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Abstract 

 
 
 

We present here the details of the implementation of the parallel tempering Monte Carlo 
technique into a LAMMPS, a heavily used massively parallel molecular dynamics code 
at Sandia.  This technique allows for many replicas of a system to be run at different 
simulation temperatures.  At various points in the simulation, configurations can be 
swapped between different temperature environments and then continued.  This allows 
for large regions of energy space to be sampled very quickly, and allows for minimum 
energy configurations to emerge in very complex systems, such as large biomolecular 
systems. By including this algorithm into an existing code, we immediately gain all of the 
previous work that had been put into LAMMPS, and allow this technique to quickly be 
available to the entire Sandia and international LAMMPS community.  Finally, we 
present an example of this code applied to folding a small protein. 
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Introduction 
The purpose of this project is to add a Parallel Tempering Monte Carlo (PTMC) 
capability to the LAMMPS1 atomistic molecular dynamics code. PTMC is a method that 
has been proposed and implemented in various forms over the last decade or so. The 
early ideas of simulated tempering2, multicanonical ensembles3 and expanded ensembles4 
were all schemes that generalized the possible moves that could be made to a single 
configuration Markov chain. The first mention of parallel tempering where a number of 
configurations are propagated simultaneously was an application to spin glasses5, and this 
was rapidly followed by the use of this technique to look at biomolecules6. 

In the following we provide a brief description of PTMC and a discussion of the 
implementation in LAMMPS. The remainder of this report is devoted to analyzing the 
results from a problem based on a short (5 residue) peptide chain in aqueous solvent. 

PTMC background 
We begin with a discussion of the well-known Metropolis scheme for Monte Carlo 
sampling of a probability distribution. We imagine that S  is a space of states and )(sP  is 
the probability of state Ss ∈ .   

We also imagine that given a state s  we have some method for generating a new state s′  
“randomly” from s .  The precise details of how the new state is generated are not 
important as long as the process satisfies a few simple conditions. 

We construct a Markov chain of states, which represents the probability distribution 
)(sP by the following simple rules. Assume that the state at some point is 0s  and we 

generate a proposed state s′ .  We accept or reject this state as follows: 

1. If )()( 0sPsP ≥′  then accept s′ as the next state in the chain. 
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2. Otherwise, accept s′ with probability )(/)( 0sPsP ′ . 

Note that rejection of s′ means that the next state in the chain remains 0s , and we don’t 
need to know the normalizing factor 0P . We only need to be able to compute the ratio of 
probabilities of any two states. It is easy to show that if 0s  is chosen with probability 

)( 0sP  then 1s  will have probability )( 1sP  under the above rules. Let the generating 
method be described by a transition matrix ssT ′ , which is the probability of generating the 
state s′  from the state s . Clearly the probability of generating some state is unity, and 
the probability of generating the same state we assume to be zero. The probability of 
generating any particular state is greater than or equal to zero. We also need that the 
transition probability is symmetric, so that the probability of generating s′ from s  is the 
same as that of generating s  from s′ . 

ssT ′ thus has the following properties: 
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Now given a probability distribution at the beginning of a step of the above process we 
can compute the probability distribution after the step, all we need to know is the 
conditional probability for transition. There are three cases where the new state has 
greater or equal probability, the new state has less probability, and the new state is the 
same as the old state. The third case only happens when a new state has been proposed 
but is rejected. Assume that the probability of being in state s  at the beginning of the step 
is )(sP , the target probability.  We have that the probability of ending up in state s′  is 

)(sQ ′  where 
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Using the above properties this becomes )()( sPsQ ′=′  and so the target probability 
distribution is preserved under the above process. 

We go through this well known argument to show that the precise details of the method 
described by ssT ′  do not matter and we do not have to even know what the transition 
matrix is in detail. This argument also implies that we can build a Metropolis scheme 
from different moves (described by different transition matrices) and still preserve the 
Markov chain property, as long as each individual move has the above properties. 

Given a long enough chain and the above modest assumptions about the method for 
generating new states we are guaranteed to be able to estimate any observable to any 
specified degree of accuracy, under the additional hypothesis that there exists a set of 
moves from the starting state to any other state.  The accuracy we get in practice is 
typically proportional to 2/1N  where N  is the chain length we generate. Accuracy is 
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generally limited by the fact that the initial state is usually not representative of the 
distribution, so that a large number of equilibration steps must be taken at the beginning 
and then thrown away.  Accuracy can also be severely limited by the difficulty of 
generating new states that are not immediately rejected: the acceptance ratio must be 
sufficiently high that we do generate a random set of states. 

We can parallelize this scheme trivially by running multiple independent chains, however 
the initial equilibration overhead is the same for all the chains and so severely limits the 
effective speed-up. We can also attempt to parallelize the method of generating new 
states, although this is often much more difficult.   

Both of these approaches fail to deal with the fact that the acceptance ratio is often 
strongly suppressed in systems with large barriers. MC steps which move across the 
barrier have extremely low probability and are never taken in practice, thus the scheme 
fails to sample the distribution correctly. PTMC is an approach that can help improve the 
acceptance ratio with the added benefit of being trivially parallel. 

In the ordinary Metropolis scheme we evolve a single chain at a single temperature. The 
chain samples the probability distribution ),( TsP  where we now call out the temperature 
parameter explicitly. The Boltzman distribution TsEePTsP /)(

0),( −=  defines the 
probability of a state s  at temperature T  where ZP /10 =  and Z  is the partition function. 
Because the Metropolis scheme only uses ratios of probabilities of course the partition 
function factor does not need to be computed.  If we replicate the system K  times with 
temperatures KTT K1 , then we can imagine a joint probability distribution 

),( 11 KK TTss KKP . Of course our replicas are independent, and therefore the joint 
distribution is just the product of the individual ones: 

∏
=

=
Kk

kkkK TsPTTss
K

KK
1

11 ),(),(P  

Now we define the PTMC move that allows the simultaneous generation of all the chains. 
For most steps we use ordinary Metropolis steps to evolve each chain at its desired 
temperature. At intervals we attempt to swap chains.  If one chooses a pair of chains, say 
1 and 2, then before the swap the joint probability is proportional to 

2211 // TETE ee −−  
and after the swap the probability is proportional to 

1221 // TETE ee −−  
The ratio of probabilities is therefore proportional to 

fe  

where f  is the quantity 

))(/1/1( 2121 EETTf −−=  

Then if 0≥f  we accept the chain swap unconditionally. If 0<f  we accept the swap 
with probability fe . Again it is easy to show that this move will generate states in the 
correct joint probability distribution.  

The following points are more or less trivial: 
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• In practice we do not swap the chains themselves. Instead, we swap the 
temperatures associated with the chains. This implies a parallel implementation 
that is extremely trivial. 

• If the two temperatures are close, then the acceptance probability will be high. 

• Just because we have a parallel scheme does not mean that there is any benefit to 
it. 

Suppose we are only interested in the behavior of the system at one of the temperatures, 
say 1T . Then the results of all of the other chains are useless. The basic counter argument 
is that PTMC allows chains to run at a number of different temperatures, and in practice 
running at high temperatures allows the system to jump over barriers much more easily. 
Therefore a PTMC simulation with K  chains can in principle produce results much more 
quickly and with a better sampling than the single chain simulation run. The test problem 
and analysis described below attempts to justify this statement. 

Another scheme is available with PTMC that we have not attempted to exploit. If we run 
a large number of simulations at nearby temperatures then any individual state could be 
considered to contribute to several temperatures. This scheme is called umbrella sampling 
and it is a means of making more effective use of the computational effort. However, this 
is only of benefit in the case that we are interested in more than just the lowest 
temperature. 

There is no known way to decide ahead what are the correct set of temperatures and how 
many chains to run in a simulation. The following heuristics are available: 

• The range of temperatures is defined at the minimum by the target temperature 
and at the maximum by a temperature that is high enough so that the system 
rapidly equilibrates. 

• The best set of temperatures is such that the acceptance for exchange of chains is 
approximately the same between all pairs of chains. This will generally imply the 
use of a geometric ratio between the temperatures. 

• If there are too many chains then there may be useless extra work. If there are too 
few chains then equilibration may take too long. 

This leaves a lot of room for trial and error, and we suspect that some experimentation 
will be needed for individual problems to make the best use of this facility. 

Design of PTMC capability in LAMMPS 
We chose to work with LAMMPS because it is an existing robust and parallel molecular 
dynamics simulation code widely used here at Sandia. We note that LAMMPS is already 
parallel but that many simulations are too small to make effective use of very large 
numbers of processors. Implementation of PTMC on top of LAMMPS could therefore 
significantly extend the parallel range of LAMMPS. For example, if a system normally 
would make efficient use of 32 processors and we run 32 PTMC chains in parallel then 
we can now use 1024 processors very effectively. 
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LAMMPS is not a Monte Carlo code. However, molecular dynamics is a very good state 
generator and this is the mode in which the LAMMPS core is used. In a typical case we 
want to run K  chains on P  processors each. The approach we implemented uses a total 
of 1+KP  processors. One processor is assigned the task of supervising all the others. The 
remaining KP  processors are split into K  sets of P  processors each, and each set gets 
one chain (task) to run. We used the MPI communicator facility to build the processor 
groups and to isolate communications within each task from the communications that the 
master process uses to control tasks.  This allowed minimal modifications to LAMMPS. 
The PTMC code was written as an umbrella Fortran-90 code that runs LAMMPS as a 
small set of subroutines. 

The master process reads an input file that describes the number of tasks, list of 
temperatures, and starting configuration files for each task. The master process sends 
messages to the slave tasks, which wait in a control loop for work to do. The slave tasks 
run the LAMMPS simulation for a specified number of time steps and then return to the 
control loop. A message is sent from the slave task to the master task with the current 
potential energy of the task simulation. 

When all of the slave tasks have entered the control loop the master process has all of the 
information it needs to perform the PTMC interchange step between any two slaves. The 
PTMC move described above is attempted with some probability (.8) between adjacent 
temperatures only. The master code keeps track of which temperature is assigned to 
which chain. All of the interchanges are tried and then all of the tasks begin running 
again with their new assigned temperatures. 

In the end, almost no modifications to the original LAMMPS code were needed. The 
PTMC capability resides almost entirely in a few short driver routines that replace the 
LAMMPS main subroutine and call the remainder of the LAMMPS subroutines. 

Test problem and analysis 
The main test problem that we chose to run is a simulation of a short (5 residue) peptide 
chain (met-enkephalin) in water solvent. This system was chosen because published 
results7 were available for comparison and because a simple peptide such as this is a 
truncated example of the kinds of systems that we would like to be able to simulate.  
Fig.1 is a representation of the met-enkephalin molecule. The solvent waters in the 
simulation are not shown. 

The initial configurations were generated by Marcus Martin using the Towhee code8. 
This is a configurational bias Monte Carlo code that can generate a plausible 
configuration for a molecule together with all of the necessary force-field parameters, 
including a surrounding set of solvent (water) molecules. We don’t discuss this process 
any further except to make the comment that it is extremely non-trivial to generate a 
complete description of a molecular system for LAMMPS. The basic configuration 
consists of the met-enkephalin molecule (the 5 amino acid chain together with 
modifications for the amino and carboxyl end groups) plus a surrounding set of water 
molecules in the TIP-3P9 model. The basic force-field parameters are those of the 
CHARMM-28 set10.  This is the major difference between our computation and that of 
reference [7], where the AMBER9,11 force field was used.  The force field includes the 
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usual electrostatic and non-bonded (Lennard-Jones) forces, together with bond, bond-
angle, bond-torsion, and improper forces.  We chose to run an all-atom simulation 
including hydrogens, although the hydrogen vibrations were partially simulated with the 
SHAKE algorithm. The amino terminus was treated as protonated and the carboxyl 
terminus was unprotonated. 

 
The major run parameters are the number of tasks, the set of temperatures, the time step 
for evolving the MD part of the simulation, the interval of time to run between parallel 
tempering swaps, and the total length of time for the simulation. We chose these to be 
similar to those in the above reference.  In addition, there are some parameters for the 
thermostat in the MD simulation. These were set to relax the temperature slowly to the 
target temperature for that sample.  After initialization, a sample run of length 6102×  
steps was made using ordinary MD (without tempering). This data is compared with the 
data for the parallel tempering runs that were of length 510  steps for 16 configurations.    

Acceptance ratios for replica exchange were measured during the tempering run, and we 
found that values of .25 were typical. No adjacent pairs were exceptional, indicating that 
the above temperatures are a good choice to balance out the distribution of 
configurations. 

Fig. 2 shows how one of the sample configurations visits various temperatures during the 
course of the simulation. All of the sample configurations appeared to have similar 
random appearance. We did not find or think of a good statistical test to decide whether 
the trajectories represent a correct sampling, other than to see if all the configurations 
visit all of the temperatures with equal probability. 

We also made Ramachandran plots of the density of states in φψ ,  angle space for each 
of the five residues. We compared these plots with the results from the above paper. Only 
the grossest features of the plots were similar, however. We do not yet know if this is due 
to a subtle error in our input data or force field model, or is indicative of a fundamental 
difference in the force fields or represents some error in the above paper. Figure 6 shows 
a Ramachandran plot for a random sample of 150 proteins in the PDB. Figure 7 shows 
the Ramachandran plot for the configurations at 275K compared with Fig. 8, which is the 
Ramachandran plot for the pure MD run.  Figures 9, 10, 11, 12, and 13 are the plots for 
the individual residues (TYR, GLY, GLY, PHE, and MET). 

In order to analyze the results we attempted a cluster analysis based on principal 
components analysis (PCA). The coordinates used were the 10 ψφ −  backbone angles. 
Figure 14 shows the results.  

An additional cluster analysis was performed based on a scatter diagram of the end-end 
radius 2e

R  versus the radius of gyration 2g
R .  Only the Cα backbone atoms were 

analyzed.  We note that for an ordinary polymer chain this distribution should lie around 
a straight line and we see that this behavior is obtained. 

Figure 3 shows this plot for the lowest temperature configurations and Fig. 4 combines 
the data for all the configurations. We can compare these plots with Fig. 5, which shows 
the configurations obtained in the long straight MD run. We do not see much difference 
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in these plots, which indicates that the PT and MD runs are visiting much the same set of 
configurations. 

 
Figure 1:  RASMOL plot of met-enkephalin 
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Figure 2:  Temperature of a replica during simulation to 1000 ps 
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Figure 3:  Distribution of radius of gyration 2

gR  versus end-end distance 2
eR  for configurations at 

275K 

 

 
Figure 4:  Same as Figure 3, but for configurations at all temperatures 
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Figure 5:  Same as Fig. 3 and Fig. 4, but using configurations from MD simulation 

 
Figure 6:  Ramachandran plot for 150 samples from the PDB 
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Figure 7:  Ramachandran plot for configurations at 275K (all residues) 

 
Figure 8:  Ramachandran plot for MD run (all residues) 
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Figure 9:  Ramachandran plot TYR-1 residue. 

 
Figure 10:  Ramachandran plot GLY-1 residue 
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Figure 11:  Ramachandran plot GLY-3 residue 

 
Figure 12:  Ramachandran plot PHE-4 residue 
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Figure 13:  Ramachandran plot MET-5 residue 
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Figure 14:  Principal component analysis results 

 

Issues 
During the course of this work we identified a number of issues. 

First of all, the problem of generating the input configurations and analyzing the output 
for LAMMPS becomes much larger for PTMC runs. Debugging the test problem turned 
out to be a far larger problem than the actual code development for the parallel tempering 
capability. 

There are some apparent difficulties in force fields for molecular systems. LAMMPS has 
primarily been used for simulations of model systems such as polymer melts and lipid 
membrane systems that are not intended to be careful detailed representations of reality. 
Although LAMMPS will run systems for example that are described by the CHARMM 
force field, LAMMPS does not have any facilities to create or manage such simulations.  

Analysis of the results has turned out to be problematic. We are not convinced that the 
simulations are correct at this point, as pointed out previously in the discussion of the 
Ramachandran plots for the ψφ −  angle distributions. We do not yet have a good 
technique for clustering the results and it may be that there are no significant clusters for 
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the chosen problem. This is certainly the conclusion that we obtained from the gR  vs. eR  
analysis.  We are currently obtaining results from some peptide chains that form loops, 
helices, and β-sheet configurations, which we expect to show much more distinct 
“folded” states.  Another possible idea that we have not yet explored is to classify 
configurations based on a contact map. A folded state is well defined by such a map, 
whereas an open state has a very sparse map and the collapsed but not folded states have 
indefinite maps. 

Summary 
There are some other possible ways to utilize PTMC that we have not examined. For 
example, the method can be used with any parameter in the probability function. Pressure 
or volume are some obvious examples, although a force field parameter would also work. 
Thus one can imagine a simulation for an array of temperatures and pressures that would 
compute a complete phase diagram for a material in one go. 

As mentioned above the umbrella sampling technique might be applied to improve the 
use of the state samples that are generated. In this approach we use the configurations at 
nearby temperatures as samples for a different temperature. The other samples must be 
reweighted to give them the proper probability for the different temperature, however, 
and this can be difficult.   

Finally we note that in the case of protein folding we can use PTMC to look both at low 
lying (folded) states as well as the generation of pathways for getting to folded states. 
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