in general. We are
starting to look at larger developments and look at large university and government HPC projects in order
to increase the confidence on the early results we have obtained with students.
 Our development of the Experiment Manager system and HPC bug base allows us to more easily
expand our capabilities in this area. This allows many others to run such experiments on their own in a
way that allows for the appropriate controls of the experiment so that results across classes and
organization at geographically diverse locations can be compared in order to get a thorough understanding
of the HPC development model.

6 Acknowledgement
Several additional students worked on various aspects of this project including Patrick R. Borek,

Daniela Suares Cruzes, and Thiago Escudeiro Craveiro. We’d also like to acknowledge the following

 16

faculty for allowing us to conduct experiments in their classes: Alan Edelman [MIT], John Gilbert
[UCSB], Mary Hall, Aiichiro Nakano, Jackie Chame [USC], Allan Snavely [UCSD], Alan Sussman, Uzi
Vishkin, [UMD], Ed Luke [MSU], Henri Casanova [UH], and Glenn Luecke [ISU].

 17

7 References

[As05] S. Asgari, L. Hochstein, V. Basili, M. Zelkowitz, J. Hollingsworth, J. Carver, and F. Shull, Generating
Testable Hypotheses from Tacit Knowledge for High Productivity Computing, 2nd International Workshop on
Software Engineering for High Performance Computing System Applications, (May, 2005) St. Louis, MO, 17-21.

[Al07] Alameh R., Investigating the effects of HPC novice programmer variations on code performance, MS thesis,
University of Maryland, Computer Science, December 2007 (to appear).

[Ba94] V. Basili, S. Green, Software Process Evolution at the SEL, IEEE Software 11(4), (July 1994), 58-66.

[Ba97] V. Basili, “Evolving and Packaging Reading Technologies,” Journal of Systems and Software, vol. 38 (1): 3-
12, July 1997.

[Ba99] V. Basili, F. Shull, and F. Lanubile, “Building Knowledge through Families of Experiments,” IEEE
Transactions on Software Engineering, vol. 25(4): 456-473, July 1999.

[Ba02] V. Basili, F. McGarry, R. Pajerski, M. Zelkowitz, Lessons learned from 25 years of process improvement:
The rise and fall of the NASA Software Engineering Laboratory, IEEE Computer Society and ACM International
Conf. on Soft. Eng., Orlando FL, May 2002, 69-79.

[Ca03] J. Carver, L. Jaccheri, S. Morasca, F. Shull, Issues in using students in empirical studies in software
engineering education, International Symposium on Software Metrics, Sydney, Australia, (2003), 239-249.

[Ga70] M. Gardner, Mathematical games, Scientific American, October, 1970.

[Ho05] L. Hochstein, V. Basili, M. Zelkowitz, J. Hollingsworth and J. Carver, Combining self-reported and
automatic data to improve effort measurement, Joint 10th European Software Engineering Conference and 13th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2005), Lisbon, Portugal,
September 2005, 356-365.

[Ho05b] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, M. Zelkowitz, HPC
Programmer Productivity: A Case Study of Novice HPC Programmers, Supercomputing 2005, Seattle, WA,
November 2005.

[Ho06] L. Hochstein, V. R. Basili, An Empirical Study to Compare Two Parallel Programming Models, 18th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA '06). July 2006, Cambridge, MA.

[Ho08] L. Hochstein, T. Nakamura, F. Shull, N. Zazaworka, V. Basili and M. Zelkowitz, An Environment for
Conducting Families of Software Engineering Experiments, Advances in Computers, Elsevier, Boston MA vol. 73
(2008) (to appear)

[IJ04] The International Journal of High Performance Computing Applications, (18)4, Winter 2004.

[Jo04] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa and T. Yamashita, Practical automated process
and product metric collection and analysis in a classroom setting: Lessons learned from Hackystat-UH, Proceedings
of the 2004 International Symposium on Empirical Software Engineering, Los Angeles, California, August, 2004.

[Mi00] J. Miller, Applying meta-analytical procedures to software engineering experiments, Journal of Systems and
Software 54, 1, (September, 2000) 29-39.

 18

[Na06] T. Nakamura, L. Hochstein and V. R. Basili, Identifying Domain-Specific Defect Classes: Using Inspections
and Change History, International Symposium on Empirical Software Engineering, (ISESE), Rio de Janeiro,
September, 2006.

[Na07] T. Nakamura, Recurring software defects in high end computing, PhD dissertation, University of Maryland,
Computer Science, May, 2007.

[Po05] Post, D., Kendall, R.P., and Whitney, E. Case study of the Falcon Project, Second International Workshop on
Software Engineering for High Performance Computing Systems Applications,. St. Louis, MO, 2005.

[Sp05] J. Spacco, J. Strecker, D. Hovemeyer, W. Pugh, Software repository mining with Marmoset: an automated
programming project snapshot and testing system, Proceedings of the 2005 International Workshop on Mining
Software Repositories, St. Louis, Missouri, (2005), 1-5.

[Vi05] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman, Explicit Multi-Threading (XMT) Bridging Models for
Instruction Parallelism, 10th ACM Symposium on Parallel Algorithms and Architectures (SPAA), 1998.

[Ze05] M. Zelkowitz, V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth and T. Nakamura, Measuring productivity
on high performance computers, IEEE Symp. on Software Metrics, Como, Italy, (September 2005).

 19

 20

Appendix: List of HPC folklore

Initial List Updated List
[1] Use of Parallel machines is not just for more CPU
power, but also for more total memory or total cache (at
a given level).

[1] Many people use parallel machines primarily for the
large amount of memory available (cache or main).

[2] It's hard to create a parallel language that provides
good performance across multiple platforms.

[2] It's hard to create a parallel language that provides
good performance across multiple platforms

[3] It's easier to get something working in using a shared
memory model than message passing.

[3] It's easier to get something working using a shared
memory model than message passing.

[4] It's harder to debug shared memory programs due to
race conditions involving shared regions.

[4] Debugging race conditions in shared memory
programs is harder than debugging race conditions in
message passing programs

[5] Explicit distributed memory programming results in
programs that run faster since programmers are forced to
think about data distribution (and thus locality) issues.

[5] Explicit distributed memory programming results in
programs that run faster than shared memory programs
since programmers are forced to think about data
distribution (and thus locality) issues

[6] In master/worker parallelism, the master soon
becomes the bottleneck and thus systems with a single
master will not scale.

[6] In master/worker parallelism, a system with a single
master has limited scalability because the master
becomes a bottleneck.

[7] Overlapping computation and communication can
result in at most a 2x speedup in a program.

[7] In MPI programs, overlapping computation and
communication (non-blocking) can result in at most a 2x
speedup in a program.

[8] HPF's data distribution process is also useful for
SMP systems since it makes programmers think about
locality issues.

[8] For large-scale shared memory systems, you can
achieve better performance using global arrays with
explicit distribution operations than using Open MP.

[9] Parallelization is easy, Performance is hard. For
example, identifying parallel tasks in a computation
tends to be a lot easier than getting the data
decomposition and load balancing right for efficiency
and scalability.

[9] Identifying parallelism is hard, but achieving
performance is easy.

[10] It's easy to write slow code on fast machines.
[10] It's easy to write slow code on fast machines.
Generally, the first parallel implementation of a code is
slower than its serial counterpart.

[11] Experts often start with incorrect programs that
capture the core computations and data movements. They
get these working at high performance first, and then
they make the code functionally correct later.

[11] Sometimes, a good approach for developing parallel
programs is to program for performance before
programming for correctness.

[12] N/A [12] Given a choice, it's better to write a program with
fewer large messages than many small messages

	1 Introduction
	1.1 Classroom as software engineering lab

	2 Experiment methodology
	2.1 Collection of folklore data
	2.2 Defect studies

	3 Experimental Results
	4 Tool Development
	4.1 Experiment Manager
	4.2 HPCBugBase

	5 Conclusions
	5.1 Student research
	5.2 Publications
	5.3 Summary

	6 Acknowledgement
	7 References
	Appendix: List of HPC folklore

