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Abstract In this paper, we describe a strategy of us-
ing compressed bitmap indices to speed up queries on
both numerical data and text documents. By using an
efficient compression algorithm, these compressed bit-
map indices are compact even for indices with millions
of distinct terms. Moreover, bitmap indices can be used
very efficiently to answer Boolean queries over text docu-
ments involving multiple query terms. Existing inverted
indices for text searches are usually inefficient for cor-
pora with a very large number of terms as well as for
queries involving a large number of hits. We demonstrate
that our compressed bitmap index technology overcomes
both of those short-comings. In a performance compar-
ison against a commonly used database system, our in-
dices answer queries 30 times faster on average.

To provide full SQL support, we integrated our in-
dexing software, called FastBit, with MonetDB. The in-
tegrated system MonetDB/FastBit provides not only ef-
ficient searches on a single table as FastBit does, but
also answers join queries efficiently. Furthermore, Mon-
etDB/FastBit also provides a very efficient retrieval mech-
anism of result records.

1 Introduction

Bitmap indexing is a technology that was considered ap-
propriate for small cardinality attributes only, usually
below 100 distinct values, such as the 50 states in the US,
or 100 age values for people. Consequently, they were not
used for numeric values with a large cardinality, such as
floating point temperature values, or for a large number
of terms.

The main difficulty with bitmap indices is that usu-
ally a bitmap is required for each value, and if left un-
compressed their sizes and the corresponding search time
grows with the number of bitmaps. For example, con-
sider having 1,000,000 people, and an attribute contain-
ing their yearly income, where it can be in the range
of 0-100,000. Assume that the value of income is repre-
sented in a 32 bit integer, then the total size of that at-
tribute would be 32,000,000 bits. If this was represented
as 100,000 bitmaps where each is 1,000,000 bits long,
the total volume of the index would be 10! bits. For
this reason compressed bitmap indices are used. Typi-
cally, the size of the compressed bitmaps is a fraction of
the original data, as compared to 2-3 times the size of
the data for a conventional index, such as a B-tree. How-
ever, there is an additional cost of processing the search
over the compressed bitmap indices, because of the need
to decompress them before a search can be performed
efficiently.

Recent work [33], has introduced a specialized com-
pression technique for bitmap indices, called Word-
Aligned Hybrid (WAH), that is compute friendly, in that
logical operations can be performed on the compressed
bitmaps directly. Over the past few years, we have suc-
cessfully demonstrated that the index which uses WAH
encoding, referred to as FastBit, significantly improves
the performance of multi-attribute queries on numeri-
cal data with high-cardinality attributes. In this paper
we take the idea of bitmap indices a step further and
show that compressed bitmap indices can also be used
for Boolean queries over text to find all documents that
match a certain search criterion.

FastBit is an efficient compressed bitmap index tech-
nology that provides a subset of the SQL functional-
ity. In particular FastBit works extremely well on at-



tributes (columns) of the same relational table, evalu-
ating a multi-attribute query by applying logical oper-
ation on the bitmap search results from each attribute.
However, FastBit is not designed to perform join op-
erations. In order to provide a complete SQL interface
we integrated FastBit with the in-memory database sys-
tem MonetDB being developed at CWI, Netherlands.
We chose MonetDB since it is based on a column-wise
storage model that is well-suited for partial range quer-
ies where only the attributes involved in the query are
brought into memory for search. Since bitmap indices
are designed to index one attribute at-a-time, MonetDB
is a natural choice for the use of bitmap indices.

We present a detailed performance study to evaluate
the efficiency of bitmap indices for both Boolean queries
over text and traditional database queries over numer-
ical values. Our performance experiments are based on
the Enron email data set consisting of emails sent and
received by Enron employees. This data set is particu-
larly attractive for studies on index data structures since
it contains numerical, categorical and text data. Typical
database systems would use (1) B-trees for querying nu-
merical and categorical values and (2) inverted files for
text searches. Our performance study demonstrates that
bitmap indices are very efficient for both.

The methodology used for the performance studies is
based on separating text data (subject and body of the
email messages) from the rest of the data (sender email
address, recipient email address, day, time, etc.) This al-
lowed us to perform separate queries on the text data
and the more “conventional” data (numerical data). We
then ran combined queries that require a join over the
two tables. We executed a large number of queries (vary-
ing the hit ratio) using only FastBit, then combining re-
sults from the two tables by applying an external join
(essentially a sort-merge algorithm), and finally running
the same queries on the MonetDB/FastBit system. The
results will be discussed in detail, but in general, we ob-
served that the application of FastBit to both numerical
and text data to perform combined queries has proven
to be very efficient.

The paper is organized as follows. In Section 2 we re-
vise the related work on index data structures for query-
ing numerical and categorical values. In particular we
focus our attention on bitmap indices. Next, we discuss
databases systems that support full-text searching and
motivate the advantages of compressed bitmap indices
for querying both numerical and text data. In Section 3
we introduce the Enron data set which is large collection
of email messages that was made public recently. This
data set is particularly attractive for research on index
data structures since it contains numerical, categorical
and text data. In Section 4 we describe our framework
for indexing text data with our bitmap index implemen-
tation called FastBit. The challenges of integrating Fast-
Bit into the open-source database management system
MonetDB are described in Section 5. Next we perform
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a detailed experimental evaluation of querying both nu-
merical and text data with FastBit and compare the per-
formance with the integrated system MonetDB /FastBit
as well as with MySQL (see Section 6). We summarize
the findings of our studies in Section 7 and point out
open research topics with respect to using bitmap in-
dices for text searching.

2 Related Work
2.1 Querying Numerical and Categorical Values

In the database community, a general strategy to reduce
the time needed to answer a query is to devise an aux-
iliary data structure, or an index, for the task. Earlier
database systems were more commonly used for transac-
tion type applications, such as banking. For this type of
application, indexing methods such as B*-tree and hash-
based indices were found to be particularly efficient [9,
20]. One notable characteristic of data in these applica-
tions is that they change constantly and therefore their
associated indices must also be updated quickly.

As more data are accumulated over time, the need
to analyze large historical data sets is gaining attention.
The storage system for this type of relatively stable data
is generally known as data warehouse [7,8,13]. The type
of operations performed on data warehouses are often
called On-Line Analytical Processing (OLAP). For these
operations, bitmap indices are particularly efficient [18,
36,35]. In comparison with a typical BT-tree, a bitmap
index usually answers queries with a large number of hits
faster than a B¥-tree, but it takes longer to update a bit-
map index after an insertion of a new record or a mod-
ification of an existing record. However, for most data
warehouses, the typical update operation is to append
a large number of new records. In this case, appending
new records to a bitmap index may even take less time
than updating a B¥-tree because the time to append to
bitmap indices is a linear function of the number of new
records while the time to update a BT-tree is always a
superlinear function. For this reason, bitmap indices are
well-suited for OLAP type of applications.

As an illustration, let us consider a bitmap index for
an integer attribute A that takes its value from 0, 1, 2,
and 3. In this case, we say that the attribute cardinality
of A is 4. The basic bitmap index consists of four bit-
maps, b1, ba, b3, and by. Each bitmap corresponds to one
of the four possible values of A and contains as many
bits (0 or 1) as the number of rows in the table. In the
basic bitmap index, a bit is set to 1 if the value of A
in the given row equals the value associated with the
bitmap.

Let N denote the number rows in a table and C'
denote the attribute cardinality. It is easy to see that
a basic bitmap index contains CN bits in its bitmaps.
As the attribute cardinality increases, the basic bitmap
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bitmap index

RID | A||=0 =1 =2 =3
110 1 0 0 0
2| 1 0 1 0 0
3 3 0 0 0 1
4| 2 0 0 1 0
51| 3 0 0 0 1
6 3 0 0 0 1
7T 1 0 1 0 0
8| 3 0 0 0 1
b1 bo b3 by

Fig. 1 A sample of an equality-encoded bitmap index, where
RID is the record ID and A is an integer attribute with values
in the range of 0 to 3.

index requires correspondingly more storage space. In
the worst case where each value is distinct, C = N,
the total number of bits is N2. There are a number of
different strategies to reduce this maximum index size;
we organize them into three orthogonal groups.

Binning Instead of recording each individual value in
a bitmap, the strategy of binning seeks to associate mul-
tiple values with a single bitmap [32,24]. For example,
to index a floating-point valued attribute B with a do-
main between 0 and 1, we may divide the domain into
a number of bins, say 10. In this case, a bitmap will be
associated with each bin, such as [0,0.1), [0.1,0.2), ...,
[0.9,1].

Binning clearly can control the number of bitmaps
used. However, the index is no longer able to resolve all
queries. For example, when answering a query involving
the condition “B < 0.05”, the most helpful information
we can get from the above binned index is that there
are a number of records with B in the bin of [0,0.1).
We call these records the candidate hits of the query (or
simply candidates). These candidates have to be exam-
ined to determine exactly which ones are actually hits
[26]. Checking the candidates often dominates the total
query response time. A bitmap Index without binning
can be thought of as binning with one bin per value.

Encoding We can view the output from binning as a set
of bin numbers. The encoding step is to translate these
bin numbers into bits in bitmaps. The basic bitmap uses
an encoding, referred to as equality encoding, where each
bitmap is associated with one bin number and a bit is
set to 1 if the value falls into the bin, 0 otherwise. Other
common encoding strategies include range encoding and
interval encoding [5,6]. In both range encoding and in-
terval encoding, each bitmap corresponds to a range of
bins. They are designed to answer range queries with
one or two of the bitmaps. These encoding schemes can
also be composed into multi-level and multi-component
encodings [5,34]. One well-known example of a multi-
component encoding is the binary encoding scheme [31,
19], where the ith binary digit of the bin number is con-

catenated together to form the ith bitmap of the index.
This encoding produces the fewest number of bitmaps,
however, to answer most queries, all of the bitmaps in the
index are accessed. In contrast, other encoding schemes,
such as the interval encoding, usually access only some
of the bitmaps when answering a query.

Compression Compression can be applied on the bit-
maps generated from the above binning and encoding
steps to reduce the storage requirement. Any text com-
pression technique may be used here. However, in order
to reduce the query response time, specialized bitmap
compression methods are preferred. One of the best-
known bitmap compression methods is the Byte-aligned
Bitmap Code by Antoshenkov [3].

Another efficient bitmap compression method is the
Word-Aligned Hybrid (WAH) code [35,33]. In a number
of timing measurements, it was shown to be about 10
times faster then BBC on a variety of datasets. As for
the index size, the basic bitmap index compressed with
WAH is shown to use at most O(NN) words, where N is
the number of records in the dataset. In the worst case,
the proportionality constant is 4. This worst case index
size is comparable with the typical size of a BT-tree used
in some popular DBMS.

Given a range condition involving an index compressed
with WAH, the total response time is proportional to the
number of hits. This is optimal in terms of computational
complexity. In addition, compressed bitmap indices are
in practice superior to other indexing methods because
the result from one index can be easily combined with
that of another through bitwise logical operations, thus
performing multiple-attribute queries efficiently.

2.2 Database Systems for Full-Text Searching

Supporting text retrieval in database systems has be-
come an important research topic as many applications
require queries that combine both text and other data-
base attributes. The research literature discusses incor-
porating text retrieval capabilities into different types
of database systems such as relational database systems
[14] , object oriented databases [37] and XML databases
[1] . Proposals for architecture for systems that combine
relational databases with text searching capabilities are
reported in [10] and [15]. Other papers deal with model-
ing issues, query languages and appropriate index struc-
tures [22,21] for such database systems. A more recent
prototype of such a system, called QUIQ, is described
n [14]. The engine of this system, called QQE, consists
of a DBMS that holds all the base data and an exter-
nal index server that maintains the unified index. Inserts
and updates are made directly to the DBMS. The index
server monitors these updates to keep its indices cur-
rent. It can also be updated in bulk-load mode. Another
recent paper, [12], describes a benchmark called TEX-
TURE which examines the efficiency of database queries



that combine relational predicates and text searching.
Several commercial database systems were evaluated by
this benchmark.

Another approach for combining text retrieval and
DBMS functionality is to use object oriented databases
using the external function capability of the database
system. A prototype that uses this approach is reported
in [37] which combines a structured-text retrieval system
(TextMachine) with an object-oriented database system
(OpenODB).

As XML document is able to represent a mix of struc-
tured and text information, a third approach that is re-
cently gaining some popularity is to combine text re-
trieval with XML databases. For example in [1], it is
proposed to extend the XQuery language with complex
full-text searching capabilities.

Supporting text in databases requires appropriate
index structures. One type of index proposed for text
searching is called Signature files. The space overhead of
this index is lower than inverted files (10%-20%) but the
search is always sequential over the whole index. This
index uses a hash function that maps words in the text
to bit masks consisting of B bits called signatures. The
text is then divided into blocks of b words each. The bit
mask for each block is obtained by ORing the signatures
of all the words in the block. A search for a query word is
conducted by comparing its signature to the bit mask of
each block. In case that at least one bit of the query sig-
nature is not present in the bit mask of a block, the word
cannot be present in this block. Otherwise, the block is
called a candidate block as the word may be present in
it. All candidate blocks must be examined to verify that
they indeed contain the query word.

Another common structure for indexing text files,
found in commercial database systems and text search
engines, is the inverted file index. This data structure
consists of a vocabulary of all the terms and an inverted
list structure [29]. For each term ¢ the structure contains
the identifiers (or ordinal numbers) of all the documents
containing ¢ as well as the frequency of ¢ in each docu-
ment. Such a structure can also be supplemented with
a table that maps ordinal document numbers to disk
locations. As inverted files are known to require signifi-
cant additional space (up to 80% of the original data),
recent work [2] deals with methods of compressing in-
verted files. The authors also show that their method
is quite efficient in decompressing the inverted files. A
comprehensive survey of inverted files for text searching
can be found in [39)].

2.8 Compressing Inverted Files with Bitmap Indices

The inverted indices commonly used for text searching
are usually compressed as well [16,30,38]. One obvious
difference between a bitmap compression method and
a compression method for inverted indices is that they
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are designed to represent different types of data. A bit-
map compression scheme represents bitmaps (0s and 1s),
while a compression scheme for an inverted index gener-
ally compresses differences between successive document
identifiers or term frequencies. The primary use of the
compressed data in an inverted index is to reconstruct
the document identifiers. For this reason, the compres-
sion methods designed for the inverted index used to
be measured only by their compressed sizes. However,
recently there has been some emphasis on compute effi-
ciency as well [2,30]. In particular, Anh and Moffat have
proposed a Word-Aligned Binary Compression for text
indexing, which they call slide [2]. We note that their
primary design goal was to reduce the compressed sizes
rather than improving the search speed. Making the de-
compression (i.e., reconstruction of the document identi-
fiers) more CPU friendly is only a secondary goal. They
achieve this by packing many code words that require
the same number of bits into a machine word. Because
all these code words require the same number of bits,
they save space by only representing their sizes once. In
contrast, WAH imposes restrictions on lengths of the bit
patterns that can be compressed so that the bitwise log-
ical operations can be performed on compressed words
directly. In particular, a WAH code word is always a
machine word.

Because of their differences, it is usually not efficient
to use a bitmap compression method to compress doc-
ument identifiers or a compression method for the in-
verted index to compress bitmaps. What we propose to
do in this paper is to turn a term-document matrix (a
version of the inverted index) into a bitmap index, then
compress the bitmap index. This approach allows us to
make the maximum use of the efficient bitmap compres-
sion method WAH.

In this paper, we apply compressed bitmap indices
to inverted files. Such an approach was not considered
viable in the past for indexing over a large number of
terms, since bitmap indices were considered efficient only
for searching attributes with low cardinality. However,
the WAH-compressed indices have been shown to be very
efficient even in the case of high cardinality attributes,
and therefore are a good candidate for supporting search
within text attributes in databases. We show in this pa-
per that such indices are indeed very efficient when used
for inverted file structures. A great advantage of using
this method for text data is that it allows the WAH-
based bitmap indices to combine efficiently queries for
both numeric and text data. This is accomplished by
simply applying logical operations on the resulting bit-
maps of both types of attributes after the individual
attributes are searched. Extensive performance experi-
ments shown in this paper confirm this methodology.
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Table 1 Schema of database table EnronUniversal.

Column Name Explanation

mid Message 1D
senderFirstName Only for Enron employees
senderLastName Only for Enron employees
senderEmail Email of any sender
recipientFirstName  Only for Enron employees
recipientLastName  Only for Enron employees
recipientEmail Email of any recipient
day Day email was sent

time Time email was sent
rtype Information about how message

was sent: “TO”, “CC”, “BCC”

Table 2 Schema of database table EnronMessage.

Column Name Explanation

mid Message 1D

subject Subject of email message

body Body of email message

folder Name of folder used in email client

3 Case Study: The Enron Data Set

The Enron data set, a large set of email messages, is
used by various researchers in the areas of textual and
social network analysis. The data set was made public
by the Federal Energy Regulatory Commission during
the criminal investigation into Enron’s collapse in 2002.
This data set is particularly attractive for studies on in-
dex data structures since it contains numerical, categor-
ical and text data. Our case study is based on the data
prepared by Shetty and Adibi [23] and contains 252,759
email messages stored in four MySQL tables, namely
EmployeList, Message, RecipientInfo and Reference
Info.

In early performance experiments comparing Fast-
Bit with MySQL, we showed that FastBit significantly
outperforms MySQL for queries over numerical and cat-
egorical values [27]. One of the key findings of these ex-
periments was to materialize parts of the tables in order
to avoid expensive join operations during query process-
ing.

In this paper we go one step further and also evaluate
the performance of bitmap indices for Boolean queries
over text. In particular, we search the subject and the
body of the email messages for certain terms. In order
to allow queries over both numerical and text data, we
chose a different database schema design than originally
proposed by Shetty and Adibi [23]. Rather than using 4
tables, our database schema only uses two tables called
EnronUniversal and EnronMessage (see Tables 1 and
2).

The table EnronUniversal contains both numeri-
cal and categorical values, whereas EnronMessage only
contains text data. EnronUniversal is a materializa-
tion of the parts of the columns from the three origi-
nal tables EmployeeList, Message and RecipientInfo.
EnronMessage contains a subset of the columns of the
original table Message. The advantage of this schema de-
sign is to use bitmap indices for query processing for both
tables. The attribute mid in EnronMessage is a foreign
key to the attribute of the same name in EnronUniversal
and is used to join message text attributes with corre-
sponding numerical and categorical data.

Let us briefly point out one particular point about
the content of table EnronUniversal. The first and last
names of both the sender and the recipients are only
available for some Enron employees. However, the full
email addresses of the senders and recipients are avail-
able for all messages. This artifact might be due to a
problem in the original collection of the email messages.

4 Extending Bitmap Indices to Support Full
Text Search

In the past we successfully used FastBit’s compressed
bitmap index technology to efficiently query large sets
of numerical data [27]. In this section we will describe
how to extend bitmap indices to support Boolean queries
over text data.

Indexing text usually requires the following two steps:

— Text parsing and term extraction
— Index generation

In our framework we use Lucence [11] for text pars-
ing and term extraction. The output of Lucene is a term-
document list which is an inverted index that contains
all identified terms across all documents and a set of doc-
ument idenfiers (IDs) of each document containing the
term. Once the term-document list is obtained, we con-
vert the term-document list into a bitmap index consist-
ing of a dictionary of the terms and a set of compressed
bitmaps.

We will demonstrate our indexing framework with a
simple example illustrated in Figure 2. Let us assume we
have a database table called EnronMessage that contains
the four columns mid, body, subject and folder. The
column mid contains the Message ID used in the MySQL
version of the Enron e-mail message dataset [23]. It has
integer values. The columns body, subject and folder
contain text values. In order to use Lucene to identify the
terms contained in the messages, we store each message
body in a separate file with the mid as the file name. In
Figure 2 separation is indicated by “bodyl”, “body2”,
etc. Lucene is used to parse each file and extract the
terms from the documents. The output from Lucene is a
list of terms, and for each term a list of files containing
the term (the inverted list). Since the file names are the
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Fig. 2 Framework for Indexing Text with FastBit.

mids, we effectively produce a list of mid values for each
term. For instance, the term “berkeley” appears in the
messages with the IDs 1, 3, 5 and 8. Similarly, the term
“columbia” appears in the messages with the IDs 5, 7, 8
and 9.

The next step is to build the bitmap index. However,
before we can index the identified terms with bitmaps,
we need to introduce an auxilary data structure, called a
dictionary, that provides a mapping between the terms
and the bitmaps. In our example, “berkeley” is repre-
sented by the numerical value 1, “columbia” by the value
2 and “enron” by the value 3 (see “dictionary” in Fig-
ure 2). Next, the message IDs originally stored in the
term-document lists can be encoded with bitmaps. For
instance, the bitmap representing “berkeley” contains
the bit string 101010010 to indicate that “berkeley” is
contained in the messages 1, 3, 5 and 8. Similarily, the
bitmap representing “columbia” contains the bit string
000010111 to indicate that “columbia” is contained in
the message 5, 7, 8, and 9. In other words, a bit is set
to 1 if the respective term is contained in a message,
otherwise the bit is set to 0.

Using compressed bitmap indices for storing term-
document lists efficiently supports Boolean queries over
terms. For instance, finding all emails where body con-

! In general, the document identifiers may not be directly
used as row numbers for setting the bits in the bitmaps. We
may actually need an additional step of mapping the doc-
ument identifiers to row numbers. This additional level of
operational detail is skipped for clarity.
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tains the terms “berkeley” and “columbia” requires read-
ing two bitmaps and combining them with a logical AND
operation. As we showed in the past, these basic bitmap
operations are very efficient.

5 Integrating FastBit into MonetDB

We decided to integrate FastBit into a relational database
for two reasons. First, as part of a relational database
management system, FastBit would benefit from the sys-
tem’s ability to undertake tasks beyond indexing and
querying, such as performing joins between tables and
enforcing consistency in the data. Second, by adding
FastBit to a relational database system, relational data
can benefit from FastBit’s high performance when quer-
ies or subqueries are of a form that can use a FastBit
index. With the addition of text searching to FastBit,
adding FastBit to a relational system also provides a
high performance tool for integrating Boolean queries
over text with more traditional database queries.

The database system we targeted is MonetDB, an
open source, in-memory database developed by CWT [17].
In this section we will begin by describing MonetDB and
our reasons for choosing it. We will then present the de-
tails of our integration of FastBit into MonetDB.

5.1 Why MonetDB?

MonetDB is our target relational database system for
FastBit integration because of its data layout. Unlike
most databases, such as MySQL or Oracle, that use
horizontal or row-based storage, MonetDB uses vertical
partitioning also known as a decomposed storage model
(DSM). See Figure 3 for a comparison of the storage
techniques. In a database with row-based storage, en-
tire records are stored contiguously, thus making access
to entire records efficient, but wasting I/O and memory
bandwidth when only a small subset of attributes is re-
quired [4,25,28]. For instance, in Figure 3b the records
are read right to left, top to bottom during a scan even
if the query is interested in only attribute a2 in each
record. That is, the entire record is loaded even though
only a small part of it is needed. With a DSM, single at-
tributes are stored contiguously (Figure 3c) resulting in
efficient I/O that involves only the required attributes.
MonetDB’s data layout is therefore analogous to Fast-
Bit indexing, where each attribute is indexed and stored
separately.

The MonetDB SQL Server is a two-layer system [17].
On the bottom is the MonetDB kernel that manages the
actual data. At this layer, the data is not stored as a
complete relational table, but is decomposed into sepa-
rate Binary Association Tables (BAT) — one for each at-
tribute. Each entry in the BAT is a two-field record con-
taining an object identifier (OID) and an attribute data
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al a2 a3
a11 a21 a31
a12 a22 a32

aly, | a2, | adn
(a) Logical Table
Each record (a row) has three attributes

{al1, a21, a31}
{a12, a227 (132}

{aln, a2, a3,}
(b) Horizontal Partitioning
Attributes from the same record
are stored contiguously

aly a2 a3
a12 a22 a32
aly, a2n a3n

(c) Vertical Partitioning
Same attribute from different records
are stored contiguously

Fig. 3 Horizontal vs. Vertical Partitioning

value. All attribute values for the same relational tu-
ple will have the same OID even though they are stored
in separate BATs. Interaction with these BATSs is ac-
complished via the Monet Interpreter Language (MIL),
which can be extended with new commands as we de-
scribe in Section 5.2.4.

The SQL module sits atop the MonetDB kernel and
provides an SQL interface for client applications. Though
the relational tables are actually decomposed into many
BATSs, the SQL module allows users to interact with the
data in the normal relational manner. The SQL module
is responsible for transaction and session management
as well as transforming SQL queries into MIL code to
be executed by the MonetDB kernel. With the help of
the MonetDB developers at CWI, we decided it would
be best to integrate FastBit into the SQL module rather
than the underlying MonetDB kernel. In the following
sections we will give an overview of the changes required
to integrate FastBit into MonetDB/SQL. Note that all
changes described occurred within the SQL module; the
MonetDB kernel was left unchanged. The MonetDB ker-
nel was version 4.12 and the SQL module was version
2.12. Both are available from the MonetDB website at
http://monetdb.cwi.nl/.

5.2 Nuts and Bolts

Integrating FastBit into MonetDB’s SQL module (Mon-
etDB/SQL) required four tasks: (1) addition of the

MySQL:

SELECT COUNT (*)

FROM EnronMessage m, EnronUniversalFB u
WHERE MATCH(body) AGAINST(’HAVE’)

AND day < 20010101 AND m.mid = u.mid

MonetDB:

SELECT COUNT (*)

FROM EnronMessage m, EnronUniversalFB u
WHERE body = ’have’

AND dday < 20010101 AND m.mid = u.mid

Fig. 4 The same query written for MySQL and MonetDB.
In the case of MonetDB, we will assume that a FastBit index
exists on the text attribute. If not, this query will test for
the condition where attribute body equals ’have’, rather than
testing for the presence of the term ’have’ in the body.

FASTBIT keyword to MonetDB’s SQL parser, (2) func-
tionality to allow MonetDB to send data to a FastBit
library for index construction, (3) rules to recognize sub-
queries that are FastBit eligible during query optimiza-
tion, and (4) integration of FastBit and MonetDB ex-
ecution so that a unified query result is produced by
MonetDB. In the following subsections we will describe
each of these tasks.

5.2.1 SQL To enable FastBit index use within Mon-
etDB, the keyword “FASTBIT” was added to the parser.
FastBit indices may be created using the standard
“CREATE INDEX” syntax: “CREATE FASTBIT INDEX
index name ON table_name (a;,as,...)”, where the ay
are the attributes within the table on which an index
should be created. The order of the attributes does not
matter, unlike with other index types.

MonetDB does not have a text searching capability
such as MySQL’s MATCH (...) AGAINST (...) built into
its SQL parser. To overcome this problem, we chose to
override the “=” operator in the WHERE clause. When
“=” is used with a column that is a text attribute, i.e., a
character blob but not a fixed or variable length string,
we interpret that as a Boolean query for the presence of
a term in that attribute. To search for multiple terms,
several equality expressions may be combined using the
normal SQL logical operators such as “AND” and “OR”.
Figure 4 shows an example of the syntax we used for
doing full text searching within MonetDB with FastBit.

5.2.2 Building Indices Building FastBit indices within
MonetDB begins with the parsing and execution of the
“CREATE FASTBIT INDEX” command described in the pre-
vious section. First, the types of attributes that the user
specified for the index are checked because FastBit sup-
ports only a subset of the data types found in MonetDB.
Currently, FastBit can index integers, floating point num-
bers, character strings (variable and fixed length), and
large text objects. The SQL Date type and user-defined
data types are examples of attribute types that FastBit



cannot yet index. If all of the attribute types are ac-
ceptable, the data for each attribute is read from Mon-
etDB’s storage and passed to the FastBit library, which
builds a compressed bitmap index over the attribute.
The OIDs for the indexed records are also sent to Fast-
Bit, but they are not indexed. Instead they are stored
and are used during query execution (see Section 5.2.4)
to translate a FastBit result into a form that is usable
by MonetDB/SQL.

As data is added or modified in the the underlying
indexed relations, FastBit indexes must be updated or
rebuilt. We trap for these events within MonetDB/SQL,
but handle them in only a naive way. Improving the
update, delete, and append performance is future work.

5.2.3 Recognizing FastBit Eligible Queries Recognizing
queries that can benefit from FastBit is a more challeng-
ing piece of the implementation. FastBit cannot support
as rich a set of operations, such as joins, that a full-
fledged database system like MonetDB can. Therefore,
FastBit cannot answer an entire query by itself, but it
can dramatically speed important parts of query pro-
cessing. The key, then, is to determine what parts of the
query, if any, FastBit can execute.

When MonetDB receives a query from a client it per-
forms the same steps as most database management sys-
tems: the query string is parsed and the parse tree is
used to generate a query plan, which can then be op-
timized and executed. In MonetDB an additional final
step transforms the query plan into MIL code that is
then sent to the MonetDB kernel for execution.

We use the tree representing the query plan (see Fig-
ure 5) to identify subqueries that FastBit can execute.
In the query plan tree, subqueries are represented by
subtrees, so our task was actually to identify appropri-
ate subtrees. Instead of using the final tree, we found it
easier to perform our FastBit subquery identification on
an intermediate version of the tree-one that contains all
of the necessary relational operations but that has not
yet been made into a binary tree. This was convenient
because a WHERE clause involving multiple attributes can
be found in a single node at this stage. Identifying a sub-
query answerable by FastBit requires finding a subtree
with the following properties:

1. The subtree must involve only one table. FastBit does
not perform operations between tables such as joins.

2. The subtree must involve only attributes on which a
FastBit index has been created.

3. The operations involving those attributes must be
operations that FastBit can perform. For instance,
SQL supports similarity matching, i.e., the LIKE com-
parison, but FastBit does not.

We use rules about the structure of the tree, including
node types, to locate subtrees that satisfy the above re-
quirements. When such a subtree is found, we replace it
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with a new node of type FastBit that contains the infor-
mation necessary to execute a FastBit query equivalent
to the subtree.

During the MIL code generation phase, the query
plan tree is traversed and appropriate code is generated
for the nodes encountered. We have extended MIL with a
fastbit_execute command which is essentially a wrap-
per for a call to the FastBit library with some extra code
to translate the FastBit result into a form that can be
used by MonetDB. When a FastBit node is encountered
during code generation, the FastBit command is created
and supplied with the name of the index and attributes
to use in the query as well as the location of the con-
stants to be used in any comparisons.

5.2.4 Integrating FastBit and MonetDB Execution Fast-
Bit execution within MonetDB/SQL query execution be-
gins when a fastbit_execute MIL command is encoun-
tered. Figure 6 shows a fastbit_execute MIL code snip-
pet.

A call to fastbit_execute, as shown in Figure 6,
provides the FastBit library with the following informa-
tion. The first parameter is a data structure that con-
tains system wide information and is a standard com-
ponent of most commands. The second parameter is the
name of the index, in this case “eu_fb”. The third pa-
rameter contains the query string for FastBit to process;
“0%s” is a placeholder for the constants specified as var
A0 and var A1l in this example. The fourth parameter
tells FastBit how many attributes are in the query, and
variables containing constants for comparison with those
attributes follow in the next positions. This command
can handle queries with any number of attributes.

The FastBit execution wrapper constructs a FastBit
query from the information provided in the fastbit_
execute command. This query returns an array that
contains the OIDs of tuples that satisfy the query. These
OIDS that were stored alongside the FastBit indices (Sec-
tion 5.2.2) are the key to integrating the FastBit result
into the larger MonetDB/SQL query plan. The original
query plan would have returned a BAT containing the
OIDs satisfying the subquery represented by the tree,
so in order to integrate the FastBit result into Mon-
etDB/SQL, the fastbit_execute command merely has
to return a similarly constructed BAT. We do this by
allocating a temporary BAT. We then store the OIDs
into the BAT and return it as the result of the com-
mand’s execution. For example, in Figure 6, when the
fastbit_execute command completes, var s7 will be
a BAT containing the OIDs of the tuples which satisfied
the query sent to FastBit.

6 Experiments

This section contains a discussion of our experimental
results and demonstrates that adding compressed bit-
map indices to a relational database system enables high
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Fig. 5 A query plan generated by MonetDB for answering a query over one attribute. If there is a FastBit index on the
attributes, then the right half of this plan can be replaced by one FastBit operation.

var A0 := "john.smith@enron.com";

var A1 := int("20010101");

var s8 := AOQ;

var s9 := Al;

var s7 := fastbit_execute(myc, "eu_fb",

"%s = senderemail AND dday < ¥%s", 2, s8, s9);

<0ther MIL Commands>

Fig. 6 An MIL code snippet showing FastBit execution
within MonetDB via the fastbit_execute command. The
use of FastBit does not require any modification to the query
execution following the FastBit command. That is, the result
of the FastBit command is of the same form as the result that
would have been generated by the subplan that it replaced.

performance, integrated querying of numerical and text
data.

The first two parts of this section (6.1 and 6.2) present
some statistics about the term distribution in our text
data as well as the size and cardinality of the bitmap
indices constructed for all attributes in the Enron Data
Set. The remainder of the section presents the exper-
imental results. The experiments compare MySQL, a
popular open-source database management system sup-
porting text searching, a stand-alone FastBit client, and

MonetDB integrated with FastBit. The experiments are
broken down into three main areas: (1) queries over only
numerical and categorical data, i.e., traditional relational
data, (2) queries over only text data, and (3) queries
across both numerical and text data involving a join be-
tween the two data sources.

Each query in the following experiments was issued
both as a count query and as an output query, terminol-
ogy we will use throughout this section. A count query
returns only the number of hits, that is, the SQL SELECT
clause contains SELECT COUNT (*). An output query re-
trieves data values associated with the tuples in the
result set. These two types of queries cover important
classes of queries, namely those that generate statistics
about data and those that retrieve sets of values match-
ing the query conditions. Also note that all performance
graphs are shown with a log-log scale.

All experiments were conducted on a server with dual
2.8 GHz Pentium 4 processors, 2 GB of main memory,
and an IDE RAID storage system capable of sustaining
60 MB/sec for reads and writes. Before we executed each
set of 1000 queries, we unmounted and remounted the
file system containing the data and the indices as well
as restarted the database servers in order to ensure cold
cache behavior.
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Table 3 Size of the raw data compared with the size of
compressed bitmap indices for each column of the table
EnronUniversal. For the categorical values also the size of
the dictionary is given.
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Table 4 Size of the raw data and the term-document list
(td-list) compared with the size of compressed bitmap in-
dices including the dictionary for each column of the table
EnronMessage.

Column Card. Data Dict. Bitmap Column Card. Data  td-list Dict. Bitmap
[MB] [MB] [MB] [MB] [MB] [MB] [MB]

mid 252,759 8.26 8.26 mid 252,759 1.01 8.09

senderFirstName 112 7.21  0.0007 0.14 subject 38,915 7.56 8.20 0.31 5.23

senderLastName 148 7.70  0.0001 0.14 body 1,247,922 445.27 245.57 16.92 121.72

senderEmail 17,568 48.00 0.4336 1.41 folder 3,380 20.98 8.09 0.04 0.14

recipientFirstName 112 7.20  0.0007 0.14

recipientLastName 148 7.52  0.0001 1.40

recipientEmail 68,214 47.78 1.5454 13.69

day 1,323  8.26 0.74 we use less than 100 bytes per term indexed. This result

time 46,229 8.26 3.24 clearly shows that the size of compressed bitmap indices

rtype 3 645 0.0001 0.49 is reasonably small even for indexing term-document

6.1 Data Statistics

The Figures 7a and 7b show the term frequency distri-
butions of the “body” and the “subject” of the Enron
emails. The terms are extracted with Lucene. Note that
both distributions match Zipf’s law as commonly ob-
served in many phenomena in nature. The total number
of distinct terms in the message body is more than 1.2
million. The total number of distinct terms in the mes-
sage subject is about 40,000.

6.2 Size of Bitmap Indices

Table 3 shows the size of raw data compared with the
size of the compressed bitmap indices for each column
of the table EnronUniversal. The table also shows the
attribute cardinalities of the respective columns to bet-
ter demonstrate the potential size of the indices. Apart
from the index size for the column mid, the sizes of the
compressed bitmap indices are much smaller than the
raw data. Consider, for instance, the size of the bit-
map index for the column recipientEmail which has
an attribute cardinality of nearly 70,000. Even for such
a high-cardinality attribute, the size of the compressed
bitmap is only about 29% of the raw data. For the col-
umn senderEmail, which has a lower attribute cardinal-
ity, the size of the bitmap index is only about 3% of the
raw data.

Table 4 shows the size of the compressed bitmap
indices for the table EnronMessage, i.e. the table that
stores the text data. In addition to the size of the raw
data, we also provide the size of the uncompressed term-
document list. Let us consider the index size for the
email body, which contains more than 1.2 million dis-
tinct terms. The size of the compressed bitmap index is
about half the size of the term-document list, which in
turn is about half the size of the raw data. On average,

lists with very high cardinalities.

6.3 Query Performance for Numerical and Categorical
Values

In this section we evaluate the performance of FastBit
for querying numerical and categorical values of the ta-
ble EnronUniversal. We performed one, two, and three
dimensional queries over the table. In this section we will
begin with a brief comparison of MonetDB with FastBit
against MonetDB without FastBit. Then we will com-
pare the performance of MySQL, MonetDB with Fast-
Bit, and the FastBit stand-alone client for both the count
and output queries.

6.3.1 MonetDB With and Without FastBit Figure 8
shows the performance of MonetDB with and without
FastBit indices for one, two, and three-dimensional count
queries. In many, but not all cases, MonetDB with Fast-
Bit outperforms MonetDB without FastBit. A key to un-
derstanding these performance graphs is to recall from
Section 5.2.4 that integrating the FastBit query result
into MonetDB requires copying the OIDs returned by
FastBit into a BAT that MonetDB can understand. As
the total number of hits increases, more copying is re-
quired. In Figures 8a and 8b the effect of this copying
is evident as the number of hits becomes very large.

Figure 8b, a two-dimensional query, demonstrates
FastBit’s ability to improve query performance. Whereas
MonetDB performs selection over two BATs and joins
the results, FastBit can directly combine the indices of
both attributes to answer the query. The three- dimen-
sional query shown in Figure 8c shows MonetDB with
FastBit to be better or about as good as MonetDB with-
out FastBit.

6.3.2 Count Queries After evaluating the performance
of integrating FastBit with MonetDB, we will now com-
pare the performance of MySQL, FastBit and
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MonetDB/FastBit for queries over the table Enron-

Universal. The first set of experiments shows one, two,

and three dimensional count queries (see Figures 9a to

c). As already previously stated, for each experiment we

executed 1000 queries with different equality conditions.
Consider, for instance, the query:

SELECT count (*)
FROM EnronUniversal
WHERE senderEmail’ = :S

In this case, “:S” means that this value varies for
all the 1000 queries. In particular, we have chosen the
top 1000 senders and recipients of emails. The results
clearly show that for these types of multi-dimensional
count queries, FastBit significantly outperforms MySQL.
On average, FastBit is about a factor of 30 faster than
MySQL (for details see the summary Table 5).

6.3.8 Output Queries In the next set of experiments we
measured the performance of output queries (see Fig-
ures 9d to e). These experiments clearly show that Mon-
etDB/FastBit is the overall winner. We also note that
FastBit by itself performs worse than the integrated sys-
tem MonetDB/FastBit. The reason for this behavior of

FastBit is relying on its bitmap indices for the retrieval
of string values. This approach is not efficient because
the index size is larger than the size (number of bytes)
of the selection. In our tests, the number of hits in join
queries is not more than 100,000, but the index sizes
are on the order of megabytes. The approach used by
MonetDB, which directly accesses the raw data is more
efficient.

In summary, these results underline the performance
advantage of integrating FastBit with MonetDB.

6.4 Query Performance for Text Searching

In this section we evaluate the performance of Fast-
Bit’s Boolean text search capability against MySQL’s
full-text index based on inverted files. All experiments
measure the response time for retrieving the document
IDs (emails) that match a certain search criterion. Note
that FastBit does not perform any scoring operation for
ranking the query results.

For the query conditions we chose the top 1000 most
frequent terms. Using the top 1000 most frequent terms
is also “interesting” from a text analysis point of view
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Fig. 10 Count queries on the subject and body attributes of the table EnronMessage. A summary of the performance

measurements is given in Table 6.
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since these terms are more discussed among people and
might thus have a higher semantic meaning.

Figure 10 shows the response times for 1000 Boolean
text queries over the subject and the body of the email
messages from the Enron data set. Note that 10a searches
for one term contained in the message subject while the
query depicted in Figure 10b searches for two terms.
Similarly, Figures 10d, 10e, and 10f show one, two, and
three term queries for the message body, respectively.

FastBit is about a factor of 500 faster than MySQL
for Boolean queries over the message subject (for details
on the total query executation times see Table 6). For
Boolean queries over the message body, the performance
improvement of FastBit over MySQL is on average about
a factor of 30 (see rows 4 to 6 in Table 6).

The graph in Figure shows the performs of quer-
ies over body and subject. This query is particularly
interesting since it searches for terms in two different
columns. The results show that for queries with a lower
number of hits, FastBit is the winner. As the number of
hits increases, the integrated system MonetDB/FastBit
shows the best performance.

6.5 Query Performance for both Numerical and Text
Data

Our last set of experiments is the most challenging be-
cause it requires a join operation over the tables Enron
Universal and EnronMessage. Note that FastBit by itself
currently does not support join operations so we imple-
mented a simple sort-merge join algorithm outside of
FastBit. In particular, a join query over two tables con-
sists of four FastBit queries. The first query evaluates
the query condition on the table EnronUniversal. Anal-
ogously, the second query evaluates the query condition
on the table EnronMessage. Next, the lists of resulting
message IDs (mids) of both queries are sorted and inter-
sected to find the common ones. The list of common mids
is then sent back as two queries in the form of “mid IN
(12, 35, 89, ...).” Finally, the desired columns are
retrieved from the two tables. In addition to the slow
retrieval time for FastBit, this ad hoc join procedure is
slow because the need to parse the long query string
involving the mids.

For count queries (see Figure 11) FastBit is again the
most performant strategy. We also note that the per-
formance of the integrated system MonetDB/FastBit is
only slightly worse.

As expected from our previous results, for output
queries, the integrated system MonetDB/FastBit per-
forms the best (see Figure 12).

6.6 Summary of Performance Results

A summary of all the results is presented in Tables 5,
6 and 7. These tables show the total time for running
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Table 5 Total time in seconds for running 1,000 queries
against the table EnronUniversal. The first set of times is
for count queries. The second set is for select queries. This
table is a summary of the results presented in Figure 9.

MySQL FastBit MonetDB/FastBit
Fig. 9a 5.17 0.17 1.53
Fig. 9b 51.56 1.29 2.73
Fig. 9c 30.84 1.57 3.19
Total time 87.57 3.03 7.45
Speedup 28.9 11.75
Fig. 9d 47.66 181.64 6.35
Fig. 9e 53.17 95.93 5.86
Fig. of 30.90 2.84 3.30
Total time 131.73 280.41 15.51
Speedup 0.47 8.49

Table 6 Total time in seconds for running 1,000 count quer-
ies against the table EnronMessage. This table is a summary
of the results presented in Figure 10.

MySQL FastBit MonetDB/FastBit
Fig. 10a 324.79 0.58 1.56
Fig. 10b 311.11 0.58 1.45
Fig. 10c 41.08 15.68 12.68
Fig. 10d 532.12 13.34 13.32
Fig. 10e 518.70 18.06 15.71
Fig. 10f 515.64 20.66 17.51
Total time  2243.44 68.90 62.23
Speedup 32.56 36.05

1000 queries against various tables as well as the speedup
factors of FastBit and MonetDB /FastBit with respect to
MySQL.

7 Conclusions

We have investigated a way of using compressed bitmap
indices to represent the commonly used term-document
matrix to support Boolean queries on text data. By us-
ing a compute-efficient compression technique, we not
only are able to keep the indices compact but also make
it possible to answer Boolean queries very efficiently. In
our detailed experimental study we show that our bit-
map index technology called FastBit answers Boolean
count queries over text data about 30 times faster than
MySQL.

To further extend the functionality of FastBit, we
have also integrated our technology with the open-source
database management system called MonetDB. The ad-
vantage of this integration is that MonetDB can leverage
an efficient text search capability for Boolean queries.
Analogously, FastBit’s benefits from the integration is
full support of the SQL interface that was previously
not available in FastBit. Our performance experiments
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Fig. 11 Integrated numerical and text count queries. These queries are shown in the format used by MySQL. A summary of

the performance measurements is given in Table 7.

demonstrate that the integrated system significantly re-
duces the time required to answer join queries over both
numerical and text data. It addition, the combined sys-
tem shows significant performance improvements for re-
trieving string values subject to a multi-dimensional query
condition.

The work presented in this paper extends the Fast-
Bit bitmap index technology to efficiently query both
numerical and text data. Our current research focused
on Boolean queries on text. In the future we will inves-
tigate the feasibility of using compressed bitmap indices
for other types of text searches such as rank or simi-
larity queries. Another avenue for further research is to
compare the compression techniques used for bitmap in-

dices with the compression techniques used for inverted
indices.
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assistance during the integration of FastBit into Mon-
etDB.
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