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ABSTRACT 
In many applications, the ability to monitor the output of a capacitive discharge 

circuit is imperative to ensuring the reliability and accuracy of the unit. This monitoring 

is commonly accomplished with the use of a Current Viewing Transformer (CVT). In 

order to calibrate the CVT, the circuit is assembled with a Current Viewing Transformer 

(CVR) in addition to the CVT and the peak outputs compared. However, difficulties 

encountered with the use of CVRs make it desirable to eliminate the use of the CVR from 

the calibration process.  
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This report describes a method for determining the calibration factor between the current 

throughput and the CVT voltage output in a capacitive discharge unit from the CVT 

ringdown data and values of initial voltage and capacitance of the circuit. Previous linear 

RLC fitting work for determining R, L, and C is adapted to return values of R, L, and the 

calibration factor, k. Separate solutions for underdamped and overdamped cases are 

presented and implemented on real circuit data using MathCad software with positive 

results. This technique may also offer a unique approach to self calibration of current 

measuring devices. 
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1. Introduction 
 The ability to monitor the outputs of Capacitive Discharge Units (CDUs) in Firing 

Sets or Fuzes is paramount to determining whether they are functioning reliably and 

accurately over time. In its simplest form, a CDU is a charged capacitor connected to a 

resistive and inductive load through a switch as seen in Figure 1. When testing these 

devices, the current profile is of the most interest and therefore a Current Viewing 

Transformer (CVT), as seen in Figure 2, is used.  

 
 

 

 

 

 

 

Figure 1: CDU circuit 

 
 

 

Figure 2: Shielded and Unshielded CVTs 
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 The current process of calibrating the Volt/Amp ratio of the CVT’s output is 

fairly straightforward. The circuit is constructed using a Current Viewing Resistor 

(CVR), a highly accurate low value resistor or resistor network, as the test load. The 

switch is closed and the current profiles are recorded by the CVR and CVT are taken. An 

example can be seen in Figure 3 below. The CVR provides a known value for the current 

peak, 

R
V

I peak
peak = ,     (1) 

which is then used to find the Volt/Amp ratio of the CVT, 

peak

peakofCVT

I
V

ratio
Amp
Volt = .   (2) 
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Figure 3: Example calculation using CVR and CVT data 
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 The above procedure has its limitations however. The CVRs, shown in Figure 4, 

used are expensive and can degrade or burn open with extensive use. If too much current 

is put through the CVR, the resistive value of it drifts up and it will eventually become an 

open. Also, the values are typically so small, on the order of .005Ω, that it can be difficult 

to measure them accurately to verify their value.  

 

Figure 4: Current Viewing Resistor 

 

 These features make it desirable to eliminate the CVR from the calibration 

procedure. Therefore, if the system is considered to be a 2nd order RLC system with an 

ideal switch, then just the output of the CVT could be used to calibrate the system. With a 

known capacitance and initial capacitor voltage, the rest of the system parameters could 

be determined, the theoretical current peak could be found, and the CVT could then be 

calibrated.  

 Unfortunately, because the typical resistances of the load are small, on the order 

of .1Ω, the resistance and inductance of the rest of the circuit need to be taken into 

account. The values must be either measured or calculated from other data. Measuring 

the characteristics of every circuit component once it is laid out is not an efficient option. 
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 In a previous SAND report (SAND2002-1744)1, a computational solution is 

presented that returned values of R, L, and C for both under and overdamped RLC 

circuits based on a least squares fit to circuit output waveform data. This work assumes 

linear circuit elements. From this work, we expand its application to CVT calibration and 

circuit value determination from a given input voltage, capacitance, and CVT output 

waveform. 

 A technique for determining nonlinear R, L, and C circuit components is treated 

in the report SAND2002-01152. 

2. Analysis 
 Given specified values of C, V0, and circuit voltage ringdown data, a calibration 

factor, k, is sought such that, 

     )()( tVkti =×      (1) 

where i(t) is the transient current, and V(t) is the voltage output read at the CVT element. 

The approach is to fit experimental voltage output data to equations of current for both 

the underdamped and overdamped cases. The parameters of the fit are used to determine 

k. 

2.1 Underdamped Case 

In the underdamped case, the k is found using a least squares fit to the data 

corresponding to the underdamped solution for current, )(ti , 

( )te
L

V
ti n

t

n

n 2

2

0 1sin
1

)( ζω
ζω

ωζ −
−

= − .   (2) 

From Eqn.(1), )(tV  is, 



 - 13 – 

( )te
L

Vk
tV n

t

n

n 2

2

0 1sin
1

)( ζω
ζω

ωζ −
−

⋅
= − ,   (3) 

or, 

( )te
L

VtV n
t

n

n 2

2
1sin

1
)( ζω

ζω
ωζ −

−

′
= − ,   (4) 

where, 

0VkV ⋅=′ , 

CLn
1=ω , 

L
CR

2
=ζ . 

Eqn.(4) may be re-written as, 

( )tBeBtV tB
20 sin)( 1−=     (5) 

where 0B , 1B  and 2B  are defined by the corresponding elements in Eq. (4). A fit to data 

with Eqn.(5) returns values of 0B , 1B , and 2B . Given values of C , and 0V ; L, R and 

finally k may be determined in terms of these parameters. 

Substituting 2B  into 0B , 

    
2

0 BL
VB
⋅

′
=       (6) 

20 BB
VL
⋅
′

=        (7) 

Substituting ζ  and nω , 1B  becomes, 

L
RB
⋅

=
21       (8) 
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LBR ⋅⋅= 12       (9) 

The same for 2B  yields, 

2

2
2

2

2

2

2

4
1

4
1

L
R

CL
B

L
R

CL
B

⋅
−

⋅
=

⋅
−

⋅
=

 

Substituting Eqns.(7), (8), 

    2
1

202
2 B

CV
BBB −

⋅′
⋅=  

Solved forV ′ , 

    
)( 2

1
2

2

20

BBC
BB

V
+

⋅
=′      (10) 

Thus L and R are determined by, 

)(
1

2
2

2
1 BBC

L
+

= ,     (11) 

)(
2

2
2

2
1

1

BBC
BR
+

⋅
=      (12) 

From 0VkV ⋅=′ , k is determined as, 

     
0V

Vk
′

=      (13) 

)( 2
1

2
20

20

BBCV
BB

k
+⋅

⋅
=      (14) 

 Given experimental data, 0B , 1B  and 2B  are determined from a least squares fit 

of the data to Eqn. (5) and thus R , L , and k are found from Eqns. (11), (12), and (14) 

respectively.   
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2.2 Overdamped Case 

As before, in the overdamped case the k is found using a least squares fit to the 

data corresponding to the overdamped solution for current, 

⎥
⎦

⎤
⎢
⎣

⎡
−

−⋅⋅
=

⎟
⎠
⎞⎜

⎝
⎛ ⋅+−−⎟

⎠
⎞⎜

⎝
⎛ ⋅−− tt

n

nnnn ee
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V
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From Eqn.(1), )(tV  is, 
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or, 
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as before, 

0VkV ⋅=′  

CLn
1=ω , 

L
CR

2
=ζ . 

Eqn.(17) may be re-written as, 

( ) ( )[ ]tBtB eeBtV 21
0)( −−=     (18) 

where 0B , 1B  and 2B  are defined by the corresponding elements in Eq. (17). A fit to data 

with Eqn.(18) returns values of 0B , 1B , and 2B . Given values of C , and 0V ; L, R and 

finally k may be determined in terms of these parameters. 

Summing and subtracting 1B  and 2B  yields, 
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    12 2
21 −⋅⋅=+ ζωnBB     (19) 

nBB ωζ ⋅⋅=− 212      (20) 

Eqn.(19) may be substituted into 0B , 

)( 21
0 BBL

VB
+
′

=      (21) 

Substituting ζ  and nω , Eqn.(20) becomes, 

 
L
RBB =− 12       (22) 

The same for 2B  yields, 

L
R

CLL
RB

⋅
+

⋅
−

⋅
=

2
1

4 2

2

2  

Substituting Eqn.(22), 

    )(
2
11)(

4
1

12
2

122 BB
CL

BBB −+
⋅

−−=  

Simplified and solved for L , 

    
21

1
BBC

L
⋅⋅−

=      (23) 

Thus R  and V ′  are determined from Eqns.(22) and (21) respectively, 

21

21

BBC
BB

R
⋅⋅

−
= ,     (24) 

21

210 )(
BBC

BBB
V

⋅⋅
+−

=′      (25) 

From 0VkV ⋅=′ , k is determined as, 

    
0V

Vk
′

=       (26) 
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210

210 )(
BBCV

BBB
k

⋅⋅⋅
+−

=      (27) 

 Given experimental data, 0B , 1B  and 2B  are determined from a least squares fit 

of the data to Eqn. (18) and thus R , L , and k are found from Eqns. (23), (24), and (27) 

respectively.   

2.3 Discussion of Method 

2.3.1 Linearity 
This method assumes a linear system. The values of R, L, and C are treated as 

unique constants. In addition, it is assumed that the voltage output of the CVT scales 

linearly with the current throughput of the circuit. Thus, the calibration factor is a unique 

constant as well.  

To preserve this assumption of linearity, it must be assured that the circuit 

behaves in a linear fashion. The two circuit elements that cause the most problems in 

terms of this are the switch and the CVT itself. In our case, we used a switch with a fast 

switching time and a constant impedance once on. Any non-linear effects on the output 

are negligible. The CVT however has a magnetic core inside of it, which introduces non-

linearity into the circuit. By comparing the outputs of linear CVRs and the CVTs it has 

been observed that the CVT tracks the output of the system with a high degree of fidelity 

during the first cycle of an undamped output. Therefore we truncate the data after the 

second voltage peak to ensure that we are staying within this region. 

2.3.2 Fitting the Data 
As with any fitting algorithm, the input data must conform to the system it is 

being fitted to. The data retrieved from an experiment is usually has some noise 
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component. Perhaps a baseline signal exists in a waveform that means the signal begins 

at +X volts and never damps to zero; there may be a trigger delay making t=0 of the 

waveform actually occur at t=X seconds. Inputting such signal data into a computational 

fit will yield erroneous results if not accounted for. Examples are given in Appendices A 

& B. In these examples, the circuit data was first examined in MS Excel. An average 

value was calculated from the tail end of the waveform where the signal had appeared to 

completely damp out and subtracted from the entire waveform as a baseline value. Next 

all data occurring before the point at which the baseline and the waveform coincide was 

deleted such that when the data is input into the MathCad worksheet, the timestamp of 

this new initial data point is subtracted from the timecodes of the rest of the waveform, 

defining the point as t=0. In addition, the data displayed in Appendix A was truncated 

after the second voltage peak due to inaccuracies in the signal shape after this point. 

3. Experimental Results 
In order to test the functionality of this method, a few capacitor discharge test 

circuits were assembled similarly to Figure 1, with a CVR and CVT in line. Once 

charged, the switch was closed and the current profiles as seen by the CVR and CVT 

were recorded. The peak value of the CVT voltage profile was divided by the peak value 

of the CVR current profile to yield the calibration factor k. Then the CVT data was 

processed according to section 2.3.2 and input with the values of capacitance and initial 

voltage into a MathCad worksheet created to fit the B parameters as discussed earlier. 

The parameters are solved algebraically to find V’, resulting in a calibration factor of k 

independent of the CVR data. MathCad worksheets for the under- and overdamped cases 
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run with experimental data are included in Appendices A & B. For the data presented in 

the appendices, the CVR calculated value k was 0.005911. The underdamped and 

overdamped cases returned 0.005936 and 0.00602 respectively which gives percent errors 

of 0.42% and 1.84% respectively in regards to the CVR calibration. These results are 

very promising. 

4. Summary 
Capacitive discharge circuits are an integral part of many systems.  The 

development and maintenance of these systems requires the use of a current monitoring 

device. Expanding upon previous work in least squares fitting RLC discharge circuits, we 

present a method calibrating a CVT for use as a current measuring device, thus 

eliminating the need for a troublesome CVR in circuit development.  

We specifically present Mathcad programs for least squares fitting of data to the 

circuit parameters for both the overdamped and underdamped case. The programs and 

illustrative examples are presented.  The least squares fit to data approach offers the 

advantage of minimizing human interaction/error, minimizes experimental noise, and is 

quite compatible with modern laboratory instrumentation. 
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APPENDIX A: Underdamped Case 

B

1.234 104×

7.891 105×

2.93 106×

⎛⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

=

δi t( )
δB2

Least Squares Fit: P genfit time voltage, B, F,( ):=

Fitted Voltage Curve: volt_fit test( ) F test P,( )0:=

0 5.71 .10 7 1.14 .10 6 1.71 .10 6 2.29 .10 6 2.86 .10 6 3.43 .10 6 4 .10 6
50

0

50

100

voltage

volt_fit t( )

time t,

Parameter Solution: Output:

Vprime
P0 P2⋅

C0 P1( )2 P2( )2+⎡
⎣

⎤
⎦⋅

:= Vprime 13.059=
P

71.944

7.329 105×

2.901 106×

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

=

Lfit
Vprime
P0 P2⋅

:= Lfit 6.257 10 8−×=

Rfit 2 Lfit⋅ P1⋅:= Rfit 0.092=

If Vfit = Vo*k, where Vfit is the intial voltage as derived from the experimental data 
and Vo is the intial voltage as specified (theoretical), k is expressed as:

k
Vprime

V0
:= k 5.936 10 3−×=

Underdamped Data Inputs: 

data
0 1

0
1

2
3

4
5

6
7

8
9

10

8·10    -7 0.8
6·10    -7 4·10    -7

4·10    -7 4·10    -7

2·10    -7 0.4

3·10    -7 0.8
8·10    -7 4·10    -7

6·10    -7 0.4
4·10    -7 0.4

2·10    -7 1.2
2·10    -7 0.8

8·10    -7 1.2

:= Given:

V0 2.2 103×= C0 1.785 10 6−×=

Two-point guesses:

Rguess 0.096= Lguess 6.083 10 8−×=

Data column one 
designated as timetime data 0 0,− data 0〈 〉+:=

Data column two 
designated as voltage
Note: (2X for attenuated 
data)

voltage 2 data 1〈 〉⋅:=

Eq.(5) and partial derivatives.
Assume u in place of B  and s  for t:

Parameter Guesses (as defined by 
corresponding elements in Eqn (4) & (5)):

i t( )

δi t( )
δB0

F s u,( )

u0 e
u1− s⋅

⋅ sin u2 s⋅( )⋅

e
u1− s⋅

sin u2 s⋅( )⋅

s− u0⋅ e
u1− s⋅

⋅ sin u2 s⋅( )⋅

s u0⋅ e
u1− s⋅

⋅ cos u2 s⋅( )⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

:= δi t( )
δB1
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APPENDIX B: Overdamped Case 

Least Squares Fit: P genfit time voltage, B, F,( ):=

Generated Fit Curve: volt_fit time( ) F time P,( )0:=

0 5.71 .10 7 1.14 .10 6 1.71 .10 6 2.29 .10 6 2.86 .10 6 3.43 .10 6 4 .10 6
10

0

10

20

30

40

voltage

volt_fit time( )

time time,

Parameter Solution: Thus L, R and Vprime are solved for:

B0
Lfit

1
C0− P1⋅ P2⋅

:= Lfit 8.776 10 8−×=
P

74.08

1.319− 106×

4.838 106×

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

= B1

B2
Rfit

P2 P1−( )
C0− P1⋅ P2⋅

:= Rfit 0.54=

Vprime P0 P1 P2+( )⋅ Lfit⋅:= Vprime 22.877=

k determined as:
k

Vprime
V0

:= k 6.02 10 3−×=

Difference with underdamped value from App. A: k 0.005936−
k

100⋅ 1.399=

Overdamped Data:

data
0 1

0
1

2

3

4

5

6

7

8

9

2·10    -8 7·10    -7

5·10    -8 0.4

8·10    -8 0.8

6·10    -8 0.8

4·10    -8 0.4

2·10    -8 1.6

4·10    -8 1.6

8·10    -8 2

6·10    -8 2.4

4·10    -8 3.2

:= Inputs:

Given:
V0 3.8 103×= C0 1.785 10 6−×=

Guesses:
Rguess .50:= Lguess 6 10 8−⋅:=

Data column one 
designated as timetime data 0〈 〉 data 0 0,−:=

Data column two 
designated as voltagevoltage data 1〈 〉:=

Eq.(18) and partial derivatives.
Assume u in place of B and s for t: Parameter Guesses (as defined by 

corresponding elements in Eqn (17) & (18)):
i t( )

δi t( )
δB0

F s u,( )

u0 e
u1 s⋅

e
u2− s⋅

−( )⋅

e
u1 s⋅

e
u2− s⋅

−

u0 s⋅ e
u1 s⋅( )⋅

u0 s⋅ e
u2− s⋅( )⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= δi t( )
δB1

B

1.118 104×

1.334− 106×

6.999 106×

⎛⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

=

δi t( )
δB2
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