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Abstract

In many strategic systems, the choice combinator provides a powerful mechanism for controlling
the application of rules and strategies to terms. The ability of the choice combinator to exercise
control over rewriting is based on the premise that the success and failure of strategy application can
be observed.

In this paper we present a higher-order strategic framework with the ability to dynamically
construct strategies containing the choice combinator. To this framework, a combinator called hide
is introduced that prevents the successful application of a strategy from being observed by the choice
combinator. We then explore the impact of this new combinator on a real-world problem involving
a restricted implementation of the Java Virtual Machine.
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1 Introduction

The notion of choosing the application of one rule over another is central to many strategic programming
systems. ELAN provides the operators dc and dk which respectively denote don’t care choose and don’t
know choose and enables strategies to be created in which the choice of which strategy to apply is left
unspecified. A biased choice combinator is also common in the literature. Stratego and the S′γ calculus,
define biased choice in terms of a non-deterministic choice combinator, a negation-by-failure combinator,
and a sequential composition combinator. For example, let the expression s1 +s2 denote a strategy that
will non-deterministically apply either s1 or s2. Let s1; s2 denote the sequential composition of s1 and
s2 (apply s1 followed by s2), and let ¬ s1 denote a strategy that succeeds if and only if s1 fails. Given
these combinators, left-biased choice (first try s1 and if that fails try s2) and right-biased choice (first
try s2 and if that fails try s1) can be defined as follows:

s1 <+ s2
def
= s1 + (¬s1; s2)

s1 +> s2
def
= (¬s2; s1) + s2

In this paper, we restrict our attention to the left-biased choice and right-biased choice combinators.
An essential component of both of these combinators is the ability to observe the behaviour of strategy
application (i.e., whether the application of a strategy to a term has succeeded or failed). We use
the term failure-based to denote a semantic framework were a special value fail is returned when a
strategy or rule fails to apply to a term. Conversely, we use the term identity-based to denote a
semantic framework where a term is left unchanged when the application of a strategy or rule to a
term fails. Systems like Stratego, ELAN, and the S-calculus have semantic frameworks that are failure-
based. In contrast, ASF+SDF as well as most classical rewriting systems have semantic frameworks
that are identity-based. In this paper we consider the higher-order strategic system TL whose semantic
framework is identity-based.

In a failure-based framework, the observation of strategy application is straightforward since the
value fail explicitly indicates when a rule application has failed. However, in an identity-based frame-
work such as TL, the implementation of observation becomes a bit more involved. One way to solve
the problem is to implement an observer predicate observe(s, t) that evaluates to true if and only if the
strategy s applies to the term t. Note that in addition to being computationally expensive, simply per-
forming an equality comparison on the terms t and s(t) is not correct (e.g., if t 6= s(t) then observe(s, t)
is true otherwise it is false). In particular, such a test would not be able to distinguish between the
failure or success of applications involving identity-like rules (e.g., the application of the rule b → b to
the term b). The proper semantics for the observe predicate is that it must actually track when the
right-hand side of a rule is substituted for the term to which the rule has been applied. Conceptually
speaking, in an identity-based framework one must be able to observe when a computation traverses the
“arrow” separating the left and right-hand sides of a rewrite rule. From this foundation, the definition
of the observe predicate can be extended to include strategies.

Let us consider the introduction of a combinator called hide into an identity-based strategic frame-
work. The purpose of the hide combinator is to prevent the application of a strategy from being
observed. For example, observe(hide(s), t) will always evaluate to false, and a strategy of the form
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skip A strategy constant that never applies
lhs → rhs if condition A conditional first-order strategy
lhs → sn if condition A conditional strategy of order n + 1
sn
1 ; sn

2 Sequential composition
sn
1 <+ sn

2 Left-biased choice
sn
1 +> s2 Right-biased choice

I(sn) A unary combinator that does nothing
fix(s1) The fixed point application of the first-order strategy s1

transient(sn) A unary combinator restricting the application of sn

hide(sn) A unary combinator restricting the observability of sn

Figure 1: The basic constructs of TL

hide(s1)¡+s2 will always attempt to apply s1 followed by s2. In this paper, we explore the consequences
of extending the system TL with a hide combinator having the semantics just described.

The remainder of the paper is organized as follows: Section 2 gives an overview of the higher-
order strategic language TL. Section 3 describes static field address calculation for the Sandia Secure
Processor (SSP), a hardware implementation of a restricted subset of the Java Virtual Machine for
use in high-consequence safety-critical applications. In this section, a strategic program written in TL
for calculating static fields is analyzed. Section 4 gives a brief overview of a system call HATS which
implements a restricted dialect of TL. All examples mentioned and discussed in this paper have been
implemented in HATS. Section 5 concludes.

2 An Overview of TL

TL is an indentity-based higher-order strategic system for rewriting parse trees. In TL, a domain (i.e.,
a term language) is defined using an Extended-BNF notation and terms also called parse expressions
are described using a special notation (see Section 2.1). TL supports the combinators and strategic
constants shown in Figure 1.

In addition to the constructs shown above, TL also provides a number of one-layer generic traversals
providing the ability to define special purpose traversals. These constructs are not central to the topic
of this paper and are therefore omitted. Instead we present a number of generic traversals that form
part of the TL traversal library.

2.1 Term Notation

Let G = (N,T, P, S) denote a context-free grammar where N is the set of nonterminals, T is the set of
terminals, P is the set of productions, and S is the start symbol. Given an arbitrary symbol B ∈ N
and a string of symbols α = X1X2...Xm where for all 1 ≤ i ≤ m : Xi ∈ N ∪ T , we say B derives α iff
the productions in P can be used to expand B to α. Traditionally, the expression B

∗⇒ α is used to
denote that B can derive α in zero or more expansion steps. Similarly, one can write B

+⇒ α to denote
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a derivation consisting of one or more expansion steps.
In TL, we write B[[α′]] to denote an instance of the derivation B

+⇒ α whose resulting value is
a parse tree having B as its dominating symbol. We refer to expressions of the form B[[α′]] as parse
expressions. In the parse expression B[[α′]] the string α′ is an instance of α because nonterminal symbols
in α′ are constrained through the use of subscripts. We call subscripted nonterminal symbols schema
variables or simply variables for short. We also consider a schema variable (e.g., Bi) to be a parse
expression in its own right. An important thing to note about schema variables is that they are typed
variables and as such many only be bound to parse trees resulting from proper derivations obtained
from corresponding nonterminal symbols.

Within a given scope all occurrences of schema variables having the same subscript denote the same
variable. The purpose of subscripts on schema variables is to enable grammar derivations to be restricted
with respect to one or more equality-oriented constraints. The difference between a nonterminal B and
a schema variable Bi is that B is traditionally viewed as a set (or syntactic category) while Bi is a typed
variable quantified over the syntactic category B.

When the dominating symbol and specific structure of a parse expression is unimportant the parse
expression will be denoted by variables of the form t, t1, ... or variables of the form tree, tree1, tree2,
and so on. Parse expressions containing no schema variables are called ground and parse expressions
containing one or more schema variables are called non-ground. And finally, within the context of
rewriting or strategic programming, trees as described here can and generally are viewed as terms.
When the distinction is unimportant, we will refer to trees and terms interchangeably.

2.2 Some First-Order Traversals from the TL Library

TL provides support for user-defined first-order traversals. TL also provides a number of standard
generic first-order traversals. There are two degrees of freedom for a generic traversal: (1) whether a
term is traversed bottom-up or top-down, and (2) whether the children of a term are traversed from
left-to-right or right-to-left.

Figure 2 gives a list of the most commonly used generic traversals. The first traversal is TDL, this
traversal will traverse the term it is applied to in a top-down left-to-right fashion. The remaining entries
in the table have similar descriptions. The last two traversals perform a fixed point computation with
respect to a given traversal scheme.

Traversal bottom-up top-down left-to-right right-to-left
TDL
TDR
BUL
BUR
FIX TDL
FIX TDR

Figure 2: General first-order traversals
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2.3 Higher-Order Strategies

In TL a second-order strategy s2 can be applied to a term t yielding a first-order strategy s1, and more
generally, the application of a strategy of order n to a term t will result in a strategy of order n − 1.
From a conceptual standpoint, the purpose of a second-order strategy is to create a first-order strategy
that is specific to a particular term. Typically this will mean that one or more schema variables have
been bound to specific terms. For example, suppose that in the context of identifier renaming one
wants to rename the identifier x to a newly generated identifier y. In this case, it would be convenient
if one could dynamically generate a rule of the form ident[[x]] → ident[[y]] and apply this rule to
the appropriate term. The attractiveness of such a capability has been recognized in Stratego which
provides a mechanism for dynamically creating rules and controlling their scope of application. TL
lifts and extends this idea to a higher-order framework. In particular, higher-order traversals can be
employed to dynamically construct strategies as opposed to adding rules to rule bases.

From a conceptual standpoint, a higher-order traversal traverses a term and applies a higher-order
strategy sn to every term encountered. Because the strategy being applied is of order n, the result
of an application will be a strategy of order n − 1. If a traversal visits m terms, then m strategies
of order n − 1 will be produced. Let sn−1

1 , sn−1
2 , ... , sn−1

m denote the strategies resulting from such
a traversal. Let ⊕ denote a binary combinator such as sequential composition, left-biased choice, or
right-biased choice. In TL, binary strategic combinators can be used to combine strategic results into
a single strategy. That is, higher-order traversals will combine a sequence of resultant strategies sn−1

1 ,
sn−1
2 , ... , sn−1

m into a strategy of the form:

sn−1
1 ⊕ sn−1

2 ⊕ ...⊕ sn−1
m

There is one technical detail that has been omitted from the above explaination. In addition to com-
bining strategies using a binary combinator, a higher-order traversal also uniformly applies a unary
combinator τ to every resultant strategy. Thus, the actual strategy produced is:

τ(sn−1
1 )⊕ τ(sn−1

2 )⊕ ...⊕ τ(sn−1
m )

In practice, the unary combinators that are most useful are: transient, hide, and I. The transient and
hide combinators are described in Sections 2.4 and 2.5 respectively.

2.3.1 Some Higher-Order Traversals from the TL Library

TL provides support for user-defined higher-order traversals. TL also provides a number of standard
generic higher-order traversals. There are four degrees of freedom for a generic traversal: (1) whether
a term is traversed bottom-up or top-down, (2) whether the children of a term are traversed from left-
to-right or right-to-left, (3) which predefined binary combinator should be used to compose the result
strategies, and (4) which unary combinator should be used to wrap each result strategy.

Figure 3 gives a list of the most commonly used generic traversals. The first traversal is rcond tdl,
this traversal will traverse the term it is applied to in a top-down left-to-right fashion. The result
strategies will be composed using the right-biased choice combinator and each result strategy will be
wrapped in the unary combinator I. The remaining entries in the table have similar descriptions.
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Travaersal bottom-up top-down left-to-right right-to-left ⊕ τ

rcond tdl +> I

rcond tdr +> I

lcond tdl <+ I

lcond tdr <+ I

rcond bul +> I

rcond bur +> I

lcond bul <+ I

lcond bur <+ I

seq tdl ; I

seq tdr ; I

seq bul ; I

seq bur ; I

Figure 3: General higher-order traversals

2.4 The transient Combinator

The transient combinator is a very special combinator in TL. This combinator restricts a strategy so that
it may be applied at most once. The “at most once” property characterizes the transient combinator
and motivates the introduction of skip into the framework of TL. We define skip as a strategy whose
application never succeeds. The strategy skip as the following properties:

skip <+ s ≡ s
skip +> s ≡ s

Operationally, we define a strategy of the form transient(s) as a strategy that reduces to the
strategy skip if the application of the strategy s has been observed. Thus, transients open the door to
self-modifying strategies. When using a traversal to apply a self-modifying strategy to a term, a different
strategy may be applied to every term encountered during a traversal. For example, let int1 → int[[2]]
denote a rule that rewrites an integer to the value 2. If such a rule is applied to a term in, say, a
top-down fashion all of the integers in the term will be rewritten to 2. Now consider the following
self-modifying strategy:

transient(int1 → int[[1]]) <+ transient(int1 → int[[2]]) <+ transient(int1 → int[[3]])

When applied to a term in a top-down fashion, this strategy will rewrite the first integer encountered
to 1, the second integer encountered to 2, and the third integer encountered to 3. All other integers will
remain unchanged.

11



2.4.1 Example

The transient combinator can be used in a higher-order setting with interesting results. Consider the
language defined by the BNF grammar shown in Figure 4.

term ::= int | id | “add” “(” term “,” term “)”
int ::= integer
const ::= id

Figure 4: A simple grammar involving sums

This language defines terms consisting of sums involving integers and symbolic constants. Suppose
that one wants to construct a strategy capable of reversing the first three integers in a term without
otherwise altering the term structure. For example, add(add(1,b),add(add(2,3),4)) should be rewrit-
ten to add(add(3,b),add(add(2,1),4)). In TL, such a reversal could be accomplished by the following
strategic program.

Implementation in TL

replace : int1 → transient(int2 → int1)
load3 : transient(replace) +> transient(replace)+> transient(replace)
reverse3 : t → TDL (rcond tdl load3 t) t

Here, the strategy replace is a labeled second-order strategy that when applied to an integer i will
return the strategy transient(int2 → i). This strategy is capable of rewriting a single (arbitrary) integer
to i. The strategy load3 will enable the strategy replace to be applied at most three times during a
traversal. Assuming the semantics of rcond tdl given in Section 2.3.1 the evaluation of the strategic
expression

rcond tdl load3 add(add(1,b),add(add(2,3),4))

will yield the strategy

transient(int2 → 1)+> transient(int2 → 2)+> transient(int2 → 3)

This first-order strategy, when applied by the traversal TDL to the term add(add(1,b),add(add(2,3),4))
will yield add(add(3,b),add(add(2,1),4)). Thus, the strategy reverse3 will correctly reverse the first
three integers of the term t.

2.5 The hide Combinator

The strategic combinator hide provides an interesting extension to the framework of TL. This unary
combinator restricts the observability of strategy application from the perspective of the choice combi-
nators. In particular, the hide combinator satisfies the following properties:

12



hide(s1) <+ s2 ≡ s1; s2

s1 +> hide(s2) ≡ s2; s1

2.5.1 Example

When combined within a strategy, the hide and transient combinators can interact with each other in
interesting ways. Consider the following grammar:

int list ::= int int list | int
int ::= integer

Figure 5: A simple grammar involving integer lists

Given this grammar we are interested in developing a strategy that will transform the list of zeros
into a list of integers denoting the position of the element in the list. That is, we want a strategy that
would transform a term int list[[0 0 0]] into the term int list[[1 2 3]]. Granted there is more than one
way this can be accomplished, but we will see in Section 3.1 that the approach taken in the strategy
shown below has some desirable properties when considering more complex term structures.

Pseudo-TL

increment : int2 → (transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1))
position : int list1 → TDL (lcond tdl increment int list1) int list1

The strategy int1 → int1+1 takes an integer value int1 and increments it by 1. Technically speaking,
the syntax given for the addition would not be allowed in TL because int1 is a parse tree while + is
an operation defined on integers. The actual syntax is only slightly more involved but not particularly
interesting in the context of this example and therefore abstracted away. When applied to an integer
int2, the second-order strategy increment will produce a first-order strategy of the form:

transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1)

The strategic expression (lcond tdl increment int list1) will traverse int list1 (e.g., int list[[0 0
0]]) in a top-down left-to-right fashion applying the increment strategy to every term (e.g., integer
term) encountered. The first-order results will then be composed using the left-biased combinator. The
resulting strategy will then be applied to int list1 by the traversal tdl.

Let us trace the application of position to the term int list[[0 0 0]]. First, the strategic expression
(lcond tdl increment int list1) will be evaluated. This will yield the following first-order strategy:

transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1) <+
transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1) <+
transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1)

13



Now the traversal TDL will traverse the term int list[[0 0 0]] applying the above strategy to ev-
ery (integer) term encountered. The first transient in the strategy will apply to the first integer 0
encountered thus incrementing is value to 1. This application can be observed by the left-biased choice
combinator, so no further applications are attempted, and the traversal moves on to the next term with
the altered strategy:

skip <+ hide(int1 → int1 + 1) <+
transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1) <+
transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1)

When the second 0 is encountered, the hide strategy is first to be applied and increments 0 to
produce 1. Since the application of a hide strategy cannot be observed, the application of the following
transient is attempted. This application increments 1, the current value of the term, to produce 2.
As in the previous case, the application of the transient can be observed by the left-biased choice
combinator and so the application of the strategy to the second term stops. The successful application
of the transient causes it to be remove from the strategy and we are left with:

skip <+ hide(int1 → int1 + 1) <+
skip <+ hide(int1 → int1 + 1) <+
transient(int1 → int1 + 1) <+ hide(int1 → int1 + 1)

And finally, the last 0 is encountered. The first two hide strategies apply incrementing the value
of the third 0 to 2. Now a transient is encountered which increments the value of the third term to
3. Again, the observation of this transient causes the strategy application to stop. Thus the resulting
term is: int list[[1 2 3]].

3 Absolute Address Calculation for Static Fields in Java Class Files

At Sandia National Laboratories, a subset of the Java Virtual Machine (JVM) has been developed in
hardware for use in high-consequence embedded applications. The implementation is called the Sandia
Secure Processor (SSP) [11]. An application program for the SSP is called a ROM image and consists of
a collection of structures similar to class files that have been stored on a read-only memory. The SSP is
a closed system in the sense that the execution of an application program may only access the structures
in the ROM (e.g., no dynamic loading of class files across a network). The closed nature of the SSP’s
execution environment enables the class loading activities of the JVM [10] to be performed statically.
Under these conditions, the functionality of the class loader is well-suited to a strategic implementation.

In the discussion that follows, we assume that an application consists of one or more Java class files
and that Java class files have the greatly simplified structure defined by the grammar shown in Figure
6. However, we have hopefully left enough structural detail so that the reader gets some sense of the
complexity of the term structures that one must deal with when rewriting Java applications.

14



app ::= [ app ] class
class ::= “{” class id super id cp “[” fields “]” “[” methods “]” “}”
class id ::= id
super id ::= id
cp ::= [ cp ] c entry
c entry ::= key
fields ::= field [ fields ]
field ::= sfield | ifield
sfield ::= key “::” addr
ifield ::= key “:” addr
methods ::= method list
method list ::= m entry [ method list ]
m entry ::= key “(” “)”
key ::= id “.” id “.” desc
desc ::= id | id “(” [ id ] “)”
index ::= integer
addr ::= integer
id ::= ident

Figure 6: A simplified grammar for Java class files

Given this structure, we are interested in assigning a unique absolute address to every static field
occurring within an application. In this example we will assume that memory is byte addressable and
that the size of a static field in memory is dependent upon its type. In the example given, we restrict
ourselves to the types shown in Figure 7.

Typically, additional constraints are imposed on memory mappings (e.g., an integer value should not
span a 32-bit (i.e., word) boundary). This constraint impacts the definition of the “addition” function
but does not otherwise impact the strategic approach, and can is therefore omitted from the example
without significant loss of generality. Other things to know about static fields include:

Field Descriptor Memory Size Comment
B 1 byte byte
C 2 bytes character
I 4 bytes integer
J 8 bytes long integer
S 2 bytes short integer
Z 1 byte boolean

Figure 7: A list of Java types
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Class Super Constant Pool Fields Methods
{ C A C [ C.x1.I::- [ C.bar.I(J) }

C.x1.I C.c1.J:- C.f.I(J)
x1 C.x2.J::- ... ]
... C.x3.S::-

C.c2.B:- ]

{ A obj A [ A.x1.I::- [ A.foo.I(I) }
A.x1.I A.a1.I:- A.bar.I(J)
x1 A.x2.J::- ... ]
A.x2.J A.a2.I:-
x2 A.x3.C::- ]
...

{ B A x1 [ B.x1.B::- [ B.foo.I(I) }
B.x1.B B.b1.S:- B.f.I(J)
B B.x2.Z::- ... ]
... B.x3.I::-

B.b2.J:- ]

Figure 8: Three abstract class files

1. The definition of static fields and instance fields may be interleaved within the fields section of a
class file, and

2. a class may declare zero or more static fields.

In Figure 8 we see three class files presented in no particular order. The class files have already been
partially resolved so that all constant pool indexes have been replaced by their symbolic references. In
the first table, the class file C declares the static fields x1, x2, and x3. In the second table, the class
file A declares the static fields x1 and x2, and in the third table the class file B declares the static fields
x1, x2, and x3. Our strategic objective in this particular case is to assign each static field within the
class files C, A, and B a unique absolute address. Collectively, there are eight static fields declared
between these class files C.x1::-, C.x2::-, C.x3::-, A.x1::-, A.x2::-, B.x1::-, B.x2::-, B.x3::-. A solution to
the absolute address assignment problem would be: C.x1::0, C.x2::1, C.x3::2, A.x1::3, A.x2::4, B.x1::5,
B.x2::6, B.x3::7. We would like to point out that the order of the static fields is irrelevant. The TL
solution to this problem is given in the following section.

3.1 Static Field Address Calculation

Figure 9 shows a TL program for assigning unique addresses to static fields found within a Java ap-
plication. In particular, it is the the strategy assign address that assigns a unique address to each
static field in the Java application. Furthermore, the address assignments will take into account the
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inc(x) : sfield [[ key1 :: addr1 ]] → sfield [[ key1 :: addr2 ]]
if addr2 ¿ addr1 + x

sfield counter(x) : transient( inc(0) ) <+ hide( inc(x) )

make sfield counter : sfield [[d1.d2.B]] → sfield counter(1)
<+ sfield [[d1.d2.C]] → sfield counter(2)
<+ sfield [[d1.d2.I]] → sfield counter(4)
<+ sfield [[d1.d2.J ]] → sfield counter(8)
<+ sfield [[d1.d2.S]] → sfield counter(2)
<+ sfield [[d1.d2.Z]] → sfield counter(1)

assign addresses : app0 → TDL ( lcond tdl make sfield counter app0 ) app0

Figure 9: A strategic program for incrementing static fields

memory requirements for each static field. In the solution given, the addition operator has the following
semantics:

addr1 + y
def
=

{
addr[[z]] if ∃x : addr1 = addr[[x]] and x is of type integer and z = x + y

addr[[y]] if addr1 = addr[[x]] and the value of x is −

Within assign address, the strategic expression ( lcond tdl make sfield counter app0 ) will traverse
the application app0 and apply the strategy make sfield counter to every static field. Depending upon
the type of static field encountered, make sfield counter will generate an appropriate call to the strategy
sfield counter. For example, if the descriptor of the static field is I then sfield counter will be called
with the integer value 4 which denotes the space requirements (in bytes) of an integer field.

When given an integer value x, the strategy sfield counter will generate a left-biased composition of
a transient and hide strategy. The left-biased composition of this composite strategy will have the effect
of a summation when applied to the static field elements in app0. To see how this works, let us consider
an application app0 containing only the following static fields: sfield [[C.x1.I :: −]], sfield [[C.x2.J :: −]],
and sfield [[C.x3.S :: −]]. The following tables shows the strategy resulting from the evalution the
strategic expression ( lcond tdl make sfield counter app0 ).

transient( inc(0) ) <+ hide( inc(4) ) <+
transient( inc(0) ) <+ hide( inc(8) ) <+
transient( inc(0) ) <+ hide( inc(2) )

The following figures provide a trace of the application of the above strategy to the static fields in
app0. Figure 10 shows the value of the strategy and static fields prior to application.
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sfield [[C.x1.I :: −]] sfield [[C.x2.J :: −]] sfield [[C.x3.S :: −]]
transient( inc(0) ) <+ hide( inc(4) ) <+
transient( inc(0) ) <+ hide( inc(8) ) <+
transient( inc(0) ) <+ hide( inc(2) )

Figure 10: Initial configuration of strategy and app0

sfield [[C.x2.J :: −]] sfield [[C.x3.S :: −]]
skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]]
transient( inc(0) ) <+ hide( inc(8) ) <+
transient( inc(0) ) <+ hide( inc(2) )

Figure 11: Configuration of strategy and app0 after application of the first transient to the first sfield

In Figure 11, we see how the application of the first transient to the first field has caused the field
to be assigned the absolute address 0. The evaluation of the transient causes it to be reduced to skip
and its observation by the left-biased choice combinator causes the application of the strategy to stop,
at which point the traversal proceeds on to the next static field.

Figure 12 shows the result of applying the strategy hide( inc(4) ) to the second static field. Since
a hide strategy cannot be observed by the left-biased choice combinator the application of the strategy
continues and applies the second transient.

Figure 13 shows the result of applying the second transient strategy to the second field. Again, the
evaluation of the transient causes it to be reduced to skip and its observation by the left-biased choice
combinator causes the application of the strategy to stop, at which point the traversal proceeds on to
the next static field.

Figures 14, 15 and 16 trace the strategy applications to the third static field. In particular, the
third static field will be rewritten by two hide strategies followed by a transient strategy.

sfield [[C.x3.S :: −]]
skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]] sfield [[C.x2.J :: 4]]
transient( inc(0) ) <+ hide( inc(8) ) <+
transient( inc(0) ) <+ hide( inc(2) )

Figure 12: Configuration of strategy and app0 after application of the first hide strategy to the second
sfield
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sfield [[C.x3.S :: −]]
skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]]
skip <+ hide( inc(8) ) <+ sfield [[C.x2.J :: 4]]
transient( inc(0) ) <+ hide( inc(2) )

Figure 13: Configuration of strategy and app0 after application of the second transient to the second
sfield

skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]] sfield [[C.x3.S :: 4]]
skip <+ hide( inc(8) ) <+ sfield [[C.x2.J :: 4]]
transient( inc(0) ) <+ hide( inc(2) )

Figure 14: Configuration of strategy and app0 after application of the first hide strategy to the third
sfield

skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]]
skip <+ hide( inc(8) ) <+ sfield [[C.x2.J :: 4]] sfield [[C.x3.S :: 12]]
transient( inc(0) ) <+ hide( inc(2) )

Figure 15: Configuration of strategy and app0 after application of the second hide strategy to the third
sfield
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skip <+ hide( inc(4) ) <+ sfield [[C.x1.I :: 0]]
skip <+ hide( inc(8) ) <+ sfield [[C.x2.J :: 4]]
skip <+ hide( inc(2) ) sfield [[C.x3.S :: 12]]

Figure 16: Configuration of strategy and app0 after application of the third transient strategy to the
third sfield

Static Field Address
C.x1.I 0
C.x2.J 4
C.x3.S 12
A.x1.I 14
A.x2.J 18
A.x3.C 26
B.x1.B 28
B.x2.Z 29
B.x3.I 30

Figure 17: Address assignments for static fields

When applied to the application in the example shown in Section 3 the absolute address assignments
shown in Figure 17 result.

Of course, these assignments will be embedded within the structure of the class files in the application
and are presented here in summarized form.

4 HATS: A Restricted Implementation of TL

HATS is an integrated development environment (IDE) for strategic programming in a restricted dialect
of TL. The IDE consists of an interface written in Java and an execution engine written in ML.
The interface supports file management, provides specialized editors for various file types including an
editor that highlights TL keywords and terms. The interface also supports the graphical display of
term structures. The execution engine consists of three components: a parser, an interpreter, and an
abstract prettyprinter. All of the examples discussed in this article have been implemented in HATS.
HATS runs on Windows NT/2000/XP and Unix-based platforms and is freely available [18].

5 Conclusion

Strategic programming solution often require data to be moved throughout a term structure (e.g., from
one subterm to another). The development of TL is based on the premise that higher-order rewriting
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provides a mechanism for dealing with the movement of such data conforming to the tenets of rewriting.
In a higher-order framework, the use of auxiliary data is expressed as rule. Instantiation of such rules can
be done using standard (albeit higher-order) mechanisms controlling rule application (e.g., traversal).
Typically, a traversal-driven application of a higher-order rule will result in a number of instantiations. If
left unstructured, these instantiations can be collectively seen as constituting a rule base whose creation
takes place dynamically. However, the utility of dynamically created unstructured rule bases is limited.
Thus, TL also lifts the notion of strategy construction to the higher-order. That is, instantiations of
rules are structured to form strategic expressions rather than rule bases. Nevertheless, in many cases,
simply lifting first-order control mechanisms to the higher-order does not permit the construction of
strategic expressions that are sufficiently refined. This difficulty is alleviated though the introduction
of the transient and hide combinators. The interplay between the transient and hide combinators
and more traditional control mechanisms enables a variety of strategies to be elegantly expressed in a
higher-order setting.

At present we are exploring the addition of one more unary combinator into the framework of TL.
We call this combinator opaque. The application of a strategy enclosed in an opaque combinator cannot
be observed by the transient combinator. Thus, an opaque prevents the reduction to skip that a
transient would normally initiate. We are presently exploring the consequences of such an extension
with promising preliminary results.
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