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Abstract 

For many decades, engineers and scientists have studied the effects of high power 

microwaves (HPM) on electronics.  These studies usually focus on means of delivering energy to 

upset electronic equipment and ways to protect equipment from HPM.  The motivation for these 

studies is to develop the knowledge necessary either to cause disruption or to protect electronics 

from disruption.  Since electronic circuits must absorb sufficient energy to fail and the source 

used to deliver this energy is far away from the electronic circuit, the source must emit a large 

quantity of energy.  In free space, for example, as the distance between the source and the target 

increases, the source energy must increase by the square of distance.  The HPM community has 

dedicated substantial resources to the development of higher energy sources as a result. 

Recently, members of the HPM community suggested a new disruption mechanism that 

could potentially cause system disruptions at much lower energy levels.  The new mechanism, 

based on nonlinear dynamics, requires an expanded theory of circuit operation.  This report 
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summarizes an investigation of electronic circuit nonlinear behavior as it applies to inductor-

resistor-diode circuits (know as the Linsay circuit) and phased-locked-loops. 

With the improvement in computing power and the need to model circuit behavior with 

greater precision, the nonlinear effects of circuit has become very important.  In addition, every 

integrated circuit has as part of its design a protective circuit.  These projective circuits use some 

variation of semiconductor junctions that can interact with parasitic components, present in every 

real system.  Hence, the protective circuit can behave as a Linsay circuit. 

Although the nonlinear behavior is understandable, it is difficult to model accurately.  

Many researchers have used classical diode models successfully to show nonlinear effects within 

predicted regions of operation.  However, these models do not accurately predict measured 

results.  This study shows that models based on SPICE, although they exhibit chaotic behavior, 

do not properly reproduce circuit behavior without modifying diode parameters.  This report 

describes the models and considerations used to model circuit behavior in the nonlinear range of 

operation.  Further, it describes how a modified SPICE diode model improves the simulation 

results. 

We also studied the nonlinear behavior of a phased-locked-loop.  Phased-locked loops 

are fundamental building block to many major systems (aileron, seeker heads, etc).  We showed 

that an injected RF signal could drive the phased-locked-loop into chaos.  During these chaotic 

episodes, the frequency of the phased-locked-loop takes excursion outside its normal range of 

operation.  In addition to these excursions, the phased-locked-loop and the system it is 

controlling requires some time to get back into normal operation.  The phased-locked-loop only 

needs to be upset enough long enough to keep it off balance. 
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Introduction  
The U.S., the Soviet Union, and other countries have studied high power microwaves 

(HPM) and their effects on electronics for decades.  HPM systems generate high power radio 

frequency (RF) energy in the power range of kilowatts to gigawatts.  The HPM system deposits 

RF energy into a target system in an effort to cause the target system to experience either 

temporary upset (latch-up or reset) or failure (electronics damage).  The required RF power 

needed to cause either effect is high compared to available systems.  Members of the HPM 

community have suggested a new low-power threshold mechanism to cause system failure.  The 

new mechanism, based on nonlinear dynamics, requires one to expand their way of thinking 

about how electronic circuits operate.  In this effort, we developed models, performed 

simulations, and conducted key experiments to determine the validity of the claim of lower-

power thresholds.  Our goal was to confirm or refute the claims made and to fully understand the 

effect of nonlinear dynamics in circuits.  We spent a significant portion of this effort studying a 

fundamental circuit called the Linsay circuit.  The Linsay circuit (Figure 1) is composed of an 

inductor, a series resistance, a diode with inherent nonlinear capacitance, and a source to 

stimulate the circuit.  Dr. Linsay was the first to study the behavior of this circuit.  Our early 

simulation results of this system suggested that upset was obtainable with low induced voltages.  

Understanding this new mechanism of upset is important to the long-term viability of the nuclear 

weapon stockpile (new designs and retrofits).  We seek to fully understand this threat so that we 

can perform system-specific assessments required by a customer. 

The first part of the report describes the theory of nonlinear dynamics.  The second part 

of this report describes modeling and testing we performed on the Linsay circuit.  The goal of 

this effort was to understand the behavior of a single PN junction exposed to voltage sufficient to 

cause the junction to behave in a chaotic manner.  The third part of this report addresses 

measurements made on a phased-locked-loop (PLL).  We chose to study a PLL since this circuit 

is in many systems including control systems 
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Figure 1 The Linsay Circuit 
The Linsay circuit is composed of an inductor, a series resistance, a diode with 
inherent nonlinear capacitance, and a source to stimulate the circuit. 

Nonlinear Dynamics Theory 

History 

Today the study of nonlinear dynamics is one of the most exciting and fastest growing 

branches of the mathematical sciences.  Nonlinear dynamics is having an increasingly important 

impact on a variety of applied sciences ranging from the study of turbulence, the behavior of 

weather, and the study of mechanical and electrical systems.  Previously, scientists--having 

limited computing power--would breakup the object of their study into linear pieces; hence, the 

term piecewise linear.  For many years, mathematicians knew about complicated systems of 

equations but were unable to solve these systems because most problems had no known 

analytical solutions.  Studying celestial behavior, Henry Poincaré found (~1889) a system of 

equations that was the first known mathematical expression for a chaotic system.  Even given the 

complications, mathematicians performed pain-staking hand calculations to obtain approximate 

solutions.  In 1963, Edward Lorenz encountered a chaotic system while analyzing a model he 

derived to study the behavior of the weather.  Lorenz found that his model yielded very different 

solutions with extremely small variations in initial conditions.  Sensitivity to initial conditions is 

a key indicator of a chaotic system as we will discuss later in this paper.  Since Lorenz’s 

discovery, mathematicians have intensified their efforts to understand nonlinear dynamical 
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systems.  Only recently (since Lorenz), have scientists started to use this study of mathematics to 

study practical physical systems. 

Researcher delay in using nonlinear dynamics theory in the applied sciences is rooted in 

the fact that solutions to chaotic system necessitate numerical solutions since no one has yet to 

find analytical solutions to these systems.  Today computers have much more power then they 

did just a few years ago and researchers are taking advantage of the enhanced computer power to 

study nonlinear systems in detail.  In the case of our study of electronic systems, one tool we 

used was a commercial product widely used throughout the industry of electronic design known 

as SPICE.  The University of Berkeley, California introduced Spice in May of 1972; the name 

Spice is an acronym and stands for ‘Simulation Program with Integrated Circuit Emphasis’; 

notice the emphases on integrated circuits.  Analog integrated circuits normally operate in a low 

power linear range.  Nonlinear circuit behavior occurs at power levels well above the power 

normally used for analog integrated circuit design.  This fact suggests that SPICE may not be the 

proper tool for studying nonlinear dynamics.  Researchers studying the nonlinear dynamics 

behavior of electronic circuits base their model on SPICE in every detail.  These models do 

produce chaotic behavior, but the simulation results differ significantly from experimental 

results.  We find in this study that the SPICE diode model does not produce simulation results 

that agree with measurements when subjected to high drive signals.  In this paper, we will 

describe the nature of the model inaccuracies and how the models we develop provide better 

performance than the models normally used in SPICE simulators. 

 Metrics of Chaos 

Devaney1 gives a strict mathematical definition of chaos in his book, but chaos centers on 

the issue of the difficulty to make accurate long-term predictions of system behavior.  In linear 

circuits, small variations in initial conditions cause small changes in the circuits long-term 

behavior.  A chaotic system is deterministic, since given the system and the exact initial 

conditions the system behavior is repeatable.  However, the behavior of two identical systems 

with different initial conditions—differing by the smallest amount—will diverge exponentially.  

The Lyapunov number quantifies the rate of divergent behavior between the two systems 

offering a measure of the quantity of chaos.  People often equate the property of the Lyapunov 
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number and the magnitude of chaos.  We will describe the details of Lyapunov numbers later in 

this paper. 

In order to understand chaotic behavior better, we must define some mathematical terms.  

First, consider a system with a state variable we characterize as follows.  The variable has a 

supremum and an infinum.  In simpler terms, the supremum and infinum bound the chaotic 

variable.  Without loss of generality, let’s call this variable .  Further, assume that the value  

is a function of time .  We now define a periodic function.  A function is periodic if it 

meets the following conditions: 

y y

( )tfy =

( ) ( )tnTftfy +== .  What this equation states is that the 

function f will equal  at a particular time ( ), and the function f will again equal  some time 

later ( t ).  Where, 

y t y

nT+ T  is the time between each occurrence of ( )tfy =  and n is a non-zero 

integer value.  Figure 2(a) shows a sine function (in red) and a periodic sample (in blue), of the 

same sine function, once every cycle at a fixed time.  We can define much more complicated 

periodic functions, but the idea is--the value of the function at time intervals equal to the period 

are the same. 

Researchers often plot this function against the same function shifted in time.  In this 

example, Figure 2(b) shows a plot of ( ) ( )tt sinY =  vs. ( ) 





 +=

2
sin πttY .  The result shown in 

Figure 2(b) is a circle.  A more complicated variable would yield a more complicated result, and 

for this example, if the phase-shift were a different value, a more general shape—an ellipse—

would appear.  Often before a system goes into chaos, the behavior goes into a state of period 

doubling as shown in Figure 2(c) and 2(d).  When period doubling occurs ( ) ( )ttnftfy +∆== 2 .  

This equation states the function now repeats on twice the time scale as the original function.  

When this occurs, the phase space plot of the period doubled function produces two loops.  

Period tripling and higher levels of period increase the number of loops. 

When a system is in a chaotic state, many orbits appear creating a visual appearance of 

smearing together of the orbits.  The chaotic behavior confines the orbits to a region (or regions), 

but every orbit does not exactly overlay any other orbit.  Figure 3 shows the phase space plot of a 

Lorenz system where the function is chaotic. 
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Dynamical System 

A dynamical system describes how one state develops into another state over time.  
Technically, a dynamical system is a smooth action of real numbers or integers on another object 
(usually a manifold).  When real numbers are acting, the system is a continuous dynamical 
system, and when the integers are acting, the system is a discrete dynamical system.  If f is any 
continuous function, then, ( )nn xfx =+1 , describes the evolution of x—called a flow.  This 

equation, viewed as a difference equation, is expressed as ( ) nnnn xxfxx −=−+1 .  Therefore, 

defining ( ) ( ) nnn xxfxg −=  gives ( ) 1*nn xgx1nx =−+ , which is read “as n changes by 1 unit, x 

changes by ”—called a map.  ( )nxg ( )nxg  is the discrete equivalent of the differential equation 

.  A trajectory describes a path (or sequence of points) that a progression of values 
takes over time—described by either a flow (continuous) or a map (discrete). 

( ) gnx =' ( )( )nx
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(d) Phase space plot of period-doubled
variable. 

(c) Period-doubled variable sampled
once every cycle. 

(b) Phase space plot. 

Periodic Variable

(a) Periodic variable sampled once every cycle.

Periodic Variable

Figure 2 Periodic Variable 
In (a) a periodic signal is sampled at the fundamental frequency producing a DC voltage 
dependent on peak voltage and phase where the sample occurs.  In (b) a circle is created 
by plotting the signal in (a) against itself delayed by 90o.  In (c), the signal is composed of 
two frequency components.  Hence, in (d) two loops are formed that indicate a period 
doubling is a result of the subharmonic.  When a circuit is chaotic, subharmonics are 
created and a phase plot can show the existence of a subharmonic as illustrated here. 
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Figure 3 Phase Space Plot 
This Lorenz system illustrates chaotic behavior.  Although the trajectory is confined 
to a region, the trajectory never repeats its path.  

Reconstruction 

Real dynamical systems evolve in time over a multidimensional phase space; however, 

rarely is the phase space of a system under study known.  In many cases, the data under 

investigation is a sequence of points—each point representing a scalar value associated with a 

time.  This data set is a transformation of the real dynamical system.  The analyst uses these data 

to reconstruct a system that contains the pertinent parameters of the measured system.  In 1981, 

Taken2 proved that some property values (i.e. Lyapunov numbers, correlation dimensions, etc.) 

of the dynamical system are invariant to smooth transformations.  Hence, with a properly 

reconstructed surrogate system we can gain insight into the real system. 

One approach to reconstruct a system is to use delayed elements of the measured data.  

Suppose we have a dynamical system ( ) ( )( ) ( )1+=→ nnFn xxx  where  phase space is 

multidimensional.  Taken’s theorem tells us if we are able to observe a single scalar quantity 

, of some vector function of the dynamical variable 

( )tx

( )•h ( )( )nxg , then the geometric structure of 

the multivariate dynamics can be unfolded from this set of scalar measurements ( )( )( )txgh  into 

the space from new vectors with components consisting of ( )•h  applied to powers of ( )( )txg .  

These vectors ( ) ( ) ( )( )nvnm xx ,,...,3 −−−nmnmnn xxx ,, 21 −−−−=x  define motion in a d-dimensional 

Euclidian space.  With general conditions of smoothness on the functions  and ( )•h ( )( tx )g , it is 

has been shown3 that if the dimension is large enough, then many important properties of the 

unknown multivariate signal  at the source of the observed chaos are reproduced without ( )nx
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ambiguity in the new space of vectors ( )ns .  Taken showed, that the sequential order of the 

points  follows the unknown dynamics ( ) ( )1+→ nn ss ( ) ( )1+→ nn xx .  The deterministic 

behavior of the underlying source of observations, ( ) ( )1+→ nxnx , assures the deterministic 

behavior of the substitute representation of this dynamical ( ) ( )1+→ nn ss ; the dimension of the 

reconstructed space does not need to be the same as the original space. Care must be taken to 

ensure that the reconstructed space does not falsely project vectors close to one another due to 

the construction.  False neighbors can arise from projections of higher dimensional systems to 

lower dimensional systems.  A delay reconstruction in m dimension forms a vectors, given by 

( ) ( ) ( )( )nvnvmnnn sss ,,...,3 −−−=s

nx

vmnvm ss ,, 21 −−−−

nx

, where  is the sequence from the data.  The time 

difference in number of samples, v, is referred to as the lag or delay time.  The geometrical 

object created from this process is clearly different from the original trajectory .  An important 

question is: in what sense is the artificial object equivalent to the original?  It turns out that if the 

dimension of  is sufficiently large, then many properties formed by  are equivalent to the 

properties of the unknown space, , in which the original system lives—provided the dimension 

of m, the delay coordinate space, is sufficiently large.  Therefore, one can estimate the dynamical 

properties of the original system from the reconstructed system.  There are other approaches to 

characterize the nonlinear behavior, but this is the approach we used in our study. 

nx

nx

nx

Lyapunov Numbers 

Exponential growth of infinitesimal perturbations and global folding mechanisms to 

guarantee boundedness of the solutions are major components of chaos.  The exponential nature 

characterizes a spectrum of Lyapunov exponents4.  Assuming a local decomposition of the phase 

space into directions with different stretching or contraction rates, the spectrum of exponents is 

the average of these local rates over the whole invariant set, and thus consists of as many 

exponents as there are space directions.  The most prominent problem in time series analysis is 

that the physical phase space is unknown, and the observed spectrum is from some an embedded 

(reconstructed) space.  Consequently, the number of exponents depends on the reconstruction, 

not the actual dynamics, and the number could exceed (or be less than) the true phase space.  

Techniques exist to either avoid additional exponents (called spurious 5) or to identify extra 

 15



exponents.  Lyapunov exponents are invariant under smooth transformations and are thus 

independent of the embedding procedure. 

An explicit construction of a model is not essential to establish the maximal Lyapunov 

exponent.  A reliable characterization requires that the independence of embedding parameters 

and the exponential law for the growth of distances are explicitly checked6 7.  If one considers a 

time series as a trajectory in the embedding space, and that  is a close return to a previously 

visited point , then one can consider the distance 

'ns

nsns '0 ns −=∆  as a small perturbation, which 

grow exponentially in time if the system is chaotic.  Later values of the trajectory of  define the 

later perturbations .  If 

s

lnlnl ss ++ −=∆ '
l

l eλ
0∆≈∆ , then λ is the maximal Lyapunov exponent.  In 

practice, there are fluctuations for many reasons discussed in detail by Kantz and Schreiber8.  

Understanding this, one derives a robust consistent and unbiased estimator for the maximal 

Lyapunov exponent. 

( )
n

s
tntn

n nUn

ss
U

tm 









−= ∑

∈

++
'

'

1ln,,εS . 

If ( tm,, )εS  exhibits a linear increase with identical slope for all m  larger than some m  

and for a reasonable range of ε, then this slope can be taken as an estimate of the maximal 

Lyapunov exponent. 

0

Fractal numbers 

Another metric of chaotic behavior is the fractal number.  Benoit Mandelbrot, the 

discoverer of the Mandelbrot set, coined the term "fractal" in 1975 from the Latin fractus or "to 

break".  Mandelbrot defines a fractal as a set which the Hausdorff-Besicovich dimension strictly 

exceeds the topological dimension.  However, Mandelbrot was not satisfied with this definition 

since it excludes sets one would consider fractals. 

Dimensions characterize a set or an invariant measure whose support is the set, whereas 

any data set contains only a finite number of points representing the set of the measure.  By 

definition, the dimension of a finite set of points is zero.  We extrapolate, from finite length 

scales, where the statistics we apply is insensitive to the finiteness of the number of data, to the 

infinitesimal scale, where the concept of dimensions is defined.  This extrapolation can fail for 

many reasons.  A common type of fractal dimension is the Hausdorff-Besicovich Dimension, 

 16



although there are several different ways of computing fractal dimension.  One can calculate the 

fractal dimension by taking the limit of the quotient of the log change in object size and the log 

change in measurement scale, as the measurement scale approaches zero. The differences come 

in the exactly meanings of "object size" and "measurement scale" and how to average the many 

different parts of a geometrical object.  Fractal dimensions quantify the static geometry of an 

object. 

For example, consider a straight line.  Now increase the line by a factor of two.  The line 

is now twice as long as before.  Since, ( )
( ) 1
2log
2log

= , the dimension is 1.  Now consider a square 

and blow up the square by a factor of two on each side.  The square is now 4 times as large as 

before.  ( )
( ) 2
2log
4log

= , corresponding to dimension 2 for the square.  Now consider a snowflake 

curve (Figure 4) formed by repeatedly replacing each straight segment with four segments that 

are one-third the length of the original segment, ( )
( ) ..26185.1
3log
4log

= .  Since the dimension 1.261 

is larger than the dimension 1 of the lines making up the curve, the snowflake curve is a fractal.  

There are many other examples in the literature. 

1

4/3

(4/3)**2

( )
( ) ⋅⋅⋅⋅== 26185.1
3log
4log

cd

Figure 4 The Koch Snowflake 
This figure shows the fractal nature of segmenting a line.  The total length of the line 
increases by a factor of 1.26/division when increasing the number of segments. 
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Poincaré Maps 

Although researchers have developed several analytical numerical techniques to 

characterize the chaotic behavior of data, the first process a researcher usually performs is to 

create a visual representation of the data set.  One such visualization tool is the Poincaré map.  

To create such a map, one forms a suitable orientated surface in phase space. 

Researchers use Poincaré maps (Figure 5) to distinguish between various qualitative 

states of motion such as periodic, quasi-periodic, or chaotic.  One creates a Poincaré maps by 

strobscopically measuring the dynamic variables at some particular phase of the forcing motion.  

In an n-state variable problem, one can obtain a Poincaré section by measuring the n-1 variables 

when the nth variable reaches some particular value or when the phase space trajectory crosses 

some arbitrary plane in phase space.  Another common plane used to create a Poincaré map is to 

plot maximum or minimum values.  In fact, we used this method to describe some of the 

experimental results. 

Figure 5 Poincaré Map 
Samples of the trajectory in a phase plane are the elements of a Poincaré Map.  The 
phase plane is  defined in a way that provides a visual pattern. 

Bifurcation 

In nonlinear dynamical study, bifurcation plots help visualize any sudden changes in the 
behavior of a system as some parameter is varied.  Bifurcation refers to splitting the system 
behavior into two regions: one region above and the other region below the particular parameter 
value at which the change occurred.  Bifurcation plots are derived from Poincaré maps.  Figure 6 
shows an example bifurcation plot from a Linsay circuit.  The bifurcation plot measures motion 
of a parameter as function of a system parameter such as forcing amplitude or damping constant.  
It is very easy to observe period doubling and sub-harmonic bifurcations from Figure 6. 
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Figure 6 Bifurcation Plot 
The ordinate in this graph is the voltage of the system sampled at a fixed period.  
The abscissa is the voltage applied to the circuit.  At different applied voltages, the 
response is either periodic or chaotic. 

Linsay Circuit 
As mentioned in the introduction, we exerted a significant effort studying what on the 

surface appeared to be a simple problem.  With the improvement in computing power and the 

need to model circuit behavior with greater precision, the nonlinear effects of circuit has become 

very important.  In addition, every integrated circuit has as part of its design a protective circuit.  

These projective circuits use some variation of semiconductor junctions that can interact with 

parasitic components, present in every real system.  Hence, the protective circuit can behave as a 

Linsay circuit. 

Researchers refer to the first electronic circuit shown to exhibit chaotic circuit as the 

Linsay circuit and is shown in Figure 1.  As one can see from the circuit model, three storage 

components and one dissipative component exists.  The interactions of these components and the 

fact that the characteristics of Cj and Cd are nonlinear cause the circuit to behave chaotically.  

This document will explain—in a later section—how this circuit exhibits nonlinear behavior. 
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Theory and Simulations  

We used the following system of differential equations to solve the Linsay circuit.  Figure 7 is a 

reprint Figure 1 for the reader’s convenience. 

D

L

R

V CJ CDS

Figure 7 Linsay circuit 
The Linsay circuit is composed of an inductor, a series resistance, a diode with 
inherent nonlinear capacitance, and a source to stimulate the circuit.  This is the 
basic circuit description used in modeling. 
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To correct for inaccurate SPICE results, we used an expression for dynamic diffusion 

capacitance found in Millman and Halkias 9.  The diffusion capacitance and the conductance of 

the diode are frequency dependent. 
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(13) 

0g  is the low frequency conductance.  ω is the radian frequency.  pτ  is the 

recombination life time.  The model of a diode in Micro-Cap* does not allow the user to change 

the value of Cd directly.  To accommodate the frequency dependence of the diffusion 

capacitance, we scaled the value of the transient time.  In Micro-Cap, the expression for diffusion 

capacitance is 
                                                 

* Micro-Cap is a commercially available SPICE simulator. 
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TTgCd ∗= 0
 

(14) 

TT  is the transit time.  Sandia National Laboratories Group 1734 measured the transit 

time of all the diodes that we tested.  For a fixed frequency the transit time of the diode was 

scaled using the scale factor in equation 12.  One finds the charge on a linear capacitor by taking 

the product of C and V.  Since both Cj and Cd are voltage dependent, the charge on the capacitors 

is expressed in general terms by equation 15 and the current is expressed by equation 16.  In this 

case, this approach leads to an inaccurate result.  Since nonlinear systems are exquisitely 

dependent on initial conditions, any error in the charge however small, places the solution of the 

nonlinear system on a different trajectory. 

( ) dVVCQ ∫ ∗=
 

(15) 

( )
dt
dVVCI ∗=

 
(16) 

Simulation Results 

We ran several simulations to validate the model developed under this effort.  We used 

Fortran and Micro-Cap to perform the simulations.  The results from both software packages 

were comparable.  Finding that the results were equivalent is important.  The Linsay circuit is 

simple; using SPICE-based software to simulate circuits that are more complicated reduces the 

modeling difficulty and time of model development.  We record the results of our simulations 

here and compare these results to our experimental results.  We give additional experimental 

results in the following section.  Figure 8 shows very good agreement between the simulated (red 

solid) and measured (blue dashed) time domain responses.  Note that the simulation does not 

overlay the measurement exactly since the nature of a chaotic signal guarantees a difference 

between the two results. 

The time domain and frequency domain results show that the linear properties of the 

experimental and simulated results are in very good agreement.  In addition, the Lyapunov 

number, an indication of the rate at which information is lost in the signal, is similar for both the 

simulation and measured results.  As stated in the theory section of this paper, the Lyapunov 

number is a measure of the rate of divergence between two points (two waveform) with 

increasing time.  Hence, two waveforms with ever so slightly different values, at a given time, 

will have vastly different values at a later time as shown in Figure 9. 
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Figure 8 Time Series Results Early in the Series 
 The Red solid line shows the experimental results.  The blue dashed line shows the 
simulation results.  This figure illustrates the close comparison of simulation results 
and measured results. 

Figure 10 shows the spectral response of the time domain waveform captured by the 

experiment (red solid) and the simulation (blue dotted).  The main feature of a chaotic response 

is the sub-harmonic content.  The spectrum of both the simulation results and the measured 

results below the fundamental of 1.22 MHz are in very good agreement.  In addition, the spectral 

content above the fundamental is also in very good agreement. 
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Figure 9 Time Series Results Late in the Series 
The red solid line shows the experimental results.  The blue dashed line shows the 
simulation results.  This figure illustrates the difference in experimental results and 
measured results later in the time series.  Due to the nature of chaotic systems, the 
results necessarily diverge. Compare these results to those shown in Figure 8 above. 

Figure 10 Spectral response 
The spectral response of time domain waveform shown in Figure 9 above The red 
solid line shows the experimental results.  Blue dotted line shows the simulation 
results.  This graphs shows very good agreement between the experimental results 
and the measured results. 
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Figure 11 shows the measured and simulated Lyapunov exponents.  The slope of the 

leading edge of the line is the Lyapunov number.  The Lyapunov number represents the average 

rate at which two points diverge.  It is important to note that even though the points diverge from 

each other, the trajectories are bounded and any two waveforms can also become arbitrarily close 

at a later time.  The Lyapunov number from the measured results is 6 .  The 

Lyapunov number from the simulated results is 5 . 
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Figure 11 Lyapunov Results 
 The red solid line shows the experimental results 6.5*10-4/sec.  The blue dashed line 
shows the simulation results 5.4*10-4/sec.  This is very close agreement between the 
experimental result and the measured results.  The Lyapunov number is a measure of 
the rate that trajectories diverge.  Diverging in the sense that two points initially 
very close on two trajectories will diverge from each other exponentially and 
eventually will be arbitrarily far way from each other. 
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Experimental Results 

Refer to Figure 12 for the following discussion.  A diode dynamically switching from 

forward conduction (on state) to reverse non-conducting (off state) is commonly said to undergo 

a turn-off transient.  The time of the turn-off transient is the reverse recovery time .  The 

measured reverse recovery time of the diode depends on the properties of the circuit the diode is 

in, including: the waveform used for the measurement, forward current, and the reverse current.  

The storage delay  is the time the diode maintains full reverse current.  During t , the diode 

behaves as an ideal voltage source, since the diode voltage is constant and current is supplied by 

the diode.  The reverse recovery time, , is the time the diode current initially reverses until the 

current reduces to 10% of the magnitude of its maximum value.  Typically, the t  setup includes 

a pulse generator (with an internal impedance of 50Ω) connected in series with the diode and a 

50Ω termination.  The input impedance of the oscilloscope serves as the 50Ω load.   

( rrt )

)( sdt sd

rrt

rr

1N4002 50 ohm Load

Source

trr

tsd

Ifoward

Ireverse

Figure 12 Reverse Recovery 
 Test Setup and Waveform.  The setup on the left shows the circuit used to measure 
reverse recovery.  On the right is a text book result of reverse recovery.  During this 
test, the diode is forward biased then reverse biased where the current drops from 
Ifoward to Ireverse.  The time that Ireverse remains at its maximum is defined as the storage 
delay time.  The reverse recovery time is defined as the time needed for the reverse 
current to drop to zero.  

Reverse recovery occurs due to excess minority carrier buildup in the pn junction during 

forward bias.  The excess minority carries is what allows the diode to conduct in the forward 

direction.  When the diode bias reverses, the excess minority carriers recombine and the pn 

junction losses its excess charge.  The time needed to deplete the excess minority carriers is the 
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recovery time.  When the excess charge depletes, the diode current establishes a static reverse 

current value.  Reverse recovery time of a diode depends on the recombination time of the 

minority carries ( )pτ  in the n material, where 
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Ireverse are the forward and reverse currents of the diode and erf is the error function.  The 
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prrt τ
TT .  We determined the 

transient time of each diode by adjusting the SPICE model transient time; performed a 

simulation and compared the simulation result to measured result.  Since the reverse recovery 

time depends on external properties, we used the standard test setup to measure reverse recovery 

and performed the simulation with the same setup.  We studied the nonlinear behaviors of six 

diodes.  In addition to transit time, personnel from 1734 measured the diode parameters shown in 

the Table 1. 

The reverse recovery times of diodes range from sharp recovery edges like in standard 

rectifier diodes, a soft turn off like those used in IGBTs, to Schottly diodes having little or no 

time associated to their recovery.  The manufacturing process and diode tolerances determine 

reverse recovery.  Standard diodes like the 1N4002 and 1N4005 typically have t  times of a few 

microseconds. 

rr

Table 1 SPICE Parameters for Six Different Test Diodes 

Name Diode 3 Diode 6 Diode 7 Diode 8 Diode 10 Diode 11 
Type 1N4002 1N4002 1N4005 1N4005 1N4002 1N4002 
Is (amps) 0.8211n 0.1729n 2.278n 5.308n 0.1613n 2.684n 
N 1.599 1.489 1.699 1.786 1.47 1.712 
BV (Volts) 100 100 100 100 100 100 
IBV (Volts) 0.001 0.001 0.001 0.001 0.001 0.001 
RS (ohms) 0.02079 0.02615 0.03406 0.01895 0.0305 0.02223 
Cjo (Farad) 44.54p 44.09p 17.68p 20.19p 47.72p 42.11p 
Vj (Volts) 0.4027 0.4009 0.2046 0.2376 0.4263 0.4085 
M 0.3624 0.3688 0.3092 0.3137 0.3730 0.3689 
FC 0.5 0.5 0.5 0.5 0.5 0.5 
TT (sec) 7.3µ 8.0µ 10.2µ 8.8µ 9.0µ 8.72µ 
EG (eV) 1.11 1.11 1.11 1.11 1.11 42.11p 
XTI 3 3 Default Default Default Default 
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Diodes 3, 6, 10, & 11 (1N4002) had similar reverse recoveries with sharp rising edges 

while the recovery profiles for Diode 7 & 8 (1N4005) were more gradual.  See Figure 13.  The 

simulations do not show differences in recovery shape. 

The amount of charge Q in the depletion region of the pn junction of a diode is dependant 

on several variables; doping concentrations, the physical area, as well as, the bias voltage.  The 

effective capacitance of the diode is the sum of junction and diffusion capacitance plus any 

parasitics.  The effective capacitance is a function of bias voltage and drive frequency.  The 

effective capacitance of the diode is a major contributor to the reverse recovery time. 

We measured the capacitance of Diode 11 with an impedance analyzer, the value Cjo 

ranged from 80pF to 42pF for a frequency drive of 50Hz to 1MHz.  Cjo is the equivalent 

capacitance of the diode at zero bias.  Shown in Figure 15 is a family of capacitance curves.  The 

parameter is frequency and the independent variable is bias voltage.  The simulation results 

compares well with the measurement at 1 MHz until reaching the forward bias region.  In the 

forward bias region, the simulation capacitance is much greater than the measured capacitance.  

The simulations do not predict a frequency dependence on capacitance, but the measurements 

clearly show dependence. 

When the diode is fully conducting, the capacitance peaks and the diode is fully charged.  

As the voltage across the diode switches from forward to reverse bias, the excess charge 

established by minority carriers dissipates and the charge in the pn junction eventually 

establishes a new equilibrium value.  When the period of the reverse bias is insufficient to cause 

the diode to deplete the stored charge the forward bias will increase the charge on the diode to its 

maximum value in a shorter period.  The diode will develop a charge “memory” apparent in its 

recovery time.  The result is that the I-V characteristics of the diode changes when the period of 

the drive voltage is less than reverse recovery time. 

Given Diode 11’s measured reverse recovery time of 8.0 µs, 62.5 kHz (2*8.0µs) is the 

maximum frequency that the diode is able to switch polarities.  At faster frequencies, the diode 

begins to exhibit a charge hysteresis.  Figure 14 shows reverse recoveries of Diode 11 after a 

single pulse transition and after the eighth pulse in a pulse train for the drive frequencies of 

250 kHz, 500 kHz, and 1 MHz.  These results show no difference in reverse recovery between a 

single-pulse and last pulse of an eight-pulse transition for either the simulation or measured 

results at 250 kHz.  At 500 kHz, the measurements indicate a difference between the single-pulse 

 28



and the pulse train.  However, the simulation shows no difference.  At 1MHz, both the 

simulation and measured results show that the reverse recovery time of the pulse train is greater 

than the single-pulse.  Though the simulations and experimental results indicate that a pulse train 

increases the recovery time, the simulation does not predict the experimental results. 

Figure 15 shows the effective capacitance across the diode as a function of diode bias 

voltage.  We measured experimental results at different drive frequencies.  For all cases, when 

the diode is in full forward conduction, the capacitance is at a maximum and the diode is fully 

charged.  Figure 15 also shows simulated for 1 MHz.  Simulation results were not frequency 

dependent. 
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Figure 13 Reverse Recovery Waveforms. 
Simulation results are in red and have steep rising edges at the end of the pulse.  
The measured results are in blue and do not have as sharp a rising edge as the 
simulation results.  The simulation results show sharp recoveries for each diode 
even though the recovery times are different.  The shape of the measured results 
differed for each diode.  The measured result for diode 7 was very different from the 
simulated result.  The SPICE model does not have a mechanism to account for the 
additional feature observed in the measured result. 
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Figure 14 Experiment and simulation results of one versus eight pulses. 
The solid lines show the recovery response of a single pulse and the dotted lines 
show the response of the last pulse in a pulse train.  The greater drive frequency 
shows a larger difference between experimental results and measured results. 
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Figure 15 Diode 11 Capacitance 
The simulated results of capacitance versus bias voltage do not change with drive 
frequency.  However, the measured results do show that there is a difference in 
capacitance versus bias for different drive frequencies.  This difference in response 
is a result of the reverse recovery time of the diode and the inability of the model to 
follow measured results even at moderate frequencies.  
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Despite the apparent simplicity of the diode resonator circuit (shown in Figure 16), the 

response of the circuit does behave chaotically at some drive amplitudes and frequencies.  The 

diode resonator circuit consists of a source with a 50 Ω internal impedance, a 95.6µH inductor, a 

diode, and a 20.6Ω resistor.  The external resistor limits current and functions as a CVR.  The 

results in the report are exclusively from testing with the circuit shown in Figure 16.  For each 

waveform collected, source parameters amplitude and frequency are fixed.  Some waveforms 

across the CVR did not vary from cycle-to-cycle.  However, other waveforms had structure that 

repeated every second, third, fourth, or nth drive cycle. 

Figure 16 Diode Resonator Circuit commonly referred to as the Linsay Circuit 

We conducted part of this study at fixed frequency of 1.22MHz.  We obtained data for 
the bifurcation plots by holding the frequency constant and acquiring a time domain waveform at 
each drive voltage between 0V and 15V.  We determined the maxima for each waveform.  We 
plot all the maxima found for the waveform against the drive voltage.  Plotting all the maxima of 
each waveform makes the bifurcation diagram.  Therefore, the bifurcation diagram shows all the 
maxima values for all the waveforms.  Figure 17 and 18 show the bifurcation diagrams for the 
six diodes tested.  Each diode produced different bifurcation plots; however, all the curves have 
similar characteristics.  Each plot shows a single amplitude response below about 1.5 volts.  Just 
below 1 V each diode shows a kink in the curve.  The kink occurs where diode starts to conduct.  
Initial bifurcate for each diode occurs at about 1.5V.  Four of the diodes show additional 
bifurcation at 2V.  Diode 8 transitions in and out of chaos in this region.  All the diodes then are 
in a period two state until about 4V where each diode transitions into a period four state.  The 
behavior of each diode is different above this voltage, but the majority transition in and out of 
chaotic and periodic states.  When the drive voltage exceeds 10 V all the diodes show chaotic 
behavior.  The diodes remain in a chaotic state up to the maximum drive voltage of 15 V. 
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D7 

D6 

D3 

Figure 17 Bifurcation Plot 
These plots show the sampled voltage response versus injected voltage of diodes 
D3, D6, and D7. 
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D11 

D10 

D8 

Figure 18 Bifurcation Plot. 
These plots show the sampled voltage response versus injected voltage of diodes 
D8, D10, and D11. 
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We conducted another series of tests holding the drive voltage constant at 9V.  We 

collected data at frequencies between 10kHz to 5MHz in 10 kHz increments.  Figure 21 and 

Figure 22 show the bifurcation plots.  Data from all the diodes showed regions of a single, 

doubling, and tripling periods.  In addition, each diode showed regions of chaos.  At low drive 

frequencies, all six diodes showed a single amplitude response.  Between 250 kHz and 500 kHz, 

Diode 3, 6, and 11 behaved chaotically while Diodes 7, 8, and 10 show a single amplitude 

response.  At about 1 MHz all of the diodes show similar responses.  Each diode showed a 

different response above 1 MHz. 

Diode 8 was the only diode that showed chaotic behavior at the upper frequency limit.  

Diode 7 showed period four response and the remaining four diodes exhibited period two 

response.  Diodes 3, 6, 10 and 11 show amplitude excursions between 2 and 3 MHz.  Figure 23 

shows the details of these regions.  In these regions, the response is periodic surrounded by 

significant regions of chaotic response.  This complex behavior illustrates the frequency 

sensitivity of the circuits.   

The SPICE models produced bifurcation response significantly different than the 

experiment.  The model responses of Diode 3 and Diode 11 are similar to each other, but differ 

significantly from their experimental results.  The two bifurcation diagrams are shown in Figure 

19 and 20.  The simulations show very similar responses from Diode 3 and Diode 11 contrary to 

the experimental results.  Simulations conducted using frequency as the variable again produced 

results dissimilar to experimental results.  Between 10kHz and 1.5MHz, the frequency 

bifurcation diagrams of the experiment and the simulations are similar, but the behavior over the 

entire spectrum is different.  Simulations yielded higher average voltages and greater voltage 

deviations than the experiment.  At 10 kHz the experimental results is 0.96V while the 

simulation result is 1.12V.  The maximum experimental amplitude deviation is 0.20V while in 

the simulation, deviation was 0.50V.  These results suggest that the SPICE model for this 

nonlinear circuit is not a good representation. 

Sandia National Laboratories department 01734 (Microsystems Science, Technology & 

Components) measured the parameters of each diode.  01734 personnel (Jimmie T. Martinez) 

measured diode transit time as described earlier in this report.  01734 personnel simulated the 

test circuit using a SPICE simulator.  01734 personnel changed the modeled transit time until the 

model response matched the measured response.  01734 personnel report the transit time that 
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produced the best agreement between measurement and simulation. Since the test to measure 

transit time is performed with a wide pulse, the transit time is valid for low-frequency 

applications.  However, at higher frequencies simulation and measurement results diverge.  The 

theory section of this report provides a more detail explanation for these results.  The bifurcation 

plots we made from scaled simulations agree better with the measurements than the un-scaled 

simulations agreement with measurements.  The bifurcation responses of Diode 8 and 11 are 

similar. 

Figures 21 and 22 show bifurcation diagrams with drive frequency as the parameter.  We 

measured these bifurcation diagrams using a fixed peak drive voltage of 4.55 V.  These results 

show that the chaotic behavior of the circuit also depends on drive frequency.  Figure 23 shows a 

blow up of the results shown in Figures 21 and 22.  These blow-ups show the detail of the circuit 

transitions between periodic behavior and chaotic behavior with extremely small drive frequency 

changes. 

Our first goal was to determine the mechanism of chaotic behavior.  We believe we have 

a good working theory.  Our models produced simulation results that were consistent with our 

experimental results.  Further, we wanted to determine whether understanding chaotic behavior 

could lead to a better understand of disrupting electronic circuits at lower RF energy levels.  This 

goal was more elusive.  Although we did not find lower thresholds of circuit disruption, it is 

clear from our results that the possibility of lower threshold exists.  The possibility of lower 

thresholds is evident in the range of responses these circuits exhibited when parameters of the 

stimulus is changed. 

We confirmed results obtained by other researchers.  In addition, we developed a theory 

and model that produced much closer agreement between simulation results and measured 

results.  Although other researchers showed that the Linsay circuit exhibits chaotic behavior, 

simulations and experimentation results do not agree (amplitude, spectral content, and Lyapunov 

number, etc.).  By implementing corrections to some model parameters, we obtained better 

agreement between simulated and measured than without the corrections. 

Although we have a working model of the chaotic behavior of the Linsay circuit much 

more needs to be done.  The current circuit based model is not robust and we would like to 

produce a physics based model.  The current model contains parameters that must be altered for 
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variations in drive frequency and amplitude.  A physics based model would address fundamental 

properties of the pn junction. 

With the improvement in computing power and the need to model circuit behavior with 

greater precision, the nonlinear effects of circuit has become very important.  In addition, every 

integrated circuit has as part of its design a protective circuit.  These projective circuits use some 

variation of semiconductor junctions that can interact with parasitic components, present in every 

real system.  Hence, the protective circuit can behave as a Linsay circuit.   
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Figure 19 Simulation Bifurcation Plot (Un-scaled trr) 
This figure shows un-scaled simulation results.  These results differ significantly 
from measured results shown in Figures 17 and 18. 

 

Figure 20 Simulation Bifurcation Plot (Scaled trr) 
The figure shows the scaled simulation result that is similar to measured results 
found in Figures 17 and 18. 

 38



Figure 21 Diodes 3, 6, and 7 Frequency Bifurcation Plots 
In these plots, the drive voltage is held constant and the drive frequency is varied.  
As with the voltage bifurcations plots, the response transitions between periodic and 
chaotic behavior. 
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Figure 22 Diodes 8, 10, and 11 Frequency Bifurcation Plots 
In these plots, the drive voltage is held constant and the drive frequency is varied.  
As with the voltage bifurcations plots, the response transitions between period and 
chaotic behavior. 



Figure 23 Frequency Bifurcation Details for Diodes 3, 6, 10, and 11. 
This figure shows a blowup of Figures 21 and 22.  On this frequency scale, one can 
see how readily the circuit response can change from periodic to chaotic. 
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Phase-Locked Loop 

Phase-Locked Loop Theory 

We also studied the nonlinear behavior of a phased-locked-loop.  Phased-locked loops 

are fundamental building block to many major systems (aileron, seeker heads, etc).  In this 

section, we show that an injected RF signal can drive a phased-locked-loop into chaos.  While 

the RF is injected into the circuit, the frequency of the phased-locked-loop leaves its normal 

range of operation.  In addition to the time the RF drives the phased-locked-loop out of its 

normal range of operation, additional time is needed for the phased-locked-loop to return to its 

normal operation.  The RF signal only needs to disturbance the phased-locked-loop long enough 

to cause the phased-locked-loop to leave its normal range of operation, and the disturbance only 

needs to occur often enough to keep the phased-locked-loop from returning to its normal 

operating range.  Hence, a pulsed RF signal with sufficient pulse repetition frequency can cause 

a phased-locked-loop to go into a chaotic state and stay in a chaotic state until the RF signal 

stops. 

Phase-lock-looped (PLL) circuits are a basic part of many control systems.  In addition, a 

PLL can control the frequency of a transmitter and receiver of a radio.  The block diagram of a 

PLL, shown in Figure 24, consists of a phase detector, loop filter, loop amplifier, and a voltage-

controlled-oscillator (VCO). 

Figure 24 Diagram of a Phase-Locked Loop 

Refer to Figure 24 for the following discussion.  A PLL drives the phase difference 

between the input carrier, , and the output of the VCO, ( )tX in ( )tYout , to zero.  A PLL, as the 



name implies, locks the difference between two signals.  In order to understand how a PLL 

works consider the following.  The following represents the input signal: 

 ( ) ( )( )ttAtX cinin φω += sin . 

The VCO output, or reference signal is represented as: 

 ( ) ( )( )ttAte cVCOo θω +−= sin . 

The frequency deviation of the VCO is proportional to its input, ( )tev ; 

 ( ) )(teK
dt

td
vv=

θ , 

where  is the VCO gain. 

 

vK

( ) ( )ψψ sindd Ke = , 

where ( ) ( )tt θφψ −=  is the phase error and  is the proportionality constant. 

Figure 25 Phase-Plane Plot 

Assume that the PLL operates in the linear range of 

dK

( )ted  





−

22
ππ .  Then the following is 

derived using control theory. 

−π π 
ψ

 ( )ted

dK−

dK
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( ) ( ) ( )( ) ( )

) ( )

( )

sE

sKssKsE

vv

s

ddd =−Φ= ψθ

 ( ) (sFsEv =

s
EKs =θ

With some mathematic manipulation, we derive the following.  The closed-loop transfer function 

is: 

( ) ( )
( )

( )
( )sFKKs

sFKK
s
s

dv

dv

+Φ
θ

 

The phase error transfer function is: 

 

( ) ( ) ( )sFKKs
ssHsH

dv+
=−=1  

The VC

sH ==
∆

e

O control-voltage/input-phase transfer function is: 

 

( ) ( )
sFKKs

sFKssH
dv

d

+
=  ( )v

Phase-Locked Loop Application 

Phase lock loops are in a great number of electrical devices.  A single IC and a few 

passive components comprise a large percentage of these PLLs.  For example, PLLs are in phase 

or frequency demodulators, as well as, frequency synthesizers.  Examples of two demodulator 

PLL integrated circuits are the LM565C and the 74HC7046A.  Shown in Figure 26 is a 

schematic diagram of a simple 74HC7046A PLL circuit. 
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Figure 26 74HC7046A PLL Circuit 

The above th PL ation.  Conditions 

exist that can cause the PLL to leave the linear range and enter the nonlinear region shown in 

Figure 25.  In Tetsuro Endo’s paper, Chaos From Phase-Locked Loops10, Endo states that a PLL 

can enter a chaotic state when driven outside its normal operating range.  Experimental results 

from this paper show that even a small phase deviation of the input signal was enough to cause 

the PLL to become chaotic when the PLL was close to its critical detuning (pull-in range). 

In preliminary testing of the LM565C and 74HC7046A PLL, results support the Endo’s 

theory.  When the input carrier frequency was close to the extremes of the tuning range of the 

PLL, any small phase modulation caused the PLL to lose lock.  Out of lock, the noise floor of the 

PLL’s frequency spectrum increases to fill the surrounding spectra suggesting that the PLL was 

exhibiting chaotic behavior. 

During operation, PLL spectral output is essentially a single frequency.  The error voltage 

feed into the local VCO mainta he normal operation range, the 

respond since it is now attempting to operate outside it normal range. 

The operating frequency range of the 74HC7046A PLL IC is 40MHz.  The PLL shown in 

Figure 26 above has a free running frequency of 8.3 MHz and a pull in range of 500 kHz.  Figure 

27 shows the test results of a 74HC7046A PLL driven with three drive frequencies; one just 

eory applies when the L is in the linear range of oper

ins a constant phase.  Outside t

error voltage attempts to correct the phase of the VCO, but the VCO is unable to properly 
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below the normal range of operation (8.3 MHz), one in the normal range of operation and one 

above the normal range of operation.  When operated in the normal range of operation, the PLL 

output was a narrow.  When outside its normal range of operation, the spectrum of the PLL 

spread out. 

FRS radios, GPS systems, & cellular telephones use frequency synthesizers because 

utside its operation range, the PLL either ceases operation or behaves chaotically.  We 

conducted testing on a Motorola MC145220 evaluation board and a Radio Shack FRS radio.  

The PLL in both systems responded as shown in Figure 27.  Wh 27 shows is that the 

operating frequency shifted and broadened.  A radio will not function with this interference.  

e PLL while subjected to RF. 

The Motorola MC145220 evaluation board has two channels.  Each channel is capable of 

generating RF frequencies between 600 MHz to 950 MHz.  The MC145220 PLL chip has a 

operating range of 40 MHz to 1100 MHz.  The two channel error voltages from the PLL chip 

control the two frequency oscillators located underneath the evaluation board.  The VCOs limit 

the frequency ranges of the evaluation board.  The digitally programming of the MC145220 

determines the output frequency of the two synthesizer channels. 

stable frequency is crucial.  A PLL has a designed frequency range of operation.  Once the PLL 

is o

at Figure 

Hence, both radios were disabled. 

Figure 27 74HC7046A Swept Frequency Test. 
The blue trace shows the narrow frequency response of the PLL during normal 
operation.  The red trace (below the normal PLL frequency) and green trace (above 
the normal PLL frequency) show the response of th



Figure 28 MC145220 Motorola Evaluation Board used to measure PLL response 

The MC145220 has t dependently programmed to 

divide by 32/33 or 64/65.  Logic sections of the MC145220 divide channel 1, channel 2, and the 

reference frequency signals to a common compare frequency through divide-by-N flip-flops.  

The phase comparator of each channel compares the phase difference tween the two divided 

down signals, channel 1 and reference or channel 2 and reference, and outputs an error voltage 

related to their phase difference.  The error voltage then adjusts the external VCO for that 

particular channel.  We program the synthesizer, via a synchronous serial connection, to control 

the divide number used by the MC145220. 

We built a controller to program the IC via a serial bus.  The controller programs the 

FIFO configuration of the five different registers of the IC; the reference register, access registers 

(channel 1 & 2), and the configuration registers (channel 1 & 2).  The controller also provided 

the lock indicator. 

We magnetically coupled RF energy to test PLL using a test probe made from a two-turn 

loop of magnetic wire, 3/16” in diameter.  The signal generator that drove the probe operated 

between 100k-2112 MHz.  The maximum signal generator power was 20 dBm.  In similar 

previous tests we found that when focusing the coil at particular regions of the PLL, a 1 kHz-2µs 

pulsed,

physical area of the low pass filter.  When stimulated the spectrum of the PLL shift downward. 

wo on-chip dual-modulus prescalers, in

 be

 800 MHz signal radiated signal disturbed circuit operation.  The spectra output of both 

the Radio Shack and Motorola test circuits were similar.  The Motorola was more sensitive in the 
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Figure 29 MC135220 Motorola Evaluation Board Schematic 
Used to measure PLL response 

The Radio Shack FRS radio, catalog 21-1810, contained two primary PC boards.  The 

bigger of the two boards contained; the digital signal processor controller, the audio, and duel 

tone multiple frequency filtering subsystems.  The smaller board contained the PLL, RF 

heterodyning, and RF amplification.  For these tests, we removed the small RF board from FRS 

radio and connected to an external digital controller developed for the MC145220.  Separating 

the RF board from the DSP controller board of the FRS radio allows us to subject the PLL to RF 

tests with minimum eff

f the 

transmi

ect on the digital control circuit. 

The PLL of the RF board uses a Toshiba TB31202FN PLL IC.  This IC has two 

independent PLL channels to control the receiver and transmitter sub-circuits.  The VCO o

tting section is a Colpitts oscillator.  The capacitances, of two tuner diodes, determine the 

frequency.  The voltages, across the diodes, determine the capacitances of the diodes;  Hence, the 

frequencies are controlled by applied voltages.  The diode capacitance is inversely proportional 

to the voltage applied, and to the frequency.  An input control voltage of 24 mV to 3.0 V 

produces a range of 453.16 MHz to 562.0 MHz.  After amplification, the oscillator output drives 

the Toshiba TB31202FN PLL IC. 
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Figure 30 Block Diagram of the Radio Shack FRS Radio RF Section 
Used t

The Toshiba TB31202FN has two independent channels each with its own prescaler and 

PLL.  Designed to work between 200 MHz and 500 MHz, the TB31202FN uses a charge pump 

to bias the two tuner diodes of the Colpitts oscillator.  The IC uses a 12.8 MHz reference signal 

from a crystal oscillator.  6.25 kHz  is produced by dividing the reference signal by 2048.  When 

the FRS radio is set on channel 5 (462.6625 MHz), the VCO output is 6.25 kHz by dividing the 

channel frequency by 74026 (32*2313+10).  The phase comparator compares two 6.25 kHz 

signals and adjusts the potential that controls the RF outputs to synchronize the two signals.  The 

low-pass-filter frequency cutoff is 420Hz.  The voltage across the tuner diodes adjusts the 

capacitance of the VCO, which in turn adjusts the frequency of oscillation. 

Using the RF coupler used earlier on the MC145220 evaluation board, we found that a 

1 kHz-2µs 800 MHz RF pulse directed into the base of the Colpitts transistor caused the 

spectrum of the radio to shifting down about 300 kHz and broadening to a bandwidth about 70k 

Hz.  The shift and broadening depends on the amount of RF power coupled to the oscillator.  At 

higher RF power, the effect was greater.  We recorded several megahertz deflection and several 

kilohertz a broadening when injecting higher RF powers.  Figure 32 illustrates spectral response 

of the 300 kHz shift and 70 kHz broadening. 

o measure PLL response 
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Figure 31 Block Diagram of the Toshiba TB31202FN IC the PLL chip 
Used in the Radio Shack FRS Radio 

Figure 32 Spectral Shifting and Broadening 

on the left is the response when the PLL is subjected to RF. 

We used several methods to examine the induced effects on the PLL.  First, we observed 

the error voltage on the output of the low-pass filter; the error voltage controls the VCO.  A 

single 1µs wide 800 MHz pulse caused the error voltage to deflect less than 2 mV.  When 

µ

wideband response, and the DC offset lowered the frequency range of the VCO.  A rapidly 

 component of the error voltage. 

Response of the PLL in the Radio Shack FRS radio to injected RF.  The spectral 
response on the right is the normal PLL frequency response.  The spectral response 

exposed to an RF (800 MHz) 2 s pulse at a 1 kHz repletion rate, 7 mV peak-to-peak and DC 

voltage of –80 mV was superimposed across the tuner diodes.  The AC component caused the 

changing error voltage causes frequency to change rapidly.  Higher injection RF energy 

increased the DC deflection and AC
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Figure 33 RF PCB Section of Radio Shack FRS Radio 

Th d power.  

e disturbance of the PLL.  With a source power of 2.0 dBm 

and a s

e duty cycle and peak power of the RF pulses determine the average radiate

Increased average power increased th

ingle 1 µs pulse, the error voltage dipped less than 2 mV.  The error voltage quickly 

recovered and returned to its original voltage level.  Increased pulse-widths caused greater 

deflection and at 200 µs the error voltage dipped more than 50 mV.  The PLL recovery time is 

11 ms for the 1 µs pulse and 21 ms for the 200µs pulse.  A 50 mV error voltage drop causes the 

VCO output to drop 5 MHz.  Increasing power from 2.0 dBm to 4.5 dBm, pulse width of 200 µs, 

the error voltage dips more than 64 mV and the recovery time of the circuit is 20 ms 
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10us - 2.0dBm
20us - 2.0dBm
50us - 2.0dBm
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Figure 34 Time Waveforms of the PLL 
Plot of Error Voltage versus RF Pulse-Width / Drive Levels  As the drive power and 
pulsewidth increase the duration that the error voltage deviates from normal 
increases. 

Both a continuous and pulsed RF effect the PLL operating frequency. An error voltage of 

0.84V causes the VCO to operate at its normal frequency of 462 MHz.  We varied the drive 

frequency and drive power level between 1.0 MHz to 1.0 GHz and 0 dBm to 20 dBm.  The 

injected signals that caused the error voltage varied between 0V and 3.0V, which is the full range 

of the power supply.  Hence, the PLL power supply limited the error voltage range. 

Shown in Figure 35 is PLL error voltage as a function of injected frequency.  At 

about 4

562 MHz.  In Figure 35, it appears that a disruption frequency around the channel frequency, or 

its harmonic at 924 MHz, is most effective at disturbing the error voltage. 

In the regions where the PLL error voltage deviated from its normal range, the error 

voltage; and hence, the PLL was chaotic.  Since the error voltage drives the PLL frequency, the 

output frequency of the PLL was also chaotic. 

frequencies less than 200 MHz, and any power level, the PLL error voltage does not alter from 

its nominal 0.84V.  Above 200 MHz the error voltage begins to droop then rise dramatically 

62 MHz (PLL normal frequency).  At higher drive frequencies, the injected signal causes 

sufficient error voltage deflection to drive the VCO frequency outside the 10 kHz the FRS 

channel.  The error voltage range of 0V to 3.0V corresponds to a frequency range of 453 MHz to 
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Figure 35 Error Voltage Response with Changing Drive Frequency (CW) 
In this figure we see that as the drive frequency increases the error voltage changes.  
Around the nor ltage deviates 
significantly from normal and is limited by the voltage of the power supply.  In these 
freque

2426L3 and 

VPW2838 respectively.  The radar range equation for the 95 GHz test setup in terms of dB is 

mal operating frequency of 462 MHz, the error vo

ncy ranges, the PLL is behaving chaotically.  At even higher frequencies, the 
error voltage drops to zero.  The reason for this behavior is that the external RF 
source is driving the frequency counter on the PLL off of its normal frequency and 
the PLL circuit is trying to correct for the offset frequency.  Since the frequency 
measured by the frequency counter is not related to the frequency of the PLL, the 
error circuit continues to drive the error voltage until the voltage cannot change any 
more. 

In addition to the direct injection testing discussed above, we conducted tests on the 

Radio Shack radio at 95 GHz to investigate high frequency effects on the PLL.  The 

manufacturer is CPI.  The model number of the source and power supply was VKB

AerowaveTXlinePScouplingRpathMillitechsourceR LLLALGPP −−−+++=

an Hewlett Packard 436A power meter, sourceP  is source power, 

antenna gain, pathL  is path loss, PScouplingL  is excess sensor coupling loss, 

line loss, and AerowaveL is Aerowave power divider 

, where  is the power measured by 

 is Millitech transmitting 

 is transmission 

loss.  The effective area A  of the receiver is  

RP

MillitechG

TXlineL

R





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


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2
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where  is the receive antenna gain.  , , receiveG

dB , 

dBmPsource 8.46= dBLTXline 4.0=

Gmilltech 0.24= 







= 24

1log10
dπ

Lpath
, , .  

The distance between the transmitter and the receiver antenna is ‘d’ and wavelength λ = 0.32 cm.   

The power density at the receiver antenna using linear expressions is: 

dBGreceive 0.6= , dBLAerowave 0.34= dBLPScoupling 4.1=

24 R
LGPP TXLinemillitechsource

density π
= . 

The 95 GHz test setup focused energy directly onto the VCO section of the PLL board.  

To pulse modulate the RF, we used a chopper disc with 50% opening.  When the chopper rotates, 

it creates a 50% duty cycle RF pulse train.  The maximum chopping rate is 750 Hz. 

Figure 36 Power Measurement Layout 

A small screen box shielded the PLL from unwanted electro-magnetic noise.  A small 

opening in front of the screen box allowed the 95 GHz to illuminate the PLL without attenuation.  

Although EMI also enters the screen box through this opening, the box reduces the EMI strength 

sufficiently to prevent interference to the PLL. 

 54



Figure 37 Setup of 95GHz Test at 12cm 

Instead of monitoring the feedback error voltage to measure any VCO frequency effects, 

because instrumentation introduced EMI into the shield box, we measured the VCO output.  We 

mixed the acquired VCO signal to a lower frequency and analyzed the results using Joint Time-

Frequency Analysis Software (JTFA).  The JTFA software is a LabVIEW routine developed to 

analyze

Concerned that interference from sources other than H

 in T st matri

Distance RF  Chopper Chopping Rates 

 how the frequency content of a waveform changes in time.  A double-balanced mixer 

WJ-M1J mixed the 462.6625 MHz of the PLL’s with 461 MHz and after low pass filtering we 

captured the output with a Tektronix’s 5111 digital sampling oscilloscope.  We also monitored 

the spectrum of the VCO with an Agilent Spectrum Analyzer.   

 the 95 G z could affect the PLL, we 

carefully tested the setup for outside interference by collecting data with and without the 95 GHz 

source.  Shown able 2 is the te x we used for this test series. 

Table 2 (95 GHz Test Matrix) 

12cm Blocked On 25 Hz, 50 Hz 00 Hz, 250 Hz, 500 Hz, 750 Hz , 1

22cm Unblocked Off 25 Hz, 50 Hz, 100 Hz, 250 Hz, 500 Hz, 750 Hz 

The PLL produced a stable output except when the RF was pulsed.  Figure 39 shows the 

JTFA plot.  The variable on the abscissa is frequency.  The variable on the ordinate is time.  
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Color i  White indicates the highest energ

intensity while black the least. 

Figure 38 Spectral of PLL without 94 GHz Source 

The RF pulses caused the spectral width of the VCO to widen to a spectral width of 5 to 

15 kHz around the original spectrum.  The spectral width is directly related to the incident power 

density deposited onto the VCO.  The source power is fixed.  Therefore, we controlled the power 

density on the PLL by con L.  Higher power density 

on the VCO caused the spectral bandwidth to nearly triple from 3 kHz to 9 kHz.  We used an 

Agilent spectrum analyzer (E4440A) to monitor the spectrum.  The chopping rate did not alter 

the spectral content.  The spectral response for the chopping rate of 200 Hz is similar to the 

spectral response for the 25, 50, 100, 500, 750 Hz chopping rates. 

n the JTFA plot represents the energy intensity. y 

trolling the distance between the horn and PL
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Figure 39 JTFA Results Without 94 GHz Source 

Hz 

Illustrated in Figure 42 though 45, the disruption period of the PLL is the same as 

chopping rate.  The illustrations below show time windows between 20 ms and 100 ms.  
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Figure 40 VCO Spectral Response with 94 G
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Figure 41 PLL Frequency Response Without RF 

Figure 42 95 GHz PRF = 27 Hz 50% Duty Cycle 
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Figure 43 95 GHz PRF = 50 Hz 50% Duty Cycle 

Figure 44 95 GHz PRF = 100 Hz 50% Duty Cycle 
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Figure 45 95 GHz PRF = 100 Hz 50% Duty Cycle 

Figure 46 PLL Low Pass Filter Response 
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Figure 47 Motorola and PLL Controller Circuit 
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Figure 48 Motorola and PLL Controller 
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