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Abstract 

We present a case study of performance measurement and modeling of a CCA (Common 
Component Architecture) component-based application in a high performance computing en- 
vironment. We explore issues peculiar to component-based HPC applications and propose a 
performance measurement infrastructure for HPC based loosely on recent work done for Grid 
environments. A prototypical implementation of the infrastructure is used to collect data for 
a three components in a scientific application and construct performance models for two of 
them. Both computational and message-passing performance are addressed. 
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1 Introduction 
The performance of scientific simulations in high performance computing (HPC) environments is 
fundamentally governed by the (effective) processing speed of the individual CPUs and the time 
spent in interprocessor communications. On individual CPUs, codes typically execute floating 
point operations on large arrays. The efficiency of such computations is primarily determined 
by the performance of the cache (in cache-based RISC and CISC processors) and much effort is 
devoted to preserving data locality. Interprocessor communications, typically effected by mes- 
sage passing in distributed memory machines (MPPs and SMP clusters), forms the other source 
of performance issues in HPC. Communication costs determine the load-balancing and scalability 
characteristics of codes and a multitude of software and algorithmic strategies (combining commu- 
nication steps, minimizing/combining global reductions and barriers, overlapping communications 
with computations, etc.) are employed to reduce them. 

The discipline of performance measurement has provided us with tools and techniques to gauge 
the interactions of scientific applications with the execution platform. Typically, these take the form 
of high precision timers which report the time taken to execute sections of the code and various 
counters which report on the behavior of various components of the hardware as the code executes. 
In a parallel environment these tools track and report on the size, frequency, source, destination 
and the time spent in passing messages between processors [l,  2,3].  This information can then be 
used to synthesize a performance model of the application on the given platform - in some cases, 
these models have even served in a predictive capacity [4,5]. 

In order to manage the growing complexity of scientific simulation codes, there has been an 
effort to introduce component-based software methodology in HPC environments. Popular com- 
ponent models like Java Beans [6] and CORBA [7] are largely unsuitable for HPC [8] and a new 
light-weight model, called the Common Component Architecture (CCA) [9] was proposed. The 
principal motivations behind the CCA are to promote code reuse and interdisciplinary collabora- 
tion in the high performance computing community. The component model consists of modular- 
ized components with standard, well-defined interfaces. Since components communicate through 
these interfaces, program modification is simplified to modifying a single component or switching 
in a similar component without affecting the rest of the application. To build a CCA application, 
an application developer simply composes together a set of components using a CCA-compliant 
framework. Details regarding the flexibility, performance and design characteristics of CCA appli- 
cations can be found in [lo]. 

While monolithic applications are hand-tooled under common assumptions and data structures 
to deliver maximum performance, component-based applications are composed out of standalone 
components, an injudicious selection of which can result in a correct but sub-optimal component 
assembly. It thus becomes imperative to be able to classify the performance characteristics and 
requirements of each implementation of a component and to have a generalized means of synthe- 
sizing a composite performance model to judge the optimality of a component assembly. 

While this does not affect the fundamental performance issues in HPC, it does raise new chal- 
lenges. Unlike monolithic codes, component-based software is seldom used exclusively by the au- 
thors of the components themselves and manual instrumentation of the code is impossible. Further, 
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in a CCA environment, the final application is assembled at run time by loading shared libraries [8]; 
thus automatic instrumentation of an executable where a binary is rewritten or instrumented at run- 
time [ 111 has little meaning. Consequently, a non-intrusive strategy for performance monitoring 
is clearly indicated. Further, each component needs to be monitored to collect not only execu- 
tion time and the hardware characteristics, but also the relevant inputs (like the size of mays) that 
determine the data that was collected. These data then need to be synthesized into individual com- 
ponent performance models which then are constituted into a composite performance model for 
the applications using a component call-path. It is this model synthesis at the component level that 
holds promise for automating performance tuning in applications composed of components. 

Since a containing framework creates, configures and assembles components, the framework 
possesses the global understanding of how the components are networked into an application. 
Similarly, the framework can compose a performance model of the entire application by combining 
the models of the participating components. This composite performance model is a dual of the 
application itself. This holds the promise of being the “cost function” in an optimization process by 
which the optimal (from the performance point of view) component application is assembled from 
multiple implementations of each component. The actual component encapsulates numerical and 
data management algorithms for use in the computation while its performance model encapsulates 
its predicted performance as a function of the high performance environment in which it is to 
be executed. This reasoning extends to the application component ensemble whose performance 
may be predicted by the composition model, but will be ultimately determined by the runtime 
conditions. The material presented in this work is far from realizing this goal, but it is essential that 
it be viewed as step toward realizing a completely automated system for performance prediction - 
and hence optimization - of high performance component based applications. 

In this paper we examine some performance issues peculiar to HPC component environments. 
Section 2 provides a brief summary of performance measurement and modeling approaches in 
various component environments. Section 3 elaborates on some performance metrics specific to 
HPC while Section 4 describes the software infrastructure needed to measure these metrics non- 
intrusively. Section 5 describes a case study where we measure and model the performance of 
three components in a scientific simulation of a shock interacting with an interface between two 
gases. Our concluding remarks and future directions are given in Section 6. 

2 Related Work 
The three most widely-used component standards (CORBA [7], COM/DCOM [ 121, Java Beans [6]) 
are ill-suited to handle high performance scientific computing due to a lack of support for efficient 
parallel communication, insufficient scientific data abstractions (e.g., complex numbers), and/or 
limited language interoperability [9]. Thus, performance metrics developed for these environ- 
ments are inadequate for HPC. In the serial environment to which these commercial component 
models are targeted, there is little reason for the design to account for details of hardware and 
memory hierarchy performance, yet this is a critical requirement in HPC. Often these distributed 
frameworks/component models (e.g. DCOM, CORBA CCM) use commodity networking to con- 



nect components together, entirely inadequate for HPC. In a distributed environment, metrics like 
round trip time and network latency are often considered useful, while quantities like bisection 
bandwidth, message passing latencies and synchronization cost, which form the basis of much of 
the research in  HPC are left unaddressed. This primarily arises from the very different platforms 
that HPC and commercial component based applications run on - HPC is done almost exclusively 
on tightly-connected clusters of MPPs (massively parallel processors) or SMPs (Symmetric Multi- 
processors) while commercial codes often operate on LANs (Large Area Networks) or WANs 
(Wide Area Networks). 

However, despite the different semantics, several research efforts in these standards offer viable 
strategies in measuring performance. A performance monitoring system for the Enterprise Java 
Beans standard is described in [13]. For each component to be monitored, a proxy is created using 
the same interface as the component. The proxy intercepts all method invocations and notifies 
a monitor component before forwarding the invocation to the component. The monitor handles 
the notifications and selects the data to present, either to a user or to another component (e.g.. a 
visualizer component). The goal of this monitoring system is to identify hot spots or components 
that do not scale well. 

The Wabash tool [14, 1.51 is designed for pre-deployment testing and monitoring of distributed 
CORBA systems. Because of the distributed nature, Wabash groups components into regions based 
on the geographical location. An interceptor is created in the same address space of each server 
object (Le., a component that provides services) and manages all incoming and outgoing requests 
to the server. A manager component is responsible for querying the interceptor for data retrieval 
and event management. 

In the work done by the Parallel Software Group at the Imperial College of Science in Lon- 
don [16, 171, the research is focused on grid-based component computing. However, the per- 
formance is also measured through the use of proxies. Their performance system is designed to 
automatically select the optimal implementation of the application based on performance models 
and available resources. With n components, each having Ci implementations, there is a total 
of IIy=L=,Ci implementations to choose from. The performance characteristics and a performance 
model for each component is constructed by the component developer and stored in the component 
repository. Their approach is to use the proxies to simulate an application in order to determine 
the call-path. This simulation skips the implementation of the components by using the proxies. 
Once the call-path is determined, a recursive composite performance model is created by examin- 
ing the behavior of each method call in the call-path. In order to ensure that the composite model 
is implementation-independent, a variable is used in the model whenever there is a reference to an 
implementation. To evaluate the model, a specific implementation’s performance model replaces 
the variables and the composite model returns an estimated execution time or estimated cost (based 
on some hardware resources model). The implementation with the lowest execution time or lowest 
cost is then selected and a execution plan is created for the application. 



3 Performance Measurements in HPC Component Environments 
Component-based environments place very different requirements on performance measurement 
and modeling (PMM). Traditionally, PMM has been viewed as an analysis-and-optimization phase 
done by the code developers when a stable code base was ported to a new architecture. Emphasis 
was laid on extensive instrumentation and analysis to gauge the behavior of the application on the 
architecture and to optimize it. Synthesizing a performance model from such data to serve as a 
predictive tool was usually done from a scaling point of view [4,5]. 

PMM plays a different role in component-based software. Since applications are dynamically 
composed at runtime, PMM can only be done in advance at a component-level. Further, since 
the component user is rarely the component developer, detailed instrumentation and analysis of 
the component by the user is not a credible option. Further, users are primarily expected to be 
interested in the coarse-grained performance of the component at the level of the public methods of 
the component. These two characteristics pose the requirements that PMM strategies (a) provide 
a coarse-grained performance model of the component and (2) be non-intrusive. The simplest 
approach, as verified in Section 2, is that of proxies, interposed between the caller and the called 
components, which intercept method calls and execute performance related tasks. 

In this section we provide a brief summary of the CCA environment for HPC, adapt the ap- 
proaches in Section 2 to HPC and address the issue of the minimal set of performance data required 
to construct component-level performance models. 

3.1 The Common Component Architecture (CCA) 
The CCA model uses theprovides-uses design pattern. Componentsprovide functionalities through 
interfaces that they export; they use other components’ functionalities via interfaces. These inter- 
faces are called Ports; thus a component has ProvidesPorts and UsesPorts. Components are peers 
and are independent. They are created and exist inside a framework; this is where they register 
themselves, declare their UsesPorts and ProvidesPorts and connect with other components. 

CCAFFEINE [8] is the CCA framework we employ for our research. CCAFFEINE is a low 
latency framework for scientific computations. Components can be written in most languages 
within the framework; we develop most of our components in C++. All CCAFFEINE components 
are derived from a data-less abstract class with one deferred method called setServices(Services 
*q). All components implement the setServices method which is invoked by the framework at 
component creation and is used by the components to register themselves and their UsesPorts and 
ProvidesPorts. Components also implement other data-less abstract classes, called Ports, to allow 
access to their standard functionalities. Every component is compiled into a shared object library 
that will be dynamically loaded at runtime. 

A CCAFFEINE code can be assembled and run through a script or a Graphical User Interface 
(GUI). All components exist on the same processor and the same address space. Once compo- 
nents are instantiated and registered with the framework, the process of connecting ports is just 
the movement of (pointers to) interfaces from the providing to the using component. A method in- 
vocation on a UsesPort thus incurs a virtual function call overhead before the actual implemented 
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method is used. CCAFFEINE uses the SCMD (Single Component Multiple Data) [E] model of 
parallel computation. Identical frameworks, containing the same components, are instantiated on 
all P processors. Parallelism is implemented by running the same component on all P processors 
and using MPI to communicate between them. P instances of a given component form a cohort [E] 
within which all message passing is done. The framework adheres to the MPI-I standard ; dynamic 
process creatioddeletion and a dynamically sized parallel virtual machine are not supported. This 
minimalist nature renders CCAFFEINE light, simple, fast, and very unobtrusive to the compo- 
nents. Performance is left to the component developer who is in the best position to determine the 
optimal algorithms and implementations for the problem at hand. 

3.2 Performance Measurement and Modeling 
A CCA application is composed of components and the composite performance of a component 
assembly is determined by the performance of the individual components as well as the efficiency 
of their interaction. Thus, the performance of a component has to be considered in a certain context 
consisting of the problem being solved (e.g., a component may have to do two functions, one which 
requires sequential access and the other strided access of an array), the parametedarguments being 
passed to a method (e.g., length of an array) and the interaction between the caller and the c a k e  
(e.g., if a transformation of the data storage needs to be done). If multiple implementations of a 
component exist ( i t . ,  implementations which provide the same functionality) then within a given 
context, there will be an optimal choice of implementation. This requires that performance models 
be available for all components and a means to generate a composite model exist. 

Most scientific components intersperse compute intensive phases with message passing calls, 
which incur costs inversely proportional to the network speed. These calls sometimes involve 
global reductions and barriers, resulting in additional synchronization costs. For the purposes of 
this paper we will assume blocking communications where communications and computations are 
not overlapped. We will ignore disk YO in this study. Thus, in order that a performance model for 
a component may be constructed, we require the following : 

1. The total execution time spent in a method call. These methods are those in the ProvidesPorts 
of a component. 

2. The total time spent in message passing calls, as determined by the total inclusive time spent 
in MPI during a method invocation. 

3. The difference between the above is the time spent in computation, a quantity sensitive to 
the cache-hit rate. We will record this quantity for the period of the method call. 

4. The input parameters that affect performance. These typically involve the size of the data 
being passed to the component and some measure of repetitive operations that might need to 
be done (e.g., the number of times a smoother may be applied in a multigrid solution). 

The first three requirements are traditional and may be obtained from publicly available tools [ 181. 
The fourth requires some knowledge of the algorithms being implemented, and is extracted by a 
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proxy before the method invocation is forwarded to the component. We envisage that proxies will 
be simple and preferably, amenable to automatic generation. 

4 PMM Software Infrastructure 
As stated in Section 3, performance measurement will be done via proxies interposed between 
caller and callee components. These proxies are expected to be lightweight and serve as a means of 
intercepting and forwarding method calls. The actual functionality of interacting with and record- 
ing hardware characteristics will be kept in a separate component, as will the functionality of 
storing this data for each invocation. Our performance system consists of three distinct component 
types: a TAU (Tuning and Analysis Utilities) component, proxy components and a “Mastermind” 
component. These components work together in order to measure, compile and report the data 
back to the user. 

4.1 TAU Component 
In order to measure performance in a high performance scientific environment, a component that 
can interact with the system’s hardware as well as time desired events is needed. For our perfor- 
mance measurement system, we use the TAU component[3], which utilizes the TAU measurement 
library[l8, 191. The TAU component is accessed via a Measurementport, which defines inter- 
faces for timing, event management, timer control and measurement query. The timing interface 
provides a means to create, name, start, stop and group timers. It helps track performance data 
associated with a code region by bracketing it with start and stop calls. 

The TAU implementation of this generic performance component interface supports both pro- 
filing and tracing measurement options. Profiling records aggregate inclusive and exclusive wall- 
clock time, process virtual time, hardware performance metrics such as data cache misses and 
floating point instructions executed, as well as a combination of multiple performance metrics. 
The event interface helps track application and runtime system level atomic events. For each 
event of a given name, the minimum, maximum, mean, standard deviation and number of entries 
are recorded. TAU relies on an external library such as PAP1 [l] or PCL [Z] to access low-level 
processor-specific hardware performance metrics and low latency timers. Timer control is achieved 
through the control interface, which can enable and disable timers of a given group at runtime. At 
runtime, a user can enable or disable all MPI timers via their group identifier. The query in- 
terface provides a means for the program to access a collection of performance metrics. In our 
performance system, the query interface is used to obtain the current values for the metrics being 
measured. The TAU library also dumps out summary profile files at program termination. 

4.2 Proxies 
For each component that the user wants to analyze, a proxy component is created. The proxy 
component shares the same interface as the actual component. When the application is composed 



and executed, the proxy is placed directly “in front” of the actual component. Since the proxy 
implements the same interface as the component, the proxy intercepts all of the method invoca- 
tions for the component. In other words, the proxy uses and provides the same types of ports that 
the actual component provides. In this manner, the proxy is able to snoop the method invocation 
on the Provides Port, and then forward the method invocation to the component on the Uses Port. 
In addition, the proxy also uses a MO&UF port to make measurements. If the method is one that 
the user wants to measure, monitoring is started before the method invocation is forwarded and 
stopped afterward. When the monitoring is started, parameters that influence the method’s per- 
formance are sent to the Mastermind component. These parameters must be selected by someone 
with a knowledge of the algorithm implemented in the component. For example, for a routine that 
performs some simple processing on each index of an array of numbers, the performance parame- 
ter would most likely be the size of the array. Creating a proxy from a component’s header file is 
relatively straight-forward. Currently, proxies are created manually with the help of a few scripts, 
but it is not difficult to envision proxy creation being fully automated. 

4.3 Mastermind 
The Mastermind component is responsible for gathering, storing and reporting of the measurement 
data. For each method that is monitored, a record object is created and stored by the Mastermind. 
The record object stores all the measurement data for each of the invocations of a single routine. 
When monitoring is started via a call to the Mastermind, the Mastermind passes the parameters to 
the record object and tells the record to begin timing. TAU measurements are made cumulatively, 
so in order to obtain the measurements for a single invocation, measurements must be made prior 
to the invocation and again after the invocation. To make a measurement, the TAU component is 
queried in order to record the current measurements for the timer, the MPI time, and any hardware 
metrics being measured. The MPI time is determined by the summation of the times of all the 
MPI routines. When monitoring is stopped, the TAU component is again queried to obtain the 
current time, MPI time and hardware measurements. The measurements for the single invocation 
are determined by the difference between the measurements obtained after the invocation and the 
measurements from before the invocation. The single invocation measurements, along with the 
parameters, are stored in the record. When a record object is destroyed, it outputs to a file all of 
the measurement data for each invocation that it stored. 

5 Casestudy 
We use the infrastructure described in Section 4 to measure and model the performance of a 
component-based scientific simulation code. The code simulates the interaction of a shock wave 
with an interface between two gases. The scientific details are in [20]. The code employs Struc- 
tured Adaptive Mesh Refinement [21, 22, 231 for solving a set of Partial Differential Equations 
(PDE) called the Euler equations. Briefly, the method consists of laying a relatively coarse Carte- 
sian mesh over a rectangular domain. Based on some suitable metric, regions requiring further 



refinement are identified, the grid points flagged and collated into rectangular children patches on 
which a denser Cartesian mesh is imposed. The refinement factor between parent and child mesh is 
usually kept constant for a given problem. The process is done recursively, so that one ultimately 
obtains a hierarchy of patches with different grid densities, with the finest patches overlaying a 
small part of the domain. The more accurate solution from the finest meshes is periodically inter- 
polated onto the coarser ones. Typically, patches on the coarsest level are processed first, followed 
recursively by their children patches. Children patches are also processed a set number of times 
during each recursion. 

Figure 1 shows a snapshot from the simulation. The boxes outlined in purple are the coarse 
patches, those in red are ones which have been refined once (level 1 patches) and those in blue, 
refined twice (level 2 patches). The factor of refinement is 2 and the sequence of processing is 
LO, L1, Lz ,  Lz, L1, Lz, Lz ,  where L, is the set of patches on level i. Patches can be of any size or 
aspect ratio. This sequence is repeated multiple times. 

Figure 2 shows the component version of the code. On the left is the ShockDriver, a com- 
ponent that orchestrates the simulation. On its right is AMRMesh that manages the patches. The 
RK2 component below it orchestrates the recursive processing of patches. To its right are States 
and EFMFlux which are invoked on a patch-by-patch basis. The invocations to States and EFM- 
Flux include a data array (a different one for each patch) and an output array of the same size. 
Both these components can function in two modes - sequential or strided array access to calculate 
X- or Y-derivatives respectively - with different performance consequences. Neither of these com- 
ponents involve message passing, most of which is done by AMRMesh. We will attempt to model 
the performance of both States and EFMFlux and analyze the message passing costs of AM- 
RMesh. We will also analyze the performance of another component, GodunovFlux, which can 
be substituted for EFMFlwr. Three proxies, one each for States, GodunovFlux and EFMFlux 
were created and interposed between InviscidFlux and the component in question. A proxy was 
also written for AMRMesh to capture message-passing costs. An instance each of Mastermind 
and TAUMeasurement component were created for performance measurement and recording. 

The simulation was run on three processors of a cluster of dual 2.8 GHz Pentium Xeons with 
512 kB caches. gcc version 3.2 was used for compiling with -02  optimization. Figure 3 
shows where most of the time is spent in the component code. About 25% of the time is spent 
in M P I W a i t  some ( ) which is invoked from two methods in AMRMesh - one that does “ghost- 
cell updates” on patches (gets data from abutting, but off-processor patches onto a patch) and the 
other that results in load-balancing and domain (re-) decomposition. The other methods, one in 
States and the other in GodunovFlux are modeled below. 

In Figure 4 we plot the execution times for States for both the sequential and strided mode 
of operation. We see that for small, largely cache-resident arrays, both the modes take roughly 
the same time. As the arrays overflow the cache, the strided mode becomes more expensive and 
one sees a localization of timings. In Figure 5,  we plot the ratio of strided and sequential access 
times. The ratio varies ranges from 1 for small arrays to around 4 for large ones. Further, for larger 
arrays, one observes large scatters. Similar phenomena are also observed for both GodunovFlux 
and EFMFlux. 

During the execution of the application, both the X- and Y-derivatives are calculated and the 
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two modes of operation of these components are invoked in an alternating fashion. Thus, for 
performance modeling purposes, we consider an average. However, we also include a standard 
deviation in our analysis to track the variability introduced by the cache. It is expected that both 
the mean and the standard deviation will be sensitive to the cache size. In Figures 6,7 and 8 we plot 
the execution times for the States, GodunovFlux and EFMFlux components. Regression analysis 
was used to fit simple polynomial and power laws, which are also plotted in the figures. The mean 
execution time scales linearly with the array size, once the cache effects have been averaged out. 
The standard deviations exhibit some variability, but they are significant only for GodunovFlux, 
a component that involves an internal iterative solution for every element of the data array. Note 
that these timings do not include the cost of the work done in the proxies, since all the extraction 
and recording of parameters is done outside the timers and counters that actually measure the 
performance of a component. Further, these instrumentation related overheads are small and will 
not be addressed in this paper. 

and EFMFlux and Q the input array size, the best-fit expressions for the three components are 
If T,totes, TcdUnov and TEFM are the execution times (in microseconds) for States, GodunovFlux 

TStates = exp(l.l9log(Q) - 3.68) 
TcdQnov = -963 + 0.315Q 

T’FM = -8.13f0.16Q 

The corresponding expressions for the standard deviations 0 are 

ustotes = exp(1.29 kQ) 
0GodUnm = -526 + 0.152Q 

UEFM = 66.7 - 0.015Q + 9.24 x lo-’&’ - 1.12 x 10-”Q3 + 3.85 x 10-”Q4 (2) 

We see that GodunovFlux is more expensive that EFMFlux, especially for large arrays. Further, 
the variability in timings for GodunovFlux increase with Q while it decreases for EFMFLux. 
While GodunovFlux is the preferred choice for scientists (it is more accurate), from a performance 
point of view, EFMFlux has better characteristics. This is an excellent example of a Quality of 
Service issue where numerical and/or algorithmic characteristics (such as accuracy, stability and 
robustness etc.) may need to be added to the performance model. Thus the performance of a 
component implementation would be viewed with respect to the size of the problem as well as the 
quality of the solution produced by it. 

In Figure 9 we plot the communication time spent at different levels of the grid hierarchy during 
each communication (“ghost-cell update”) step. We plot data for processor 0 first. During the 
course of the simulation, the application was load-balanced once, resulting in a different domain 
decomposition. This is seen in a clustering of message passing times at Level 0 and 2. Ideally, 
these clusters should have collapsed to a single point; the substantial scatter is caused by fluctuating 
network loads. Inset, we plot results for all the 3 processors. A similar scatter of data points is seen. 
Comparing with Figures 6 , 7  and 8, we see that message passing times are generally comparable to 
the purely computational loads of States and GodunovFlux, and it is unlikely that the code, in the 
current configuration (the given problem and the level of accuracy desired) will scale well. This 
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is also borne out by Figure 3 where almost a quarter of the time is shown to be spent in message 
passing. 

6 Conclusions 
We have proposed a software infrastructure for performance measurement in HPC component en- 
vironments. Our prototypical implementation was used to collect performance data for a scientific 
simulation and construct performance models. While the data collected is no different from what is 
required in traditional HPC, the measurement system must be compatible with component software 
development methods and new strategies, such as proxies, must be adapted from other component- 
based environments. Proxies can be automatically generated from a component’s header if the 
sole purpose is to time the execution of a component. However, for performance modeling, one 
frequently needs to record certain inputs to the component. Proxies are the logical place to extract 
this information before forwarding the component invocation, but this requires that this information 
be identifiable during proxy creation. We are currently investigating simple mark-up approaches 
identifying argumentdparameters which affect performance and need to be extracted and recorded. 

The problem of performance modeling is still unsolved. The models derived here are valid 
only on a similar cluster. Any significant change, such as halving of the cache size, will have a 
large effect on the coefficients in the models (though the functional form is expected to remain 
unchanged). Ideally, the coefficients should be parameterized by processor speed and a cache 
model. We will address this in future work, where the cache information collected during these 
tests will be employed. 

The ultimate aim of performance modeling is to be able to compose a composite performance 
model and optimize a component assembly. Apart from performance models, this requires multiple 
implementations of a functionality (so that one may have alternates to choose from) and a call trace 
from which the inter-component interaction may be derived. The wiring diagram (available from 
the framework) along with the call trace (detected and recorded by the performance infrastructure) 
can be used by the Mastermind to create a composite performance model where the variables are 
the individual performance models of the components themselves. Figure 10 shows a schematic of 
how such a system may construct an abstract dual (represented as a directed graph) of the applica- 
tion. Edge weights signify the number of invocations and the vertices are weighted by the compute 
and communication times, as predicted by the performance models of the component implemen- 
tations. The caller-calk relationship is preserved to identify subgraphs that are insignificant from 
the performance point of view. This facilitates dynamic performance optimization which uses on- 
line performance monitoring to determine when performance expectations are not being met and 
new model-guided decisions of component use need to take place. This is currently underway. 
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Figure 1: The density field plotted for a Mach 1.5 shock interacting with an interface between Air 
and Freon. The simulation was run on a 3-level grid hierarchy. Purple patches are the coarsest 
(Level 0), red ones are on Level 1 (refined once by a factor of 2) and blue ones are twice refined. 



r 
Figure 2: Snapshot of the component application, as assembled for execution. We see three prox- 
ies (for AMRMesh, EFMFlux and States), as well as the TauMeasurement and Mastermind 
components to measure and record performance-related data. 
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FUNCTION SUMMARY (mean) : 
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int main(int, char * * )  
MPI - Waitsome 0 
g-proxy : :compute ( ) 
sc proxy: : compute ( ) 
iccgroxy: :prolong 0 
icc proxy::restrict() 
TAUGET FUNCTION - VALUES ( ) 
MPIIInit ( 
MPI Comm-dup ( ) 
MPI-Finalize 0 
MPIAllreduce ( )  
MPIAllgather ( ) 
MPIIIsend ( )  
MPI Barrier ( )  
MPI-Comm - create ( ) 
MPIIIrecv ( ) 
MPI Wtime ( )  
MPIIWait ( )  

MPI Keyval create0 
MPI-Errhandler - set ( ) 
MPIICancel(1 

~ 

Figure 3: Snapshot from a timing profile done with our infrastructure. We see that around 
50% of the time is accounted for by gproxy : :compute ( ) , sc-proxy : : compute ( 1 and 
MPI _Wai tsome ( ) . The MPI call is invoked from AMRMesh. The two other methods are mod- 
eled as a part of the work reported here. Timings have been averaged over all the processors. 
The profile shows the inclusive time (total time spent in the methods and all subsequent method 
calls), exclusive time (time spent in the specific method less the time spent in subsequent instru- 
mented methods), the number of times the method was invoked, and the average time per call to 
the method, irrespective of the data being passed into the method. 
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Figure 4: Execution time for the States component. The States component is invoked in two 
modes, one which requires sequential and the other which requires strided access of arrays to 
calculate X- and Y- derivatives of a field. Both the times are plotted. The Y-derivative calculation 
(strided access) is expected to take longer for large arrays and this is seen in the spread of timings. 
For small array sizes, which are largely cache-resident, the two different modes of access do not 
result in a large difference in execution time. Array sizes are the actual number of elements in 
the array. The elements are double precision numbers. The different colors represent data from 
different processors (Proc i in the legend) and similar trends are seen on all processors. 
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Figure 5 :  Ratio of strided versus sequential access (calculation of Y- and X-derivatives, respec- 
tively) timings for States. We see that the ratio varies from around 1 for small array sizes to 
around 4 for the largest arrays considered here. Array sizes are the actual number of elements in 
the array. The elements are double precision numbers. Further, the ratios show variability which 
tend to increase with array size 
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Figure 6: Average execution time for States as a function of the array size. Since States has a dual 
mode of operation (sequential versus strided) and the mean includes both, the standard deviation 
of is rather large. The performance model is given in &. 1. The standard deviation, in blue, is 
plotted against the right Y-axis. All timings are in microseconds. 
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Figure 7: Average execution time for GodunovFlux as a function of the array size. Since Go- 
dunovFlux has a dual mode of operation (sequential versus strided) and the mean includes both, 
the standard deviation of is rather large. The performance model is given in Eq. 1. The standard 
deviation, in blue, is plotted against the right Y-axis. All timings are in microseconds. 
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Figure 8: Average execution time for EFMFlux as a function of the array size. Since EFMFlux 
has a dual mode of operation (sequential versus strided) and the mean includes both, the standard 
deviation of is rather large. The performance model is given in Q. 1. The standard deviation, in 
blue, is plotted against the right Y-axis. All timings are in microseconds. 
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Figure 9: Message passing time for different levels of the grid hierarchy for the 3 processors. We 
see a clustering of message passing times, especially for Levels 0 and 2. The grid hierarchy was 
subjected to a re-grid step during the simulation which resulted in a different domain decompo- 
sition and consequently message passing times. Inset : We plot the timings for all processors. 
Similar clustering is observed. All times are in microseconds. 
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Figure 10: Above: A simple application composed of 4 components. C denotes a component, P 
denotes a proxy and M and T denote an instance of Mastermind and TauMeasurement com- 
ponents. The black lines denote port connection between components and the blue dashed lines 
are the proxy-to-Mastermind port connections which are only used for PMM. Below, it dual, con- 
structed as a directed graph in the Mastermind, with edge weights corresponding to the number of 
invocations and the vertex weights being the compute and communication times determined from 
the performance models (PM,) for component i. Only the port connections shown in black in the 
picture above are represented in the graph. The parent-child relationship is preserved to identify 
sub-graphs that do not contribute much to the execution time and thus can be neglected during 
component assembly optimization. The Mastermind is seen connected to CCAFFEINE via the 
AbstractFramework Port to enable dynamic replacement of sub-optimal components. 
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