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JWL Calculating

P. Clark Souers                                 May 2, 2005

The following is a list of JWL properties to be sent to Sedat Esen, who is an explosive analyst 

for a Swedish industrial institute at

Swebrec at LUT
Box 47047
S-10074 Stockholm, Sweden
Street address: Mejerivägen 4 (T-stop Liljeholmen)
tel: +46-8-6922290, fax: +46-8-6511364
e-mail: sedat@svebefo.se

The JWL is a standard equation of state used worldwide to describe the pressure-volume-energy 

behavior of a detonating explosive.  Even so, not many people are very good at working with it. 

So I list all the various equations that describe how it works, then give one way that the solution 

can be obtained in an iterative manner. 

I have collaborated with Sedat Esen for several years. I am indebted to him for supplying 

almost all of our collection of dynamite data. He now works with ammonium nitrate/fuel oil, which 

is another area of interest to us. 

2.1.1. Arithmetic of the JWL
Two forms of the JWL

The three-coefficient JWL equation is

P = Aexp(−R1v) + Bexp(−R2v) +
C

v1+ω
. (1)

The integral is the internal energy

Es =
A

R1
exp(−R1v) +

B

R2
exp(−R2v) +

C

ωvω
. (2) 

In our codes, Es is positive and at its maximum at the C-J point (there is no spike with the pure 

JWL). As the products expand, Es declines toward zero. From Eq. 2



C = ωvω Es −
A

R1
exp(−R1v) +

B
R2

exp(−R2v)












. (3)

If we substitute Eq. 3 into Eq. 1, we get 

P = A 1−
ω

R1v











exp(−R1v) + B 1−

ω
R2v












exp(−R2v) +

ωEs
v

. (4)

This is the form hydrocode people like at out Lab, because both energy and pressure enter into it. 

They like having all three variables confirmed at each step.

Γ at the C-J Point 

At the C-j Point, the Rayleigh Line equation is

 Pcj = ρoUs
2(1− vcj) (5)

so that

 
dPcj
dv

= −ρoUs
2 . (6)

Then,

 Γcj = −
vdP
Pdv

=
vcj

1− vcj
. (7)

Our Lab’s current codes use the C-J parameter of

 bhe = Γcj + 1=
1

1− vcj
. (8)

This is used as a rate constant in Program Burn. So that the rate goes as bhe(1-v).

Another Form of the C-J Pressure



At the C-J point, the internal energy is the sum of the chemical energy Eo and the energy of 

compression, Ec, which is 

 Ec(cj) =
1
2

Pcj(1− vcj) (9)

so that

 Es(cj) = Eo + Ec (cj) . (10)

We now take Eq. 4 and substitute for Es to get

Pcj = A 1−
ω

R1vcj












exp(−R1vcj) + B 1−

ω
R2vcj












exp(−R2vcj) +

ω
vcj

Eo +
1
2

Pcj(1− vcj)










(11)

We solve for Pcj to get 

Pcj =

A 1−
ω

R1vcj












exp(−R1vcj) + B 1−

ω
R2vcj












exp(−R2vcj) +

ωEo
vcj

1−
ω(1− vcj)

2vcj

(12)

On the Adiabat

Eo is the total chemical energy present in the explosive but it only comes out in the 

detonation after the products expand to infinite volume. Along the way, we get out some of the 

energy at the relative Cylinder test volumes of 2.2, 4.4 and 7.2. So, at some volume v larger than 

C-J, we have

 Ed(v) = Es(vcj) − Es(v)





− Ec (cj) . (13)



At the C-J point, Ed equals –Ec and is negative in our codes. At infinite volume, Es(v) is zero and 

Ed(∞) = Eo, the largest positive number. At somewhere around v ~ 0.91, the crossover from 

negative to positive detonation energy occurs. We substitute the C-J quantities in Eq. 10 into Eq. 

13 to get

 Ed(v) = Eo − Es(v) . (14)

We substitute Eq. 2 to get

 Ed(v) = Eo −
A

R1
exp(−R1v) +

B

R2
exp(−R2v) +

C

ωvω

















. (15)

Rayleigh Line

If we differentiate Eq. 1 we have

 dP
dv

= −AR1exp(−R1v) − BR2 exp(−R2v) −
(1+ ω)C

v2+ω
. (16)

We combine this with Eq. 6 to get the detonation velocity

 Us =
1

ρo
AR1exp(−R1v) + BR2 exp(−R2v) +

(1+ ω)C

v2+ω

























1/2
. (17)

2.1.2.  New Calculation Method

Start with ρo, R2, R1, ω, and Eo which stay constant. Also, we start with initial values of Us,

Ed(2.2), Ed(4.4) and Ed(7.2) which should not change much during the calculation.  Add rough 

values for A, B and bhe, which will be calculated and could change considerably. Then we go 

through these 7 steps. 

 vcj = 1−
1

bhe
(8)



Pcj =

A 1−
ω

R1vcj












exp(−R1vcj) + B 1−

ω
R2vcj












exp(−R2vcj) +

ωEo
vcj

1−
ω(1− vcj)

2vcj

(12)

C = ωvω Es −
A

R1
exp(−R1v) +

B
R2

exp(−R2v)












(3)

Ed(v) = Eo −
A

R1
exp(−R1v) +

B

R2
exp(−R2v) +

C

ωvω

















at v = 2.2, 4.4 and 7.2 (15)

Us =
1

ρo
AR1exp(−R1v) + BR2 exp(−R2v) +

(1+ ω)C

v2+ω

























1/2
(17)

Pcj(a) = ρoUs
2(1− vcj) (5)

Pcj(b) = Aexp(−R1vcj) + Bexp(−R2vcj) +
C

vcj
1+ω

(1)

We define these %-change comparisons

 α =
100 Us − Us(inital) 

Us(inital)
(18)

 β =
100 Pcj(a) − Pcj(b)





Pcj(b)
(19)



 δ(v) =
100 Ed(v) − Ed(v,inital) 

Ed(v,initial)
at v = 2.2, 4.4 and 7.2 (20)

 δ =
δ(2.2) + δ(4.4) + δ(7.2)

3
(21)

We now enter a loop of repetitive calculations, in which we change the three variables one 

after another using these algorithms

 bhe(new) = bhe(old) + 0.01δ (22)

 A(new) = 1− 0.03α( )A(old) (23)

 B(new) = (1+ 0.05β)B(old) (24)

We go through the 7-steps again that we listed above after each variable change so we have 

three complete calculations on each loop.  The process is repeated for 50 cycles or until 

 α,β ≤ 0.0002 , (25)

where these limits are arbitrary. The new JWL is balanced within the errors of Eq. 25. Like all 

non-linear fitters, the initial guesses have to reasonably close to the final answer.  It is also 

possible to get an unphysical result, which usually appears in the form of a negative value for B. 

Because of  this, it is usually best to make a large change in small increments. 

People are getting fussier with their JWL’s and are starting not to like the round-off errors. To 

reproduce exactly a JWL, we really need to save the three adiabat energies. In saving all these 

numbers, it inconvenient to have numbers calculated out to a huge number of decimal places. An 

improvement may be made by rounding off the Ed(v) values to 5 decimal places and 

recalculating. 


