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Abstract

The critical time step needed for explicit time integration of laminated shell finite

element models is presented. Each layer is restricted to be orthotropic when viewed

from a properly oriented material coordinate system. Mindlin shell theory is used in

determining the laminated response that includes the effects of transverse shear. The

effects of the membrane-bending coupling matrix from the laminate material model are

included. Such a coupling matrix arises even in the case of non-symmetric lay-ups of

differing isotropic layers. Single point integration is assumed to be used in determining

a uniform strain response from the element. Using a technique based upon one from

the literature, reduced eigenvalue problems are established to determine the remaining

non-zero frequencies. It is shown that the eigenvalue problem arising from the inplane

normal and shear stresses is decoupled from that arising from the transverse shear

stresses. A verification example is presented where the exact and approximate results

are compared.
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1 Introduction

Composite materials are of growing importance to Sandia National Laboratories. The

composite structures of interest can be analyzed using nonlinear quasi-statics (ADA-

GIO), implicit structural dynamics (SALINAS), and explicit dynamics (PRESTO)

finite element codes. One issue specific for explicit dynamics is the calculation of a

stable time step for the conditionally stable central difference time integrator.1 This

stable time step is typically estimated using a bound calculated from examining each

element individually. Furthermore, this estimate for each element is usually found by

applying a CFL (Courant, Friedrichs, Lewy) type of approach where the critical time

step is found as the time for a wave to cross a characteristic element dimension.2,3 In

fact, this is what is currently used in PRESTO for most cases. However, the response

of a laminated composite is anisotropic and requires that the directional nature of the

response be taken into account.

This report details the derivation of membrane/bending and transverse shear eigen-

value problems leading to bounds for the critical time step of 4-noded Mindlin shell

elements using the elastic laminate model of PRESTO. The elastic laminate

constitutive model for shells has been detailed in Ref. 4. PRESTO uses single point

integration at the element centroid in determining the element internal force. Hence,

in addition to the zero eigenvalues arising from rigid body modes, zero eigenvalues also

result from the hourglass modes created from using single point integration. Using a

methodology similar to that given in Refs. 3 and 5, all of the zero energy modes are

eliminated from consideration in the developed eigenvalue problems. In the current

formulation, the one to one correspondence between the reduced problem size and

the number of independent uniform force and force-couple quantities for the under-

integrated element is explicitly delineated. The reduced problem size allows for sim-

pler and more precise calculations/estimates to be used in determining the critical

eigenvalues required for computing the critical time step. Simplifications of the lami-

nate eigenvalue problems appropriate for various classes of single layer laminates are

given. Also given are methods to quickly estimate the critical time step for mem-

brane/bending waves. Finally, an example problem from the PRESTO regression test

suite is detailed.
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2 Critical Time Step and General Eigenvalue Problem

It is well-known that the critical time step for central difference method when applied

to linear finite element analysis is determined as1

∆tcr =
2

ωmax
(2.1)

where ωmax is the maximum eigenvalue determined from the free vibration of the

assembled finite element system. That is, ωmax is determined from considering

∣

∣[K]− ω2 [M ]
∣

∣ = 0 (2.2)

where [K] and [M ] are the assembled stiffness and mass matrices. For nonlinear

analysis, the upper limit on the time step necessary to prevent instability is taken to

be equal to that computed from Eqs. (2.1) and (2.2) using [K] and [M ] evaluated at

the start of the time step in question. It can be shown that1

ωmax ≤ max
(n)

ω(n)
max (2.3)

where ω
(n)
max is the maximum frequency of the nth element. Hence, in the development

to follow, the critical time step will be developed by considering a single element and

using Eq. (2.3) which is equivalent to using Eq. (2.2) for a uniform mesh of identical

elements.

The eigenvalue problem for a single element is determined starting from the spatially-

discretized equations of motion for free vibration which are written as follows:

[m]
{

d̈
}

+ [k] {d} = {0} (2.4)

where [m] and [k] are the element mass and stiffness matrices, {d} is the displacement

vector of nodal translational and rotational degrees-of-freedom (DOF), and
{

d̈
}

de-

notes ∂2 {d} /∂t2, the corresponding vector of accelerations. The eigenvalue problem

is derived by replacing the vector of nodal DOF by the following expression:

{d} = {χ} eiωt (2.5)

where {χ} is the vector of displacement amplitudes and ω now denotes the free vibra-

tion frequencies for a single element. After substituting Eq. (2.5) into Eq. (2.4), the
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time dependence is eliminated by dividing both sides by eiωt to give the eigenvalue

problem as

[k] {χ} = ω2 [m] {χ} (2.6)

An equivalent statement of the eigenvalue problem is determined by multiplying both

sides of Eq. (2.6) by [m]−1 to give

[m]−1 [k] {χ} = ω2 {χ} (2.7)

In order to avoid having to solve a system of equations at each time step, a lumped

mass matrix is used in the central difference method to turn it into an explicit method.

The vector {d} is written with the rotational DOF at its end so that

[m] =
ρAh

4





[

I(12×12)

]

[0]

[0] α
[

I(8x8)

]



 (2.8)

where ρ is the element density, A is the element area, h is the element thickness, α

is the rotational inertia scaling factor, and
[

I(N×N)

]

is the (N ×N) identity matrix.

One choice for α is6

α =
A

12
(2.9)

which when multiplied by ρAh/4 gives the mass moment of inertia of one-fourth of a

rigid square element. Another choice is to set α to be the ratio of the area moment of

inertia I to the area A as follows:7

α =
I

A
=
h2

12
(2.10)

PRESTO uses Eq. (2.9) in its internal computations. The lumped mass matrix is

rewritten as

[m] =
ρAhα

4





1

α

[

I(12×12)

]

[0]

[0]
[

I(8x8)

]



 =
ρAhα

4
[m̂] (2.11)

Furthermore, [k] {χ} is recognized as the amplitude vector corresponding to the

element internal force vector so that Eq. (2.6) is rewritten as

ρAhα

4
ω2 [m̂] {χ} = {fint} (2.12)

For non-zero frequencies, this equation can be rearranged further to give the displace-

ment amplitude vector in the eigenvalue problem written as

{χ} = 4

ρAhαω2
[m̂]−1 {fint} (2.13)
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Although many details are to follow, the reduced eigenvalue problem will be developed

by writing the amplitude vectors of the laminate force and force-couple resultants

(stress and stress times moment arm integrated through the thickness) in terms of

{χ} and then using Eq. (2.13) to express {χ} in terms of {fint} which is in turn

written in terms of the amplitude vectors of the force and force-couple resultants. The

end result will be an eigenvalue problem where linear combinations of force and force-

couple resultant amplitudes are expressed in terms of a scalar (an eigenvalue) times the

force and force-couple amplitudes themselves. From this point forward, the distinction

between actual oscillating quantities and their associated amplitude vectors will not

be explicitly made. Rather, the difference should be clear from the context in which

the quantities appear.

The expression for the internal force vector will be derived using the Principle of

Virtual Work. That is, {fint} is determined from the internal virtual work δWint which

is written as

δWint =

∫

V
σijδεij dV = {δd}T {fint} (2.14)

where δεij are the virtual small strains (only including linear terms), σij are the

stresses, V is the element volume, and repeated indices are summed. Hence, it is

now necessary to relate the virtual strains to the virtual displacements.

3 Displacements and Linear Strains

The displacement field for the 4-node bilinear shell element is expressed as



















U(x, y, z)

V (x, y, z)

W (x, y, z)



















=



















u(x, y)

v(x, y)

w(x, y)



















+ z



















θy(x, y)

−θx(x, y)

0



















(3.1)

where U , V , and W are the displacements in the x, y, and z directions, u, v, and w

are the corresponding midplane deflections, and θx and θy are the rotations about the

x and y axes. Here z has been defined to be the direction perpendicular to the shell.

For simplicity, all notation throughout the theory portion of this report will use x-y-

z coordinate system in expressing directions and components. However, the results

that are derived can be equally applied in another orthogonal coordinate system such
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as the r-s-t co-rotational coordinate system actually employed in internal PRESTO

calculations. From this point forward, the shell element will be considered to be flat.

Considering only linear terms, the inplane strains are written as



































εxx

εyy

2εxy



































=







































∂U

∂x

∂V

∂y

∂U

∂y
+
∂V

∂x







































=







































∂u

∂x

∂v

∂y

∂u

∂y
+
∂v

∂x







































+ z







































∂θy

∂x

−∂θx

∂y

∂θy

∂y
− ∂θx

∂x







































(3.2)

Letting {ε}, {e}, and {κ} denote total inplane strains, midplane strains, and bending

curvatures, respectively, Eq. (3.2) is rewritten as

{ε} = {e}+ z {κ} (3.3)

The transverse shear strains are written as














2εyz

2εzx















=















∂W

∂y
+
∂V

∂z

∂W

∂x
+
∂U

∂z















=















∂w

∂y
− θx

∂w

∂x
+ θy















(3.4)

The transverse shear strains are constant throughout the thickness and are written as

{εts} = {ets} (3.5)

Let the nodal degrees-of-freedom be arranged in {d} as follows:

{d} =











































{u}
{v}
{w}
{θx}
{θy}











































(3.6)

where {u}, {v}, {w}, {θx}, and {θy} are vectors of nodal displacements and rotations.

The bilinear displacement field is then expressed in terms of these quantities using the

bilinear shape functions {Φ} as follows:

u(x, y) = {Φ(x, y)}T {u} , v(x, y) = {Φ(x, y)}T {v} , w(x, y) = {Φ(x, y)}T {w} ,

θx(x, y) = {Φ(x, y)}T {θx} , & θy(x, y) = {Φ(x, y)}T {θy} (3.7)
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The linear strain displacement matrices are then derived by substituting the expres-

sions listed in Eq. (3.7) into Eqs. (3.2) and (3.4) to give

{e} = [G1] {d} (3.8)

{κ} = [G2] {d} (3.9)

{ets} = [G3] {d} (3.10)

where [G1] is a (3× 20) matrix defined as

[G1] =























∂ {Φ}
∂x

T

{0}T {0}T {0}T {0}T

{0}T ∂ {Φ}
∂y

T

{0}T {0}T {0}T

∂ {Φ}
∂y

T ∂ {Φ}
∂x

T

{0}T {0}T {0}T























(3.11)

[G2] is a (3× 20) matrix defined as

[G2] =























{0}T {0}T {0}T {0}T ∂ {Φ}
∂x

T

{0}T {0}T {0}T −∂ {Φ}
∂y

T

{0}T

{0}T {0}T {0}T −∂ {Φ}
∂x

T ∂ {Φ}
∂y

T























(3.12)

and [G3] is a (2× 20) matrix defined as

[G3] =











{0}T {0}T ∂ {Φ}
∂y

T

−{Φ}T {0}T

{0}T {0}T ∂ {Φ}
∂x

T

{0}T {Φ}T











(3.13)

4 Internal Force Vector

The virtual small strains are now written as

{δε} = {δe}+ z {δκ} (4.1)

and

{δεts} = {δets} (4.2)
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Substituting Eqs. (4.1) and (4.2) into Eq. (2.14) yields

δWint =

∫

A

∫ h/2

−h/2

(

{δe}T + z {δκ}T
)

{σ} dzdA+

∫

A

∫ h/2

−h/2
{δets}T {σts} dzdA (4.3)

where {σ} is the vector of inplane normal and shear stresses, {σts} is the vector of

transverse shear stresses, and h is the laminate thickness. However, it is known that

modeling the transverse shear strains and stresses to be constant through the thickness

results in the transverse shear energy being too large compared to that coming from a

more realistic parabolic distribution. A transverse shear correction factor of β2 = 5/6

can be used so that the constant distribution of transverse shear strains and stresses

has the same strain energy as a parabolic distribution.8 Using such a transverse shear

correction factor, the internal virtual work would become

δWint =

∫

A

∫ h/2

−h/2

(

{δe}T + z {δκ}T
)

{σ} dzdA+ β2

∫

A

∫ h/2

−h/2
{δets}T {σts} dzdA

(4.4)

However, sometimes it is advantageous to use a different transverse shear correc-

tion factor. As the laminate thickness decreases to zero, Kirchhoff bending conditions

of zero transverse shear strains should result. It is desired to achieve this behavior

without shear locking the element. Based on the work presented in Ref. 9, the trans-

verse shear correction factor can be used to recover this thin shell behavior. That is,

the transverse shear correction factor becomes a penalty multiplier with the transverse

shear energy acting as a penalty function for modeling thin shell behavior. Fried et

al.9 proposed a transverse shear correction factor β2 = 6h2/A to achieve thin shell

behavior without shear locking the element. Then the minimum of β2 = 5/6 and

β2 = 6h2/A would be used. However, in the present work, a separate transverse shear

correction factor is used for the yz and zx transverse shears as follows:

β2
yz = min

{

5/6, 6h2/L2
yz

}

(4.5)

β2
zx = min

{

5/6, 6h2/L2
zx

}

(4.6)

where Lyz and Lzx are characteristic lengths of the element in the y- and x-directions,

respectively.

Using separate transverse shear correction factors for the yz and zx transverse
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shears, the internal virtual work can be written as

δWint =

∫

A

∫ h/2

−h/2

(

{δe}T + z {δκ}T
)

{σ} dzdA+

∫

A

∫ h/2

−h/2
{βδets}T {βσts} dzdA

(4.7)

where the vectors of scaled transverse shear strains and stresses are, respectively, given

by

{βδets} =







2βyzδeyz

2βzxδezx







(4.8)

and

{βσts} =







βyzσyz

βzxσzx







(4.9)

The internal force vector can then be determined using Eq. (2.14) as

{fint} =
∫

A

(

[G1]
T {N}+ [G2]

T {M}+ [βG3]
T {βNts}

)

dA (4.10)

where {N} is the vector of inplane force resultants defined as

{N} =
∫ h/2

−h/2
{σ} dz =

∫ h/2

−h/2



















σxx

σyy

σxy



















dz (4.11)

{M} is the vector of force-couple resultants defined as

{M} =
∫ h/2

−h/2
z {σ} dz =

∫ h/2

−h/2
z



















σxx

σyy

σxy



















dz (4.12)

{βNts} is the vector of scaled transverse shear force resultants defined as

{βNts} =
∫ h/2

−h/2
{βσts} dz =

∫ h/2

−h/2







βyzσyz

βzxσzx







dz (4.13)

and [βG3] is given by

[βG3] =











{0}T {0}T βyz
∂ {Φ}
∂y

T

−βyz {Φ}T {0}T

{0}T {0}T βzx
∂ {Φ}
∂x

T

{0}T βzx {Φ}T











(4.14)
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The square root of the transverse shear correction factor was applied to the transverse

shear stresses and the virtual transverse shear strains in Eq. (4.7) so that using a linear

elastic material law will allow the transverse shear part of the problem to remain self-

adjoint. That is, the gradient operator [βG3] used to compute the scaled transverse

shear strains which are used in computing the scaled transverse shear stresses remains

equal to the transpose of the divergence operator [βG3]
T which is used to compute

the scaled transverse shear internal forces from the scaled transverse shear stresses via

Eq. (4.10).10

The size of the free vibration eigenvalue problem arising from Eq. (2.13) is reduced

when a single-point integration scheme is applied to Eq. (4.10).3,5 Letting the super-

script 0 denote quantities evaluated at the element centroid, the internal force vector

using single point integration is written as

{

f0
int

}

= A
(

[

G0
1

]T {
N0
}

+
[

G0
2

]T {
M0
}

+
[

βG0
3

]T {
βN0

ts

}

)

(4.15)

5 Midpoint Gradient Operators

The spatial derivatives of the element shape functions evaluated at the element centroid

will be expressed in terms of {b1}, {b2}, and {b3} which are defined as follows:

{b1} = A

(

∂ {Φ}
∂x

)0

(5.1)

{b2} = A

(

∂ {Φ}
∂y

)0

(5.2)

{b3} = A
{

Φ0
}

(5.3)

It can be shown in a straightforward manner that

{b1}T =
1

2

{

y24 y31 y42 y13

}

(5.4)

{b2}T =
1

2

{

x42 x13 x24 x31

}

(5.5)

{b3}T =
A

4

{

1 1 1 1
}

(5.6)

A =
1

2
(x31y42 + x24y31) (5.7)
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where xij is determined in terms of the nodal xi as

xij = xi − xj (5.8)

Similar equations hold for yij .

The linear strain-displacement matrices evaluated at the element centroid are now

written as

[

G0
1

]

=
1

A











{b1}T {0}T {0}T {0}T {0}T

{0}T {b2}T {0}T {0}T {0}T

{b2}T {b1}T {0}T {0}T {0}T











(5.9)

[

G0
2

]

=
1

A











{0}T {0}T {0}T {0}T {b1}T

{0}T {0}T {0}T −{b2}T {0}T

{0}T {0}T {0}T −{b1}T {b2}T











(5.10)

[

βG0
3

]

=
1

A





{0}T {0}T βyz {b2}T −βyz {b3}T {0}T

{0}T {0}T βzx {b1}T {0}T βzx {b3}T



 (5.11)

In the development to follow it will be useful to define the dot products of these

vectors as follows:

aij = {bi}T {bj} (5.12)

Using Eqs. (5.4)-(5.6), these geometric factors are written explicitly in terms of xij ,

yij , and A as











a11 a12 a13

a21 a22 a23

a31 a32 a33











=

















1

2

(

y2
24 + y2

31

) 1

2
(y24x42 + y31x13) 0

1

2

(

x2
24 + x2

31

)

0

SYM A2

4

















(5.13)

6 Constitutive Model

The material response is modeled using a linear elastic anisotropic constitutive equa-

tion as described for the elastic laminate model in Ref. 4. Such models are typically

used in representing the response of fiber-reinforced laminated composites. Note that

in Ref. 4, the stresses arising from thermal changes have been included. However,
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these loads can be considered as applied external loads and need not be included here

for determining the critical time step. Generalized plane stress conditions will be used

such that the constitutive equation for inplane stresses at a given z location through

the thickness is


















σxx

σyy

σxy



















=











Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66















































exx

eyy

2exy



















+ z



















κxx

κyy

2κxy





































(6.1)

and that for the scaled transverse shear stresses is






βyzσyz

βzxσzx







=





Q̄44 Q̄45

Q̄45 Q̄55











2βyzeyz

2βzxezx







(6.2)

The form of the material model given by Eqs. (6.1) and (6.2) can be taken to corre-

spond to a truly anisotropic material with no coupling between inplane normal/shear

and transverse shear behavior, or to one which is truly orthotropic when viewed in

a coordinate system aligned with material directions. That is, letting the material

coordinate system be denoted by 1-2-3, the constitutive model can be expressed as











































σ11

σ22

β23σ23

β31σ31

σ12











































=























Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66











































































































e11

e22

2β23e23

2β31e31

2e12











































+ z











































κ11

κ22

0

0

2κ12





















































































(6.3)

Using standard tensor transformations, all the Q̄ij ’s can be expressed in terms of the

Qij ’s.

Substituting Eq. (6.1) into Eqs. (4.11) and (4.12) gives the inplane force and force-

couple resultants as























































Nxx

Nyy

Nxy

Mxx

Myy

Mxy























































=





























A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66



















































































exx

eyy

2exy

κxx

κyy

2κxy























































(6.4)
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or






{N}
{M}







=





[A] [B]

[B] [D]











{e}
{κ}







(6.5)

where

(Aij ; Bij ; Dij) =

∫ h/2

−h/2
(1; z; z2) Q̄ij dz (6.6)

Likewise, integrating Eq. (6.2) through the thickness gives







βyzNyz

βzxNzx







=





A44 A45

A45 A55











2βyzeyz

2βzxezx







(6.7)

or

{βNts} = [Ats] {βets} (6.8)

Using Eqs. (3.8) and (3.9), the inplane force and force-couple resultants evaluated

at the element centroid are

{

N0
}

= [A][G0
1] {d}+ [B][G0

2] {d} (6.9)

and
{

M0
}

= [B][G0
1] {d}+ [D][G0

2] {d} (6.10)

Likewise using Eq. (3.10), the scaled transverse shear force resultant evaluated at the

centroid is
{

βN0
ts

}

= [Ats]
[

βG0
3

]

{d} (6.11)

7 Reduced Eigenvalue Problem

For the eigenvalue problem, {d} is replaced by {χ} in Eqs. (6.9)-(6.11) such that
{

N0
}

,
{

M0
}

, and
{

N0
ts

}

refer specifically to the amplitude of the corresponding force

or force-couple resultant. Then, {χ} is in turn rewritten in terms of
{

N0
}

,
{

M0
}

,

and
{

N0
ts

}

using Eqs. (2.13) and (4.15). The eigenvalue problem is then expressed by
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the following equations

{

N0
}

=
4

ρhαω2

(

(

[A]
[

G0
1

]

[m̂]−1 [G0
1

]T
+ [B]

[

G0
2

]

[m̂]−1 [G0
1

]T
)

{

N0
}

+
(

[A]
[

G0
1

]

[m̂]−1 [G0
2

]T
+ [B]

[

G0
2

]

[m̂]−1 [G0
2

]T
)

{

M0
}

+
(

[A]
[

G0
1

]

[m̂]−1 [βG0
3

]T
+ [B]

[

G0
2

]

[m̂]−1 [βG0
3

]T
)

{

βN0
ts

}

)

(7.1)

{

M0
}

=
4

ρhαω2

(

(

[B]
[

G0
1

]

[m̂]−1 [G0
1

]T
+ [D]

[

G0
2

]

[m̂]−1 [G0
1

]T
)

{

N0
}

+
(

[B]
[

G0
1

]

[m̂]−1 [G0
2

]T
+ [D]

[

G0
2

]

[m̂]−1 [G0
2

]T
)

{

M0
}

+
(

[B]
[

G0
1

]

[m̂]−1 [βG0
3

]T
+ [D]

[

G0
2

]

[m̂]−1 [βG0
3

]T
)

{

βN0
ts

}

)

(7.2)

{

βN0
ts

}

=
4

ρhαω2

(

[

A0
ts

] [

βG0
3

]

[m̂]−1 [G0
1

]T {
N0
}

+
[

A0
ts

] [

βG0
3

]

[m̂]−1 [G0
2

]T {
M0
}

+
[

A0
ts

] [

βG0
3

]

[m̂]−1 [βG0
3

]T {
βN0

ts

}

)

(7.3)

It can be shown that a large number of the terms in Eqs. (7.1)-(7.3) are zero. In fact,

[

G0
i

]

[m̂]−1 [G0
j

]T
= 0 i 6= j (7.4)

even when the transverse shear correction factors are used to modify
[

G0
3

]

. Hence,

the eigenvalue problems arising from the inplane (normal and shear) stresses and

transverse shear stresses are decoupled.

The following (6× 6) eigenvalue problem results from the inplane stresses:













α
[

Ã
] [

B̃
]

α
[

B̃
] [

D̃
]



































































N0
xx
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yy
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xy
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xx
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yy
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xy




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













































=
ρA2hα

4
ω2
































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



















N0
xx

N0
yy

N0
xy

M0
xx

M0
yy

M0
xy
















































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



(7.5)
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where

[

Ã
]

=











Ã11 Ã12 Ã16

Ã21 Ã22 Ã26

Ã61 Ã62 Ã66











=











a11A11 + a12A16 a22A12 + a12A16 a12 (A11 +A12) + (a11 + a22)A16

a11A12 + a12A26 a22A22 + a12A26 a12 (A12 +A22) + (a11 + a22)A26

a11A16 + a12A66 a22A26 + a12A66 a12 (A16 +A26) + (a11 + a22)A66











(7.6)

where the aij ’s are given in Eq. (5.13). Equations for
[

B̃
]

and
[

D̃
]

are obtained

by replacing Aij by Bij and Dij , respectively, in Eq. (7.6). Note that the (6 × 6)

matrix in Eq. (7.5) is, in general, asymmetric. This asymmetry results from the

gradient and divergence operators used in creating the reduced eigenvalue problem.

This asymmetry remains in the case of symmetric lay-ups which necessarily have
[

B̃
]

= [0] when z = 0 for the element midplane, as chosen here. This, of course,

includes the case of a single layer whether it be anisotropic or not. Furthermore, even

considering the special sub-case of a single isotropic layer (A11 = A22, A12 = νA11,

A16 = A26 = 0, A66 = ((1 − ν)/2)A11; B11 = B22 = B12 = B16 = B26 = B66 = 0;

D11 = D22 = (h2/12)A11, D12 = νD11, D16 = D26 = 0, D66 = ((1 − ν)/2)D11), the

eigenvalue problem given by Eq. (7.5) is asymmetric, unless the particular element

under consideration is a perfect square (a11 = a22, a12 = 0).

On the other hand, the following (2×2) eigenvalue problem results from the scaled

transverse shear stresses:

[

Ãts

]







βyzN
0
yz

βzxN
0
zx







=
ρA2hα

4
ω2







βyzN
0
yz

βzxN
0
zx







(7.7)

where
[

Ãts

]

is a (2× 2) matrix given by

[

Ãts

]

=





Ã44 Ã45

Ã54 Ã55



 =

















(αa22 + a33)β
2
yzA44 αβyzβzxa12A44

+αβyzβzxa12A45 +(αa11 + a33)β
2
zxA45

(αa22 + a33)β
2
yzA45 αβyzβzxa12A45

+αβyzβzxa12A55 +(αa11 + a33)β
2
zxA55

















(7.8)

If equal transverse shear factors are applied to both transverse shears (βyz = βzx =

β), the transverse shear eigenvalue problem can be simplified by factoring β2 out
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of
[

Ãts

]

. Nevertheless, the (2 × 2) matrix defining the transverse shear eigenvalue

problem is generally asymmetric. However, unlike the membrane/bending eigenvalue

problem, the matrix defining the transverse shear eigenvalues is symmetric for all

element geometries when the laminate corresponds to a single isotropic layer.

Using a x-y-z coordinate system with the z-axis parallel to the element normal re-

quires only two rotational degrees-of-freedom at each node in addition to three trans-

lational degrees-of-freedom. Hence, with five degrees-of-freedom at four nodes, the

eigenvalue problem cast in Eq. (2.6) specifies twenty eigenvalues including rigid body

modes. Using the methodology presented in Refs. 3 and 5, single point integration

has reduced the eigenvalue problem down to the computation of eight eigenvalues as

specified by Eqs. (7.5) and (7.7). The reduction in problem size was accomplished

by disregarding the rigid body and hourglass modes. Clearly the size of the reduced

eigenvalue problems corresponds exactly to the number of independent force and force-

couple resultants that can be represented using single point integration. The maxi-

mum eigenvalue to be used in determining the final critical time step corresponding

to a given element is the maximum of those obtained independently from Eqs. (7.5)

and (7.7). It should be noted that the eigenvalue problem defined by Eq. (7.7) corre-

sponds to propagation of a transverse shear wave across the element and not through

its thickness.

8 Critical Time Step Estimate

For the case of transverse shear waves, the asymmetric (2×2) eigenvalue problem given

in Eq. (7.7) is small enough to be solved exactly to give the maximum transverse shear

frequency without incurring excessive computational cost. On the other hand, the

asymmetric (6×6) membrane/eigenvalue problem stated in Eq. (7.5) can be expensive

to solve for each element at each time step. Hence, several bounds for the maximum

membrane/bending frequency will be developed.

One typical way to bound the maximum eigenvalue of a matrix is to use a Ger-

schgorin circle estimate.11 Following Ref. 11, Gerschgorin’s theorem is given as



22

Gerschgorin Circle Theorem Let [A] be an (n × n) matrix and let Ri denote

the circle in the complex plane with center Aii and radius
∑n

j = 1
j 6= i

|Aij |; that is,

Ri =



























z ε C
∣

∣

∣

∣

|z −Aii| ≤
n

∑

j = 1
j 6= i

|Aij |



























(8.1)

where C is used to denote the complex plane. The eigenvalues of [A] are contained

within R =
⋃n

i=1
Ri. Moreover, the union of any k of these circles that do not inter-

sect the remaining (n− k) circles must contain precisely k (counting multiplicities)

of the eigenvalues.

For simplicity in notation, Eq. (7.5) is rewritten as follows:

[P ]























































N0
xx

N0
yy

N0
xy

M0
xx

M0
yy

M0
xy























































=
ρA2hα

4
ω2























































N0
xx

N0
yy

N0
xy

M0
xx

M0
yy

M0
xy























































(8.2)

Recall that Eqs. (8.2) and (7.7) correspond to the element eigenvalue problem given

by Eq. (2.7) with rigid body and hourglass modes neglected. As stated previously, [m]

is taken to be a lumped mass matrix. Although not shown here, it is well known that

[k] is real and symmetric. Hence, the matrix product [m]−1 [k] is symmetric and real

and therefore the eigenvalues of [m]−1 [k] themselves are real.12 Obviously, this means

that the eigenvalues of both [P ] and
[

Ãts

]

are real. Using this fact along with the

Gerschgorin circle theorem, a bound for the maximum membrane/bending frequency

can be determined to be

wmax ≤
√

4

ρA2hα
max

i
{Pii + ri} (8.3)

where

ri =

n
∑

j = 1
j 6= i

|Pij | (8.4)

Because [P ] is asymmetric, another bound can be developed by applying the Ger-
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schgorin Circle Theorem to the transpose of [P ] to give

wmax ≤
√

4

ρA2hα
max

j
{Pjj + sj} (8.5)

where

sj =

n
∑

i = 1
i 6= j

|Pij | (8.6)

Because the two bounds given in Eqs. (8.3) and (8.5) are independent, the max-

imum allowable time step for membrane/bending waves is calculated using the min-

imum bound for the membrane/bending frequencies in Eq. (2.1). The critical time

step corresponding to an element is then the minimum of those determined for mem-

brane/bending and transverse shear waves. Finally, the critical time step for the entire

system is bounded by the minimum critical time step over all of the elements in the

mesh as stated in Eq. (2.3).

9 Single Layer Reductions

For a single layer, the (6× 6) inplane eigenvalue problem decouples into independent

(3× 3) membrane and bending eigenvalue problems. The transverse shear eigenvalue

problem remains decoupled and (2 × 2) in size. Closed-form expressions can be de-

veloped for the membrane, bending and transverse shear frequencies, but are only

presented for the special sub-case where the material response is isotropic.

9.1 General Single Layer

Consider the single layer case where the constitutive behavior is described solely by

Eqs. (6.1) and (6.2). Those equations either correspond to a truly anisotropic material

with no coupling between inplane normal/shear and transverse shear behaviors or an

orthotropic material where the principal material directions are not aligned with the
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chosen x-y-z system. In either case, the laminate matrices become

[A] =











A11 A12 A16

A12 A22 A26

A16 A26 A66











= h











Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66











(9.1)

[B] =











B11 B12 B16

B12 B22 B26

B16 B26 B66











=











0 0 0

0 0 0

0 0 0











(9.2)

[D] =











D11 D12 D16

D12 D22 D26

D16 D26 D66











=
h3

12











Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66











(9.3)

and

[Ats] =





A44 A45

A45 A55



 = h





Q̄44 Q̄45

Q̄45 Q̄55



 (9.4)

The membrane and bending eigenvalue problems defined by Eq. (7.5) become

[

Q̃
]



















N0
xx

N0
yy

N0
xy



















=
ρA2

4
ω2

m



















N0
xx

N0
yy

N0
xy



















(9.5)

[

Q̃
]



















M0
xx

M0
yy

M0
xy



















=
3ρA2α

h2
ω2

b



















M0
xx

M0
yy

M0
xy



















(9.6)

where

[

Q̃
]

=











Q̃11 Q̃12 Q̃16

Q̃21 Q̃22 Q̃26

Q̃61 Q̃62 Q̃66











=











a11Q̄11 + a12Q̄16 a22Q̄12 + a12Q̄16 a12

(

Q̄11 + Q̄12

)

+ (a11 + a22) Q̄16

a11Q̄12 + a12Q̄26 a22Q̄22 + a12Q̄26 a12

(

Q̄12 + Q̄22

)

+ (a11 + a22) Q̄26

a11Q̄16 + a12Q̄66 a22Q̄26 + a12Q̄66 a12

(

Q̄16 + Q̄26

)

+ (a11 + a22) Q̄66











(9.7)

It should be clear that the decoupling of the membrane and bending eigenvalue prob-

lems occurs because [B] is zero in this case. Furthermore, it should also be evident
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that the maximum bending frequency ωbmax
is related to the maximum membrane

frequency ωmmax
as follows:

ωbmax
=

(

h√
12α

)

ωmmax
(9.8)

If the rotational inertia scaling factor is chosen to be h2/12, then the membrane and

bending eigenvalue problems are identical and the resulting maximum frequencies are

equal. That is,

ωbmax
= ωmmax

for α =
h2

12
(9.9)

On the other hand, using A/12 for the rotational inertia scaling gives

ωbmax
=

(

h√
A

)

ωmmax
for α =

A

12
(9.10)

The transverse shear eigenvalue problem becomes

[

Q̃ts

]







βyzN
0
yz

βzxN
0
zx







=
ρA2α

4
ω2

ts







βyzN
0
yz

βzxN
0
zx







(9.11)

where

[

Q̃ts

]

=





Q̃44 Q̃45

Q̃54 Q̃55



 =

















(αa22 + a33)β
2
yzQ̄44 αβyzβzxa12Q̄44

+αβyzβzxa12Q̄45 +(αa11 + a33)β
2
zxQ̄45

(αa22 + a33)β
2
yzQ̄45 αβyzβzxa12Q̄45

+αβyzβzxa12Q̄55 +(αa11 + a33)β
2
zxQ̄55

















(9.12)

9.2 Single Specially Orthotropic Layer

Here the term “specially orthotropic layer” is used to describe the case where an

orthotropic layer has its principal material directions aligned with the chosen x-y-z

coordinate system. In such a case, the eigenvalue problems become simpler as











Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66











=











Q11 Q12 0

Q12 Q22 0

0 0 Q66











(9.13)

and




Q̄44 Q̄45

Q̄45 Q̄55



 =





Q44 0

0 Q55



 (9.14)
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The eigenvalue problems are once again defined by Eqs. (9.5), (9.6), and (9.11), but

with
[

Q̃
]

and
[

Q̃ts

]

, respectively, simplified to be

[

Q̃
]

=











a11Q11 a22Q12 a12 (Q11 +Q12)

a11Q12 a22Q22 a12 (Q12 +Q22)

a12Q66 a12Q66 (a11 + a22)Q66











(9.15)

and
[

Q̃ts

]

=





(αa22 + a33)β
2
yzQ44 αβyzβzxa12Q44

αβyzβzxa12Q55 (αa11 + a33)β
2
zxQ55



 (9.16)

9.3 Single Isotropic Layer

If the material response is isotropic, the closed-form expressions for the vibrational

frequencies become manageable and will be presented herein.

9.3.1 Membrane and Bending Behaviors

First, however, it will be useful to explicitly write the reduced stiffnesses (Qij ’s) in

terms of E and ν for the membrane and bending problems. The inplane isotropic

elasticity tensor for the generalized plane stress case is given by















Q11 Q12 0

Q12 Q22 0

0 0 Q66















=
E

1− ν2















1 ν 0

ν 1 0

0 0
1− ν

2















(9.17)

The membrane vibrational frequencies are defined by the following eigenvalue prob-

lem
















a11 νa22 (1 + ν) a12

νa11 a22 (1 + ν) a12

(

1− ν

2

)

a12

(

1− ν

2

)

a12

(

1− ν

2

)

(a11 + a22)











































N0
xx

N0
yy

N0
xy



























=
1− ν2

E

ρA2

4
ω2

m



























N0
xx

N0
yy

N0
xy



























(9.18)
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Once again, the bending eigenvalue problem differs only slightly and is given as

















a11 νa22 (1 + ν) a12

νa11 a22 (1 + ν) a12

(

1− ν

2

)

a12

(

1− ν

2

)

a12

(

1− ν

2

)

(a11 + a22)











































M0
xx

M0
yy

M0
xy



























=
1− ν2

E

3ρA2α

h2
ω2

b



























M0
xx

M0
yy

M0
xy



























(9.19)

Because the maximum bending frequency is known in terms of the maximum mem-

brane frequency via Eq. (9.8), only the membrane eigenvalue problem will be examined

in detail. The vibrational frequencies associated with the three non-hourglass mem-

brane modes are determined to be

(

ω2
m

)

1
=

E

1− ν2

2

ρA2
(a11 + a22) (1− ν) (9.20)

and

(

ω2
m

)

2,3
=

E

1− ν2

2

ρA2

(

a11 + a22 ±
√

(a11 + a22)
2 − 4 (1− ν2)

(

a11a22 − a2
12

)

)

(9.21)

The maximum membrane frequency is then identified as

ω2
mmax

=
E

1− ν2

2

ρA2

(

a11 + a22 +
√

(a11 + a22)
2 − 4 (1− ν2)

(

a11a22 − a2
12

)

)

(9.22)

An approximation which is often used involves bounding ωmmax
by disregarding

the second term appearing in the square root. This is permissible as

4
(

1− ν2
) (

a11a22 − a2
12

)

=
(

1− ν2
) (

y2
24x

2
31 + y2

31x
2
24

)

≥ 0 ∀ permissible ν (9.23)

Using this, the bound on ωmmax
is given as follows:

ω2
mmax

≤ E

1− ν2

4

ρA2
(a11 + a22) (9.24)

The exact critical time step associated with membrane waves is

(∆tcr)m =
2

wmmax

(9.25)
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Using Eq. (9.22), the exact (∆tcr)m can be broken into the ratio of geometrical and

material factors as follows:

(∆tcr)m =
δm
cm

(9.26)

where cm is the plane stress membrane wave speed given by

cm =

√

E

ρ (1− ν2)
(9.27)

and δm is the membrane characteristic length defined as

δm =
A
√
2

√

a11 + a22 +
√

(a11 + a22)
2 − 4 (1− ν2)

(

a11a22 − a2
12

)

(9.28)

The conservative bound on the membrane critical time step is determined from Eq. (9.24)

to be

(∆tcr)m ≤
(δm)approx

cm
(9.29)

where

(δm)approx =
A√

a11 + a22
(9.30)

Using this bound eliminates several multiplications and an extra square-root operation

for each element at each time step in a nonlinear analysis.

The bending critical time step is determined from that for membrane waves using

Eq. (9.9) or (9.10) and is given, respectively, as

(∆tcr)b = (∆tcr)m for α =
h2

12
(9.31)

and

(∆tcr)b =

√
A

h

(

∆tcr
)

m
for α =

A

12
(9.32)

Note that it is quite possible that an element may exist in a mesh where
√
A is smaller

than h such that (∆tcr)b is smaller than (∆tcr)m for the case where α is A/12.

9.3.2 Transverse Shear Behavior

The elasticity tensor for the transverse shear response is given by





Q44 0

0 Q55



 =
E

2 (1 + ν)





1 0

0 1



 = G





1 0

0 1



 (9.33)
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The single isotropic layer transverse shear eigenvalue problem is thus given by




(αa22 + a33)β
2
yz αβyzβzxa12

αβyzβzxa12 (αa11 + a33)β
2
zx











βyzN
0
yz

βzxN
0
zx







=
1

G

ρA2α

4
ω2

ts







βyzN
0
yz

βzxN
0
zx







(9.34)

The transverse shear vibrational frequencies are determined to be

(

ω2
ts

)

1,2
=

2G

ρA2α

(

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx

)

± 2G

ρA2α

√

√

√

√

√

(

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx

)2

−4β2
yzβ

2
zx

(

(αa22 + a33) (αa11 + a33)− α2a2
12

)

(9.35)

Of course, the maximum of these two is

ω2
tsmax

=
2G

ρA2α

(

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx

)

+
2G

ρA2α

√

√

√

√

√

(

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx

)2

−4β2
yzβ

2
zx

(

(αa22 + a33) (αa11 + a33)− α2a2
12

)

(9.36)

Similar to the membrane and bending cases, a conservative bound on ωtsmax
can

be developed. First, the last term in the square root quantity is expanded as follows:

4β2
yzβ

2
zx

(

(αa22 + a33) (αa11 + a33)− α2a2
12

)

= 4β2
yzβ

2
zx

(

α2
(

a11a22 − a2
12

)

+ αa33 (a11 + a22) + a2
33

)

(9.37)

Noting that each of the terms on the right hand side of Eq. (9.37) is positive, the

following bound on ωtsmax
results:

ωtsmax
≤ 2

A

√

G

ρ

√

(

a22 +
a33

α

)

β2
yz +

(

a11 +
a33

α

)

β2
zx (9.38)

Replacing βyz and βzx by the maximum of these two quantities yields the following

looser bound:

ωtsmax
≤ 2βmax

A

√

G

ρ

√

a11 + a22 +
2a33

α
(9.39)

Similar to critical time steps for membrane and bending waves, the critical time

step for transverse shear waves can be computed by dividing a characteristic element

dimension by a wave speed. For the case where the exact formula for ωtsmax
is used,

the exact critical time step corresponding to transverse shear waves can be written as

(∆tcr)ts =
2

ωtsmax

=
δts
cts

(9.40)
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where cts is the transverse shear wave speed given as

cts =

√

G

ρ
(9.41)

and δts is the characteristic length associated with transverse shear behavior defined

as follows:

(δcr)ts =
A
√
2α

√

√

√

√

√

√

√

√

√

√

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx+

√

√

√

√

√

(

(αa22 + a33)β
2
yz + (αa11 + a33)β

2
zx

)2

−4β2
yzβ

2
zx

(

(αa22 + a33) (αa11 + a33)− α2a2
12

)

(9.42)

Similar to the membrane and bending cases, some computational effort can be

saved by using conservative bounds on (∆tcr)ts. The bound corresponding to the

frequency bound given in Eq. (9.38) is

(∆tcr)ts =
(δts)approx−1

cts
(9.43)

where

(δts)approx−1 =
A

√

(

a22 +
a33

α

)

β2
yz +

(

a11 +
a33

α

)

β2
zx

(9.44)

Likewise, the looser bound achieved by using the bound given in Eq. (9.39) is

(∆tcr)ts =
(δts)approx−2

cts
(9.45)

where

(δts)approx−2 =
A

βmax

√

a11 + a22 +
2a33

α

(9.46)

Practically speaking, the additional computational expense of using Eq. (9.43) instead

of Eq. (9.45) should be relatively small.

9.3.3 Significance of Single Isotropic Layer Criteria

The importance of computing the critical time step from the ratio of independent geo-

metrical and material parameters in a CFL approach is that it allows quick estimates

for ∆tcr to be calculated even in the case of nonlinear material response. That is, in

the case of a nonlinear constitutive equation, estimates for the current tangent moduli

can be used in estimating wave speeds for use in the critical time step calculation.

PRESTO typically uses this approach in such cases.
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Table 10.1: Nodal coordinates for single element example.

Node x y z
(in) (in) (in)

1 0 0 0

2
1√
2

1√
2

0

3
1√
2

2 +
1√
2

0

4 0 2 0

10 Verification Problem

Verification of the elastic laminate stress evaluation has been accomplished through

numerous regression tests. Several of these tests have been documented in Ref. 4. Here

an example problem verifying the calculation of the critical time step will be described.

In this verification example, a single shell element has one node slightly perturbed

in the x-direction. The actual deformation does not matter, because only the first

critical time step calculation corresponding to the undeformed element geometry will

be checked. The 4-layer laminate is composed of a contrived material system having

the following engineering properties:

E1 = 26.25× 106 psi (10.47)

E2 = 1.49× 106 psi (10.48)

ν12 = 0.28 (10.49)

G12 = 1.04× 106 psi (10.50)

G23 = 1.56× 106 psi (10.51)

G31 = 2.6× 106 psi (10.52)

Each of the four layers is 0.01 in. thick. The laminate geometry is as shown in Fig. 10.1

with the nodal coordinates given in Table 10.1.

Relative to the global x-y-z coordinate system, the laminate is taken to have a

stacking sequence of [45/30/60/20], whereas relative to the element co-rotational r-s-t

coordinate system, the stacking sequence is [0/−15/15/−25]. Relative to the element
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Figure 10.1: Example element geometry and co-rotational r-s-t and global x-y-z co-

ordinate systems. The node numbers are also shown.

r-s-t coordinate system in which the material calculations are actually performed, the

following laminate matrices result:











A11 A12 A16

A12 A22 A26

A16 A26 A66











=











914.825 78.8905 −75.7782
78.8905 75.4794 −19.482
−75.7782 −19.482 103.728











× 103 lb/in

(10.53)











B11 B12 B16

B12 B22 B26

B16 B26 B66











=











−1.16949 0.503184 −0.578259
0.503184 0.163124 −0.228877
−0.578259 −0.228877 0.503184











× 103 lb

(10.54)











D11 D12 D16

D12 D22 D26

D16 D26 D66











=











120.37 11.0151 −17.6816
11.0151 10.6776 −4.5458
−17.6816 −4.5458 14.3267











lb · in (10.55)





A44 A45

A45 A55



 =





65.6508 −3.98343
−3.98343 100.749



× 103 lb/in (10.56)

The chosen element geometry results in the following matrix of geometric factors for



33

Table 10.2: Results for ∆tcr for membrane/bending and transverse shear waves.

Result Analytic-Exact Analytic-Approximation PRESTO
(sec) (sec) (sec)

∆tcr membrane/bending 0.0075332 0.00642364 0.00642364

∆tcr transverse shear 0.151746 – 0.15174604

the r-s-t system:











a11 a12 a13

a21 a22 a23

a31 a32 a33











=











2 −2 0

−2 3 0

0 0 0.5











in2 (10.57)

Note that the chosen geometry and stacking sequence results in all terms being present

in the eigenvalue problems given in Eqs. (7.5) and (7.7).

The final results for the critical time steps corresponding to membrane/bending

and transverse shear waves are shown in Table 10.2. Note that excellent agreement

has been achieved between the PRESTO calculations and the appropriate analytic

solutions. The exact analytic solutions are calculated directly from Eqs. (7.5), (7.7),

and (2.1) and the approximate analytic solutions use the Gerschgorin circle bounds

for membrane/bending waves given in Eqs. (8.3) and (8.5) along with Eq. (2.1). In

Table 10.2, only the result from using Eq. (8.5) in Eq. (2.1) is shown as it allows for

a larger acceptable time step than using Eq. (8.3) in Eq. (2.1). Here in this example,

the final critical time step is that corresponding to membrane/bending waves, because

it is smaller than that for transverse shear waves.
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11 Summary

The calculations required to estimate a critical time step for the elastic laminate

shell model which describes the small strain linear elastic response of laminated fiber-

reinforced composites have been detailed. By using a methodology very similar to

that presented in Refs. 3 and 5, the eigenvalue problem for flat Mindlin shell elements

has been reduced from finding the maximum frequency of a (20× 20) system into two

smaller eigenvalue problems corresponding to membrane/bending and transverse shear

waves. The relevant membrane/bending frequency is found from the maximum eigen-

value of a (6×6) system, whereas the relevant transverse shear frequency is found from

a (2×2) system. Essentially, this reduction in problem size results from eliminating the

rigid body modes and the hourglass modes resulting from single point integration at

the element centroid. That is, the reduction comes from only considering the force and

force-couple resultants that can be represented by such an under-integrated element.

Reductions appropriate for a single layer laminate have been given. Furthermore, for

the case of an isotropic layer, the resulting simplifications and approximations neces-

sary to arrive at the formulas used in PRESTO have been detailed for the case where

the effects of hourglass viscosity have been ignored.

In the PRESTO implementation of the critical time step estimates for the anisotropic

elastic laminate model, the maximum frequency corresponding to transverse shear

waves is computed exactly under the assumptions used in this report, whereas the

maximum frequency corresponding to membrane/bending waves is only estimated in

order to minimize the computational cost. A verification problem from the PRESTO

regression test suite has been detailed.



35

References

[1] Bathe, K.J., Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ,

1996.

[2] Cook, R., Malkus, D., Plesha, M. and Witt, R., Concepts and Applications of

Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., New York, NY, 2002.

[3] Flanagan, D.P. and Belytschko, T., “Eigenvalues and Stable Time Steps for the

Uniform Strain Hexahedron and Quadrilateral,” Journal of Applied Mechanics,

Vol. 51, 1984, pp. 35–40.

[4] Hammerand, D.C., Laminated Composites Modeling in ADAGIO/PRESTO , San-

dia Report SAND2004-2143, Albuquerque, NM, 2004.

[5] Belytschko, T. and Lin, J.I., “Eigenvalues and Stable Time Steps for the Bi-

linear Mindlin Plate Element,” International Journal for Numerical Methods in

Engineering , Vol. 21, 1985, pp. 1729–1745.

[6] Krieg, R.D. and Key, S.W., “Transient Shell Response by Numerical Time In-

tegration,” International Journal for Numerical Methods in Engineering , Vol. 7,

1973, pp. 273–286.

[7] Hughes, T.J.R., Cohen, M. and Haroun, M., “Reduced and Selective Integra-

tion Techniques in Finite Element Analysis of Plates,” Nuclear Engineering and

Design, Vol. 46, 1978, pp. 203–222.

[8] Cowper, G.R., “On the Accuracy of Timoshenko’s Beam Theory,” Journal of the

Engineering Mechanics Division, Proceedings of the American Society of Civil

Engineers, Vol. 94, No. EM6, 1968, pp. 1447–1453.

[9] Fried, I., Johnson, A. and Tessler, A., “Minimal-Degree Thin Triangular Plate

and Shell Bending Finite Elements of Order Two and Four,” Computer Methods

in Applied Mechanics and Engineering , Vol. 56, No. 3, 1986, pp. 283–307.

[10] Key, S.W., Petney, S.V. and Clancy, R.M., “The Impact Modeling of Structures

Using Solid, Shell, and Membrane Finite Elements,” Nuclear Engineering and

Design, Vol. 116, No. 2, 1987, pp. 101–116.



36

[11] Burden, R. and Faires, J., Numerical Analysis, 4th ed., PWS-Kent Publishing

Company, Boston, MA, 1989.

[12] O’Neil, P., Advanced Engineering Mathematics, 3rd ed., Wadsworth Publishing

Company, Belmont, CA, 1991.



Distribution

1 MS 0139 P. Wilson, 9120

1 MS 0372 J. Jung, 9127

1 MS 0372 R. May, 9126

1 MS 0380 K. Alvin, 9142

1 MS 0380 M. Blanford, 9142

1 MS 0380 A. Gullerud, 9142

1 MS 0380 J. Hales, 9142

1 MS 0380 M. Heinstein, 9142

1 MS 0380 S. Key, 9142

1 MS 0380 R. Koteras, 9142

1 MS 0380 J. Mitchell, 9142

1 MS 0380 K. Pierson, 9142

1 MS 0380 V. Porter, 9142

1 MS 0380 G. Reese, 9142

1 MS 0384 T. Bickel, 9100

1 MS 0555 M. Garrett, 9122

1 MS 0557 T. Baca, 9125

1 MS 0615 D. Roach, 6252

1 MS 0847 H. Morgan, 9120

1 MS 0847 J. Redmond, 9124

1 MS 0847 H. Walther, 9127

1 MS 0888 D. Adolf, 1811

1 MS 0893 File Copy

1 MS 0893 R. Chambers, 9123

1 MS 0893 J. Cox, 9123

1 MS 0893 C. Lo, 9123

20 MS 0893 D. Hammerand, 9123

1 MS 0893 C. Lavin, 9123

1 MS 0893 M. Neilsen, 9123

1 MS 0893 J. Pott, 9123

1 MS 0893 E. Reedy, 9123

1 MS 0893 W. Scherzinger, 9123

1 MS 1110 D. Day, 9214

1 MS 9042 P. Spence, 8774

1 MS 9161 E. Chen, 8763

1 MS 9402 C. Cadden, 8772

1 MS 9403 J. Wang, 8773

1 MS 9405 K. Wilson, 8770

1 MS 9018 Central Technical Files, 8945-1

2 MS 0899 Technical Library, 9616




