

SANDIA REPORT

SAND2003-8310
Unlimited Release
Printed July 2003

A Heuristic Re-Mapping Algorithm
Reducing Inter-Level Communication in
SAMR Applications

J. Steensland and J. Ray

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2003-8310
Unlimited Release
Printed July 2003

A Heuristic Re-Mapping Algorithm Reducing Inter-Level
Communication in SAMR Applications

Johan Steensland and Jaideep Ray
High Performance Computing and Networking

Sandia National Laboratory
P.O. Box 969

Livermore, CA 94550-9915, USA

Abstract

This paper aims at decreasing execution time for large-scale structured adaptive mesh refinement (SAMR)
applications by proposing a new heuristic re-mapping algorithm and experimentally showing its effectiveness
in reducing inter-level communication. Tests were done for five different SAMR applications. The overall
goal is to engineer a dynamically adaptive meta-partitioner capable of selecting and configuring the most
appropriate partitioning strategy at run-time based on current system and application state. Such a meta-
partitioner can significantly reduce execution times for general SAMR applications.

Computer simulations of physical phenomena are becoming increasingly popular as they constitute an
important complement to real-life testing. In many cases, such simulations are based on solving partial
differential equations by numerical methods. Adaptive methods are crucial to efficiently utilize computer
resources such as memory and CPU. But even with adaption, the simulations are computationally demanding
and yield huge data sets. Thus parallelization and the efficient partitioning of data become issues of utmost
importance. Adaption causes the workload to change dynamically, calling for dynamic (re-) partitioning to
maintain efficient resource utilization.

The proposed heuristic algorithm reduced inter-level communication substantially. Since the complexity
of the proposed algorithm is low, this decrease comes at a relatively low cost. As a consequence, we draw
the conclusion that the proposed re-mapping algorithm would be useful to lower overall execution times for
many large SAMR applications. Due to its usefulness and its parameterization, the proposed algorithm would
constitute a natural and important component of the meta-partitioner.

3

Acknowledgments

The authors wish to thank Manish Parashar and Sumir Chandra at the Center for Advanced Information Pro-
cessing, Rutgers University, NJ, USA for scientific collaboration and Michael Thuné and Jarmo Rantakokko at
Information Technology, Uppsala University, Sweden for comments on this manuscript leading to an improved
paper.

4

Contents

1 Introduction 7

2 SAMR and Related Work 8
2.1 Introduction to SAMR . 8
2.2 Partitioning SAMR Grid Hierarchies . 8

3 A Heuristic Algorithm for Reducing Inter-Level Communication 10
3.1 Analytical Model . 10

3.1.1 Strategy 1: A Patch-based Approach . 12
3.1.2 Strategy 2: A Level-Clustering Approach . 12

3.2 Case Study: Richtmyer-Meshkow Instability . 13
3.3 Re-Mapping Complexity . 13
3.4 Re-Mapping Algorithms . 14

3.4.1 Linearizing/Approximation . 14
3.4.2 Removing of “Good-Enough” Partitions . 15
3.4.3 Re-Mapping of Approximating Boxes . 15

4 Methods — Experimental Setup 16
4.1 Five SAMR Applications . 16
4.2 Deriving the Amount of Component Communication . 17
4.3 Partitioning Set-Up . 17

5 Results 18

6 Discussion, Conclusion, and Future Work 18

5

This page intentionally left blank

6

1 Introduction

This paper presents a new heuristic re-mapping algo-
rithm for the built-in partitioning techniques in Na-
ture+Fable [35], and experimentally shows the ef-
fectiveness of this algorithm in reducing inter-level
communication for five other vastly different struc-
tured adaptive mesh (SAMR) applications. Particu-
lar attention will be paid to a SAMR application that
simulates the Richtmyer-Meshkov instabilities using
an explicit time-stepping and a finite volume scheme.

The presented work is part of an ongoing research
project [34, 35, 36, 10] with the overall goal of en-
gineering a dynamically adaptive meta-partitioner for
SAMR grid hierarchies capable of selecting the most
appropriate partitioning strategy at runtime based on
current system and application state. Such a meta-
partitioner can significantly reduce the execution time
of SAMR applications [13, 12, 11].

Dynamically adaptive mesh refinement (AMR)
[37] methods for the numerical solution to partial
differential equations (PDE’s) [7, 8, 31] employ lo-
cally optimal approximations, and can yield highly
advantageous ratios for cost/accuracy when compared
to methods based on a static uniform mesh. These
techniques seek to improve the accuracy of the solu-
tion by dynamically refining the computational grid
in regions with large local solution error. Structured
adaptive mesh refinement methods are based on uni-
form patch-based refinements overlaid on a structured
coarse grid, and provide an alternative to the gen-
eral, unstructured AMR approach. These methods
are being effectively used for adaptive PDE solutions
in many domains, including computational fluid dy-
namics [2, 6, 28], numerical relativity [14, 30], as-
trophysics [1, 9, 23], and subsurface modeling and
oil reservoir simulation [42, 25]. Methods based on
SAMR can lead to computationally efficient imple-
mentations as they require uniform operations on reg-
ular arrays and exhibit structured communication pat-
terns. Furthermore, these methods tend to be easier to
implement and manage due to their regular structure.
Distributed implementations of these methods offer
the potential for accurate solutions of physically real-
istic models of complex physical phenomena. These
implementations lead to interesting challenges in dy-
namic resource allocation, data-distribution, load-
balancing, and runtime management. Critical among

these is the partitioning of the adaptive grid hier-
archy to balance load, optimize communication and
synchronization, minimize data migration costs, and
maximize grid quality (e.g. aspect ratio) and available
parallelism.

The primary motivation for the research presented
in this paper, as well as the research effort at large,
is the observation that in the case of parallel SAMR,
no single partitioning scheme performs the best for
all types of applications and systems. Even for a sin-
gle application, the most suitable partitioning tech-
nique depends on input parameters and the applica-
tion’s runtime state [29, 35]. This necessitates an
adaptive management of these dynamic applications
at runtime. This includes using application runtime
state to select and configure the partitioning strategy
to maximize performance. The goal of the adaptive
meta-partitioner is to provide such a capability for
parallel SAMR applications.

Large scale SAMR applications place vastly dif-
ferent requirements on the partitioning strategy to en-
able efficient utilization of computer resources and
consequently good scalability. In some scenarios, this
means focusing on optimizing load balance. In other
scenarios, the focus must be on lowering the interpro-
cessor communication costs. Hence, a means to ex-
plicitly attack the amount of inter-level communica-
tion is crucial to the adaptive meta-partitioner.

The little support for tuning and choosing trade-
off impacts growing more present in graph-based
partitioning techniques [17, 32, 15] for unstructured
AMR, is so far lacking in the field of structured AMR.
Whereas recent research efforts have targeted the scal-
ability of specific applications executing on specific
parallel computers [5, 43, 27], our line of research is
in the opposite direction; the development of a general
partitioning tool enabling good scalability for gen-
eral SAMR applications executing on general parallel
computers. As a consequence, we carefully engineer
the components of the adaptive meta-partitioner. A
basic requirement is that the components should be
able to adapt to changing requirements derived from
the monitoring of system and application state.

In this paper, we move towards the meta-
partitioner by introducing a key component; a means
for lowering the inter-level communication costs for
SAMR applications. The key contributions are (1)
a mathematical estimation of the compute and com-

7

munication costs of SAMR simulations based on the
common “time refinement” technique, (2) a fine-
scale case-study of the Richtmyer-Meshkov instabil-
ity, breaking down the communication amount into
components, (3) a new, parameterized heuristic re-
mapping algorithm that attempts to solve the problem
posed above and is designed to operate as a compo-
nent of the meta-partitioner, and (4) an experimental
evaluation of this algorithm showing its effectiveness
to reduce inter-level communication on five vastly dif-
ferent SAMR applications.

The rest of the paper is organized as follows. Sec-
tion 2 introduces SAMR and presents related work on
partitioning grid hierarchies. Section 3 motivates a
means to explicitly attack inter-level communication
and proposes the heuristic re-mapping algorithm. Sec-
tion 4 explains the experimental methods, Section 5
displays the results, and Section 6 provides a discus-
sion.

2 SAMR and Related Work

2.1 Introduction to SAMR

The numerical solution to a PDE is obtained by first
discretizing the problem domain. One approach is to
introduce a structured uniform Cartesian grid. The
unknowns of the PDE are then approximated numeri-
cally at each discrete grid point. The resolution of the
grid (or grid spacing) determines the local and global
error of this approximation, and is typically dictated
by the solution-features that need to be resolved. The
resolution also determines computational costs and
storage requirements. Dynamically adaptive solution
techniques for PDE’s provide a means for concentrat-
ing additional grid resolution and computational re-
sources to regions in the application domain with large
error. These techniques potentially lead to more ef-
ficient and cost-effective solutions to time-dependent
problems exhibiting localized features, viz. shocks,
discontinuities, or steep gradients.

In the case of SAMR methods, dynamic adapta-
tion is achieved by tracking regions in the domain that
require higher resolution and dynamically overlaying
finer grids on these regions. These techniques start
with a coarse base grid with minimum acceptable res-
olution that covers the entire computational domain.
As the solution progresses, regions in the domain with

large solution error, requiring additional resolution,
are identified and refined. Refinement proceeds re-
cursively so that the refined regions requiring higher
resolution are similarly tagged and even finer grids are
overlaid on these regions. The resulting grid structure
is a dynamic adaptive grid hierarchy. The adaptive
grid hierarchy corresponding to the SAMR formula-
tion by Berger and Oliger [8] is shown in Fig. 1. A
selection of snap-shots of the adaptive grid hierarchy
for the Richtmyer-Meshkov 3D SAMR application is
shown in Fig. 2.

Software infrastructures for SAMR worth men-
tioning are e.g. Paramesh [21, 22], a FORTRAN li-
brary for parallelization of and adding adaption to ex-
isting serial structured grid computations, SAMRAI
[18, 43] a C++ object-oriented framework for im-
plementing parallel structured adaptive mesh refine-
ment simulations, and GrACE [26] and CHOMBO[3],
both of which are adaptive computational and data-
management engines for enabling distributed adaptive
mesh-refinement computations on structured grids.

2.2 Partitioning SAMR Grid Hierarchies

Parallel implementations of SAMR methods present
interesting challenges in dynamic resource allocation,
data-distribution, load-balancing, and runtime man-
agement. The overall efficiency of parallel SAMR
applications is limited by the ability to partition the
underlying grid hierarchies at runtime to expose all in-
herent parallelism, minimize communication and syn-
chronization overheads, and balance load. A critical
requirement when partitioning these adaptive grid hi-
erarchies is the maintenance of logical locality, both
across different levels of the hierarchy under expan-
sion and contraction of the adaptive grid structure, and
within partitions of grids at all levels when they are
decomposed and mapped across processors. The for-
mer enables efficient computational access to the grids
and minimizes the parent-child (inter-level) commu-
nication overheads, while the latter minimizes overall
communication and synchronization overheads. Fur-
thermore, application adaptation results in grids being
dynamically created, moved and deleted at runtime,
making it necessary to efficiently repartition the hier-
archy “on the fly” so that it continues to meet these
goals.

8

G
0

1

G G

G GGG1

G

1

2

1

n

2 2

2

2 2

i j

3

k

G1

1

G1

1

G
0

1

G

G

1

1

G
2

G k

3

j

2

n

Figure 1: Berger-Oliger formulation of adaptive grid hierarchies for SAMR applications. Reprinted with per-
mission from M. Parashar.

Partitioners for SAMR grid hierarchies can be
classified as patch-based, domain-based, or hybrid.1

In the case of patch-based partitioners [5, 19], dis-
tribution decisions are independently made for each
newly created grid. A grid may be kept on the lo-
cal processor or entirely moved to another proces-
sor. If the grid is too large, it may be split. Grids
may also be distributed uniformly over all proces-
sors. The SAMR framework SAMRAI [18, 43]
(based on the LPARX [4] and KeLP [16] model) fully
supports patch-based partitioning. The distribution
scheme maps the patches at a refinement level of the
AMR hierarchy across processors. The advantages
are manageable load imbalance and re-partitioning at
re-griding could be avoided. Shortcomings inherent in
patch-based techniques are communication serializa-
tion bottlenecks, inability to exploit available paral-
lelism both across grids at the same level and different
levels [35].

Domain-based partitioners [24, 29, 38, 34] parti-
tion the physical domain, rather than the grids them-
selves. The domain is partitioned along with all con-
tained grids on all refinement levels. The advantages
are elimination of inter-level communication and bet-
ter exploiting of all available parallelism. The disad-
vantages are intractable load imbalance for deep hi-
erarchies and the occurrence of “bad cuts” leading to
increased overhead costs [35].

Hybrid partitioners [24, 38, 20] combining patch-

based and domain-based approaches, can be used for
coping with the shortcomings present in these tech-
niques. They use a 2-step partitioning approach. The
first step uses domain-based techniques to generate
meta-partitions, which are mapped to a group of pro-
cessors. The second step uses a combination of do-
main and patch based techniques to optimize the dis-
tribution of each meta-partition within its processor
group.

Developed at Uppsala University, Sweden
and Rutgers University, New Jersey, USA, Na-
ture+Fable (Natural Regions + Fractional block-
ing and bi-level partitioning) [35] is aimed to be the
best possible tool for partitioning SAMR grid hierar-
chies. It hosts a variety of hybrid partitioning options.
All involved parts are engineered to be components
of the meta-partitioner. Thus, they offer carefully
designed parameters to steer component behavior
enabling adaptation to varying partitioning require-
ments. As Nature+Fablematures, it is intended to
transform it into the meta-partitioner. Hence, the par-
titioning tool Nature+Fable, depicted in Fig. 3, is
a step towards a complete implementation. It consists
of the following units:

1. A pre-partitioning unit Nature, which divides
the domain into natural regions suitable for at-
tack by expert algorithms.

1Note that this paper focuses exclusively on partitioning techniques for adaptive structured grids. Similar classification and compar-
ative studies for unstructured-grid/mesh partitioning and dynamic load-balancing have been investigated in the literature [39, 41].

9

Figure 2: A sequence of dynamic adaptive grid hierarchies for a 3-D Richtmyer-Meshkov SAMR simulation.
Note the dynamics of the grid hierarchy as the application evolves. Reprinted with permission from M. Parashar.

2. A set of expert algorithms for blocking homo-
geneous and unrefined parts of a grid, which is
implemented as one part of Fable.

3. An dynamic expert algorithm for partitioning
complex and multi-level refined portions of a
grid, which is implemented as the other part of
Fable.

4. An Organizer, which functions as the heart of,
and interface to, Nature+Fable.

Nature+Fable separates homogeneous, un-
refined (Hue) and complex, refined (Core) domains of
the grid hierarchy and clusters refinement levels into
bi-levels. The expert blocking algorithms used for the
Hues are then after a coarse partitioning step re-used
for the Cores.

With the components listed above, Na-
ture+Fable is a flexible tool with ability to operate
as a part of the meta-partitioner. Nature+Fable
is the result of our research about the partitioning
requirements of large parallel SAMR applications.
Hence, it is designed to cope with the scenarios known
to cause problems for previous approaches. The aim
is that Nature+Fable will provide good scalabil-
ity for general large-scale SAMR applications with
deep hierarchies executed on general parallel comput-
ers. Moreover,the generality and adaption ability of

Nature+Fable would make it suitable for appli-
cations in distributed computing, where resources are
heterogeneous and even more dynamic.

3 A Heuristic Algorithm for Reduc-
ing Inter-Level Communication

The bi-level partitioning approach is appealing, since
[35] (1) it has a strong rationale, and (2) it exhibits
promising experimental results. We start this section
by constructing a mathematical model of the compute
and communication costs of a SAMR application and
motivating the need to redistribute patches as bi-levels
because of inter-level communication costs. This is
then highlighted by a case-study of the Richtmeyer-
Meshkow instability. The case-study establishes that
even with the bi-level partitioning approach, there is
need to explicitly attack inter-level communication
costs. This section then outlines the inherent com-
plexity in all re-mapping techniques and concludes by
presenting our heuristic re-mapping algorithm.

3.1 Analytical Model

This section develops an analytical model for the com-
pute and communication costs of a SAMR application
and uses this model to motivate the need to partition

10

Partitionshierarchy
Grid

Complex

Unrefined

Parallel
simulation

Organizer/

Fractional
blocking

partitioning

Interface

Grids at
levels 0 and 1

U
nrefined

Coarse bi−level
partitionings

Complex

Natural
regions

Bi−level
Blocks

Figure 3: Nature+Fable, a partitioning tool implementing the greater part of the involved components of a
meta-partitioner, with the goal to provide good scalability for general SAMR applications with deep, complex
grid hierarchies executing on general parallel computers.

and redistribute a grid hierarchy as bi-levels (rather
than individual patches).

Compute and communication loads in SAMR ap-
plications are tightly coupled with the numerical sim-
ulation algorithm. Most common algorithms are
based on the “time refinement” approach [7] and con-
sist of a series of identical processes called “time-
steps” ; each time-step usually ends with a global re-
duction or some other operation that effectively syn-
chronizes the processors. Within a time-step, patches
are subjected to various numerical operations. If
patches are refined by a factor of

�
, these numerical

operations are done
�

times. Further, these opera-
tions proceed from the coarsest mesh to the finest in
a recursive manner i.e., ���������	����
�����
������
����
�����
 for a
3 level grid hierarchy with

�����
. ��� refers to the

set of all patches on level � . Communications (ghost
cell updates) are done after each of these numerical
operations and follow the same pattern. At the culmi-
nation of the processing of each level, data is interpo-
lated from the finer children patches onto the coarser
parents.

Consider a 2D domain distributed over a num-
ber of processors after being subjected to a purely
domain-based decomposition. Let a sub-domain on
a processor have � � grid points on the coarsest level.
Let a fraction of this coarse level be refined into level
1 patches, contained in the set � � . Thus, the number
of grid points in � � , (i.e., the load associated with � �)
is � � ��������� ��! � " �� � � � where #$� is the number of

patches in �%� and " �� is the fraction of the sub-domain
that exists in patch & on level � . Patches on a level
are indexed from 0 to #'��(*) . Let ��� be recursively
refined into �
 ����+��
,
,
, .

Let - denote the index of the finest level. During
a time-step, the compute load .�/103254 is. /103254 � 6 /10325487 �9�;: � �<��: �
 �9
;:=,
,
,?> (1)� 6 /103254 @A � � � �

�<BC� �A �D � " �� � � � �� 6 /103254�� � @A � � �
 �
�EBC� �A �! � " ��

where
6 /1032F4 is the computation time / load of a unit

operation.
Let us assume that patches are roughly square and

that the number of “ghost cells” or “guard cells” per

patch G�H " �� � � � � . Since the intra-level communi-
cation follows a similar pattern as the computation,

.�/1032;2 �I6 /1032;2 @A � �
� B � �A �! �KJML �� H " �� � � � � � � (2)

where
6 /1032;2 is a unit communication time and L �� is

the fraction of the perimeter of patch NO�!P � that abuts
another patch on the same level but in a different sub-
domain (and thus requires communication time to get
updated). The fraction of patch a NO�DP � that abuts an-
other patch on the same level & but on the same pro-

11

cessor incur the cost of memory copies. This cost is
relatively low and is thus ignored.

At a given level, data is interpolated from children
patches to the parent at the end of each numerical op-
eration. If Q3RTSVU!WYX[Z is the unit interpolation cost, then
the total time spent in interpolation, \�RTS]U!W^X[Z , is

\�RTSVU!WYX[Z _ Q3RTS]U!W^X[Za`cb�de f?g%hji flkEmonqp b�de R g d
r fts dRvu h i

fts
d (3)

_ u h Q RTSVU!WYX[Zw`xb�de ftg%h i�y fts d
k monqp b�de R g%h r f?s dR{z

Note that \�R?SVU!W^X|Z is entirely computational in a purely
domain-based partitioning — since the child and par-
ent reside on the same processor, these interpolated
values do not have to be transported over a network
and consequently they do not incur a communication
cost.

Thus, the total time for an arbitrary processor to
execute a time-step, \ U!}3U!~ f , is

\ U!}3U!~ f _=\�� }3�5ZE� \ RTS]U!W^X[Z<� \%� }^�j�'� Q3� ~�RTU (4)

where Q3� ~�RTU is the wait induced by load-imbalance
amongst processors. In the following, we assume that
the amount of intra-level communication is relatively
small and could hence be neglected. We will now at-
tempt to reduce Q � ~�RTU by redistributing patches.

3.1.1 Strategy 1: A Patch-based Approach

In Strategy 1 we move an arbitrary patch � fD� R from a
processor with Q�� ~�RTU _�� to another with maximumQ � ~�RTU i.e., the least loaded one. We ignore the migra-
tion cost, since this is incurred once and focus on the
effect on performance.

We gain savings on compute � R� }^�FZ and interpola-
tion � RR?SVU!W^X|Z loads for the patch � . At the same time, we
introduce the cost of inter-level communication, i.e.,
the cost of bringing back the interpolated data from
the off-processor patch: r fR u h i y

f
b�d Q�� }3�;� .

Let � denote the fraction of this communica-
tion time that could not be overlapped with computa-
tion. Then, the load change on the sending processor� Q�� WYS�� is

� Q�� WYS�� _ ��� R� }3�FZ ��� RR?SVU!W^X|Z � ��� R� }3�;� (5)_ � r
f
R u h i y

f
Q � }3�5Z�� r

f
R u h i y

fts
d Q3RTS]U!W^X[Z� r

f
R u h i y

f
b�d ��Q � }3�j�_ r fR u h i�y

f
b�dl� ��Q�� }3�;� ��Q R?SVU!W^X|Z � i Q3� }3�FZM� z

Thus, the requirement for
� Q�� W^SV��� � is��Q�� }3�;� � Q RTS]U!W^X[Z<� i Q�� }3�5Z z (6)

Given the fast processors of today, Q�R?SVU!W^X|Z andQ � }3�5Z are far smaller than Q � }3�;� (usually an order of
magnitude) and unless one achieves a high degree of
overlap (�����) the sending processor might actually
end up taking more time as a consequence of the data
movement, i.e.,

� Q�� W^SV�K� � . The conclusion is that
Strategy 1 has its inherent shortcomings.

3.1.2 Strategy 2: A Level-Clustering Approach

The obvious way to render
� Q�� W^SV��� � is to in-

crease the savings in compute and interpolations
costs while keeping the communication overhead un-
changed. Consequently, in Strategy 2 we consider
the case of moving all patches above level “ � ” off-
processor in an effort to reduce \ U!}3U!~ f . This leaves
the original processor with levels 0 to � along with
a requirement of bring back interpolated values from
the off-processor �%� s d . Thus the change of load on
the sending processor

� Q�� WYS�� can be calculated as the
cost incurred in bringing back interpolated data from� � s d minus the compute and interpolate savings due
to removal of all patches in ��� s d	� ���

s y � z
z
z , i.e.,� Q�� WYS�� _ e �	¡ � R� }3�;� (7)

� e�]¢ � ��£x� � � R� }3�5Z � � RRTSVU!WYX[Z �
_ � `ef?g � s d

k<m b�de R g%h r
f
R u h i�y

f
Q � }3�5Z

� `xb�de f?g �
k monqp b�de R g%h r fts dRvu h i�y

f?s
d Q^RTSVU!WYX[Z

�
k ¡ b�de R g%h r �R¤u

h i y � ��Q � }^�j� z
12

The ¥ `
ftg � s d ¥

k m b�dR g%h above sums up the contributions
of ��� s d¦� ���

s y � z
z
z as does ¥ �l¢ � ��£x� . By choosing a
value of � , i.e., deciding at which level to truncate the
grid hierarchy,

� Q�� W^S�� could be made negative. We
illustrate this with an example.

Consider the case of a sub-domain with a four-
level grid hierarchy with

i _�§ . Assume that this sub-
domain resides on the most loaded processor. Fur-
ther, assume Q � }3�;��_©¨
� , Q � }3�FZK_�Q^RTSVU!WYX[Zª_«¨ cor-
responding to a computer with Q � }3�j� an order of a
magnitude larger than Q � }3�5Z�_�Q^RTSVU!WYX[Z , and �*_¬� z®­
and ¥ � p r fR _v� z § , ¥ �V¯ r

f
R _v� z ¨ and ¥ �l° r fR _� z �²± corresponding to generally observed values for

SAMR applications. Trying to reduce the load by
removing a patch individually (as per Strategy 1 dis-
cussed above), Eq. 5 shows that the sending processor
(the most loaded one) will actually increase its run-
ning time since we will get

� Q�� WYS��³� � . Instead —
as Strategy 2 suggests — consider the case of moving
levels 2 and 3 (levels are indexed from 0) to a different
processor, i.e., setting �´_µ¨ . Eq. 7 gives� Q�� W^SV� _ u hM¶ � � � z ¨¸·³§V¹ � � z �²±º·»§�¼ � ·½Q3� }^�FZ(8)� � � z ¨´·³§�¾ � � z �²±¿·³§�À � ·½Q3RTS]U!W^X[Z� � � z §Á·³§ y � ·Â��·½Q � }3�;�ÄÃ_ � ­²u h z
Thus, moving the bi-level as a whole to the least-
loaded processor rendered

� Q�� WYS���� � , i.e., it reduced
the load on the sending processor. The conclusion is
that by migrating a parent-child pair as a unit, we reap
the benefit of relieving the sending processor of sub-
stantial computational and interpolation costs while
incurring the (smaller) communication cost of trans-
ferring the interpolated values back to the source pro-
cessor. If this reduction of load on the sending proces-
sor is excessive i.e., the least loaded processor now be-
comes the bottleneck, then the bi-level could be parti-
tioned and one of the partitions moved. This approach
is used in Nature+Fable.

3.2 Case Study: Richtmyer-Meshkow Insta-
bility

Despite the bi-level partitioning approach, the inter-
level component can for some applications account
for about 80 percent of the total communication costs.
Figure 4 displays a communication break-down for

the Richtmyer-Meshkow instability with 5 levels of
refinement for 100 time-steps, partitioned by the tool
Nature+Fable. This example indicates that ways
of attacking this component explicitly is imperative.

Nature+Fable clusters levels in pairs, called
bi-levels. Within these bi-levels there is no inter-level
communication, since they are partitioned in a strictly
domain-based fashion. Nevertheless, inter-level com-
munication may occur in between two bi-level parti-
tions (that is, the top layer of the lower one, and the
bottom layer of the upper one), if they are not mapped
onto the same processor.

Bi-levels are mapped onto processors using a par-
tially ordered space-filling curve (SFC). In practice,
if the refinements on the higher levels have the same
shape and size as on the lower levels, the ordering
scheme will in many cases map parent and children
onto the same processor.

The problem with the SFC mapping occurs when
the shape and size of the higher refinement levels dif-
fers from that of the lower levels. The result can
look like an arbitrary mapping, with few cases of par-
ent/child boxes residing on the same processor.

This paper proposes a fast heuristic re-mapping al-
gorithm as a remedy for bad default SFC mappings.

3.3 Re-Mapping Complexity

First, some necessary definitions.

Definition 3.1. A list of boxes is a set of boxes where
each box has a processor assignment.

Definition 3.2. A partition is the subset of a set of
boxes containing all boxes with the same processor
assignment.

Definition 3.3. A re-mapping is a permutation of the
processor assignments for a set of partitions. Par-
titions are therefore regarded as atomic by the re-
mapping.

According to these definitions, the re-mapping
scheme can never manipulate individual boxes. As
a consequence, the load balance will be unaffected by
any re-mapping.

The greatest concern for all Nature+Fable al-
gorithms besides their primary functionality is speed.
Thus, all algorithms should have low complexity and

13

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000
RM2D AVERAGE Communication Comparison

Time step

C
om

m
un

ic
at

io
n

vo
lu

m
e

MB Intralevel
MB Total=inter+intra
FB Intralevel
FB Total=inter+intra

Figure 4: Communication breakdown for RM2D application with 5 levels of refinements. Blue is multiple
blocking and red is fractional blocking. Å�_µ¨	Æ and ÇÈ_ÊÉË_ ­ .
operate on simple data structures. We start this sec-
tion by discussing the inherent complexity of the re-
mapping problem.

Assume two sets of partitions where both sets
have the same number of partitions and the same pro-
cessor span. Further, let one of these sets belong to
refinement level Ì � ¨ and the other to level Ì � § and
place them “on top” of each other. The processor as-
signments will now dictate the amount of inter-level
communication. Figure 5 illustrates the idea.

For simplicity reasons, assume there is exactly one
box per processor and that there are Í boxes (and
processors). Finding the optimal solution (trying and
evaluating each) require ÍaÎ steps. This is unacceptable
for larger values on Í . Moreover, in most cases, there
will be a set of boxes in each partitioning. Evaluat-
ing a assignment permutation will involve substantial
computational cost (checking each box for possible
overlap with other boxes).

As a consequence, innovative heuristics are im-
perative. The next subsubsections will describe how
the problem is attacked, what heuristics are used and
so forth.

3.4 Re-Mapping Algorithms

We build our algorithms on some facts and experi-
ence, viz:

a) Most work is done at the higher refinement lev-
els. Therefore, we let the top bi-level be un-
touched. We recursively move down the refine-
ment levels and attack bi-level by bi-level.

b) The solution given by the partially ordered SFC
is probably a good initial guess to an acceptable
solution. That is, we must take advantage of
this, and not start from scratch. This will lower
the complexity substantially.

c) Greedy approaches are often successfully used
in partitioning contexts. This is a typical case
where a greedy approach could be useful.

Our proposed algorithm is composed of three
steps, viz. (1) Linearizing/approximation, and (2) Re-
moving “good-enough” partitions in the default map-
pings, and (3) Re-mapping of the remaining parti-
tions. The first two steps strives to reduce the data
volume and algorithm complexity. The overall com-
plexity is Ï �ÑÐ y � where Ð is the number of remaining
items in the list of boxes after the first two steps. The
three steps will be described in the following sections.

3.4.1 Linearizing/Approximation

To avoid costly evaluation and non-linear, highly com-
plex data structures (i.e. e.g. arrays of lists of boxes),
the first step should be to create the simpler scenario

14

ÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒÒlÒ
ÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓÓlÓbetween level and

Inter−level communication
l+1 l+2

ÔlÔlÔlÔlÔlÔlÔlÔlÔÔlÔlÔlÔlÔlÔlÔlÔlÔÔlÔlÔlÔlÔlÔlÔlÔlÔÔlÔlÔlÔlÔlÔlÔlÔlÔÔlÔlÔlÔlÔlÔlÔlÔlÔÔlÔlÔlÔlÔlÔlÔlÔlÔÕlÕlÕlÕlÕlÕlÕlÕÕlÕlÕlÕlÕlÕlÕlÕÕlÕlÕlÕlÕlÕlÕlÕÕlÕlÕlÕlÕlÕlÕlÕÕlÕlÕlÕlÕlÕlÕlÕÕlÕlÕlÕlÕlÕlÕlÕ

}

} Bi−level containing
levels l and l+3

Bi−level containing
levels l and l+1

+2

Figure 5: The re-mapping problem. Note how a permutation of processor assignments for the partitions would
decrease the amount of inter-level communication.

where each partition consists of exactly one box. That
is, for each partition, one box is created to represent
(or approximate) its partition. Depending on the given
partitioning scenario, different strategies are useful.
We propose two schemes for creating approximating
boxes. The first is called Union, and the second is
called Largest.Ö Union. This is used in the case where Na-

ture+Fable multiple blocking is used. A
bounding box around all the partition’s boxes
(a box-union of them) would approximate the
partition. Figure 6 illustrates the idea.Ö Largest. This is used in the case where
Nature+Fable fractional blocking is used.
Union will not approximate the partition for
the cases where processors are assigned more
than one box (most processor are assigned ex-
actly one box). In the multiple boxes per pro-
cessor case, the set of boxes may be spatially
spread out over the computational domain. A
bounding box will therefore give little infor-
mation about the partition. As a consequence,
we propose to choose the largest box to repre-
sent/approximate the partition.

The complexity for both strategies are linear in the
number of approximating boxes in either of the lists.

3.4.2 Removing of “Good-Enough” Partitions

It is not feasible to search for an optimal solution (it
is not even clear what “optimal” means at this point)

even for this simplified case of approximating boxes.
Thus, we need to further lower the complexity. We do
that by acknowledging that the default SFC mapping
probably is a good initial guess to a high-quality so-
lution. In view of this, we reduce the required work
by reducing the size of the input. The idea is to re-
move pairs of partitions that as a result of the default
mapping is already “good-enough”.

Assume two lists × and Ø of approximating boxes
representing partitions on level Ì � ¨ and level Ì � § as
in the example.

We start by introducing the parameter thresholdÙ ¶ � � ¨
�M�VÃ . Recall that the current mapping should
be regarded as a good initial guess. Thus, intersect
the boxes in list × with its counterpart in list Ø and
remove all pairs with an intersection volume greater
than threshold percent of the box in × . The deleted
partitions are regarded as having a good-enough map-
ping and will not be considered further.

The complexity for this step is linear in the num-
ber of approximating boxes in either of the lists.

3.4.3 Re-Mapping of Approximating Boxes

Remaining in list × and Ø from the previous section
are the partitions in need of re-mapping. We use a
greedy approach to re-map these partitions. We start
with the first box in list × , and intersect it with all
boxes in list Ø . The one with the greatest intersec-
tion volume is considered the best choice. If no best
choice was found, we assign it to the processor of the
first box in Ø . If a best assignment was found, we
greedily assign it. Last, we remove the corresponding

15

ÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚÚlÚ
ÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛÛlÛbetween level and

Inter−level communication
l+1 l+2

}

Bi−level containing
levels l and l+3

Bi−level containing
levels l and l+1

+2}ÜlÜlÜlÜlÜlÜlÜlÜlÜÜlÜlÜlÜlÜlÜlÜlÜlÜÜlÜlÜlÜlÜlÜlÜlÜlÜÜlÜlÜlÜlÜlÜlÜlÜlÜÜlÜlÜlÜlÜlÜlÜlÜlÜÜlÜlÜlÜlÜlÜlÜlÜlÜÝlÝlÝlÝlÝlÝlÝlÝÝlÝlÝlÝlÝlÝlÝlÝÝlÝlÝlÝlÝlÝlÝlÝÝlÝlÝlÝlÝlÝlÝlÝÝlÝlÝlÝlÝlÝlÝlÝÝlÝlÝlÝlÝlÝlÝlÝ

Figure 6: The Union scheme. Note how a bounding box around each partition is created and set to represent its
partition.

box from Ø . We then continue with the rest of the
boxes in × .

This algorithm is quadratic in the number of re-
maining list items.

A successful re-mapping (not considering the data
migration problem) of the example above is illustrated
in Figure 7.

Each processor assignment considered in the re-
mapping should be fast and simple to evaluate. Con-
sequently, a model involving only one box-overlap op-
eration is used.

4 Methods — Experimental Setup

4.1 Five SAMR Applications

A suite of 5 “real-world” SAMR application kernels
taken from varied scientific and engineering domains
are used to evaluate the effectivness of the heuristic al-
gorithm to reduce communication. These applications
demonstrate different runtime behavior and adapta-
tion patterns. Application domains include numeri-
cal relativity (Scalarwave), oil reservoir simulations
(Buckley-Leverette), and computational fluid dynam-
ics (compressible turbulence - RM, and supersonic
flows - EnoAMR 2D). Finally, we also use TportAMR
2D which is a simple benchmark kernel that solves the
transport equation in 2D and is part of the GrACE dis-
tribution. The applications use 5 levels of factor 2 re-
finements in space and time. Regridding and redistri-

bution is performed every 4 time-steps on each level.
The applications are executed for 100 time-steps and
the granularity (minimum block dimension) is 2. The
application kernels are described below.

The numerical relativity application (Scalar-
wave/SC) is a coupled set of partial differential equa-
tions. The equations can be divided into two classes:
elliptic (Laplace equation-like) constraint equations
which must be satisfied at each time, and coupled
hyperbolic (Wave equation-like) equations describing
time evolution. This kernel addresses the hyperbolic
equations and is part of the Cactus numerical relativity
toolkit 2.

The Buckley-Leverette model is used in Oil-Water
Flow Simulation (OWFS) application for simulation
of hydrocarbon pollution in aquifers. OWFS provides
for layer-by-layer modeling of oil-water mixture in
confined aquifers with regard to discharge/recharge,
infiltration, interaction with surface water bodies and
drainage systems, discharge into springs and leakage
between layers. This kernel is taken from the IPARS
reservoir simulation toolkit developed at the Center
for Subsurface Modeling at the University of Texas
at Austin 3.

The RM is a compressible turbulence application
solving the Richtmyer-Meshkov instability. This ap-
plication is part of the virtual test facility (VTF) devel-
oped at the ASCI/ASAP center at the California Insti-
tute of Technology4 . The Richtmyer-Meshkov insta-
bility is a fingering instability which occurs at a mate-

2Cactus Computation Toolkit - http://www.cactuscode.org
3IPARS: A New Generation Framework for Petroleum Reservoir Simulation - http://www.ticam.utexas.edu/CSM/ACTI/ipars.html
4Center for Simulation of Dynamic Response of Materials - http://www.cacr.caltech.edu/ASAP/

16

ÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞÞlÞ
ßlßßlßßlßßlßßlßßlßßlßßlßßlßßlßßlßßlßßlßbetween level and

Inter−level communication
l+1 l+2

}

Bi−level containing
levels l and l+3

Bi−level containing
levels l and l+1

+2}àlàlàlàlàlàlàlàlààlàlàlàlàlàlàlàlààlàlàlàlàlàlàlàlààlàlàlàlàlàlàlàlààlàlàlàlàlàlàlàlààlàlàlàlàlàlàlàlàáláláláláláláláálálálálálálálááláláláláláláláálálálálálálálááláláláláláláláálálálálálálálá

Figure 7: A successful mapping of the example (not considering the migration problem).

rial interface accelerated by a shock wave. This insta-
bility plays an important role in studies of supernova
and inertial confinement fusion.

EnoAMR is a computational fluid dynamics ap-
plication that addresses the forward facing step prob-
lem, describing what happens when a step is instan-
taneously risen in a supersonic flow. The applica-
tion has several features including bow shock, Mach
stem, contact discontinuity, and a numerical bound-
ary. EnoAMR is also a part of the virtual test facility
developed at the ASCI/ASAP Center at Caltech.

4.2 Deriving the Amount of Component
Communication

The evaluation is performed using software [33] de-
veloped at Rutgers University in New Jersey by The
Applied Software Systems Laboratory, that simulates
the execution of the Berger-Colella SAMR algorithm.
This software is driven by an application execution
trace obtained from a single processor run. This trace
captures the state of the SAMR grid hierarchy for the
application at the regrid (refinement and coarsening)
step and is independent of any partitioning. The ex-
perimental process allows the user to select the par-
titioner to be used, the partitioning parameters (e.g.
block size), and the number of processors. The trace
is then run and the performance of the partitioning
configuration at each regrid step is computed using a
metric [35] with the components load balance, com-
muication, data migration, and overheads. The pro-
cess is illustrated in Figure 8.

Note that this simulation process differs from ap-
proaches where a parallel computer with certain char-

acteristics is simulated [40]. In our approach, it is
rather the SAMR algorithm that is simulated. The
simulator computes information about e.g. the amount
of communication caused by a given partitioning —
not the cost of this communication on a given parallel
computer. Thus, our approach is independent of com-
puter characteristics. This allows for a “fair” compar-
ison and determination of partitioner characteristics.

Using the evaluation process described above,
communication is the sum of the amount of inter-
processor communication taken over all time-steps.
Data migration is the sum of the total number of data
points forced to migrate as a result of re-partitioning,
taken over all time-steps.

4.3 Partitioning Set-Up

The blocking methods, multiple blocking (MB) and
fractional blocking (FB) in Nature+Fable were
used. Multiple blocking creates É blocks per proces-
sor and bi-level. Fractional blocking generates exactly
one block per processor for the greater part of the pro-
cesors, and some fractional blocks where needed in
critical areas. The size of the fractions is a multiple
of â�ãMÉ , where â is the “unit load” that should be as-
signed to each processor for establishing perfect load
balance. These methods are described in full in [35].
The parameter threshold was set to � � ¨
� � §�� � zDzDz � ¨
�M�for each application and blocking scheme. Due to the
relatively small trace-file grids, the number of proces-
sors was 16. The entire parameter setting for Na-
ture+Fable is listed in Table 1.

17

Figure 8: An overview of the experimentation process. An application refinement trace from a single processor
run is used to drive the selected partitioner. The resulting partitioning is then evaluated by the software that
simulates the Berger-Colella SAMR algorithm. Reprinted with permission from M. Parashar.

5 Results

The effect of the proposed re-mapping algorithm with
threshold=0 for RM is presented in Table 2. Fig-
ure 5 shows a more detailed view for FB. Figures
10 through 12 illustrate the impact of the parameter
threshold for each of the applications, and figure 13
displays a summary of the best-achieved mapping for
each application and the impact on data migration.

Viewing the results, we may list a number of ob-
servations:Ö The proposed re-mapping algorithm reduces the

total communication volume with up to 30 per-
cent (see Figure 13).Ö The positive impact of the proposed re-mapping
algorithm is greater for FB than for MB (see
Figure 13).Ö The result of the parameter threshold on to-
tal communication is predictable and “well-
behaved” for FB but unpredictable for MB (see
Figures 10 through 12).Ö MB produced less communication than FB for
the un-mapped cases for 3 out of 5 applications
(see Figure 13).Ö FB produced less communication than MB for

the mapped cases for all applications (see Fig-
ure 13).Ö FB struggles with data migration, and it gets a
few percent worse as an effect of the mapping
(see Figure 13).

6 Discussion, Conclusion, and Fu-
ture Work

The proposed heuristic algorithm reduced inter-level
communication substantially. The decrease is even
larger than the numbers for total communication pre-
sented, and depends on the relative contribution to to-
tal communication volume. Since the complexity of
the proposed algorithm is low, this decrease came at a
relatively low cost. As a consequence, we draw the
conclusion that the proposed re-mapping algorithm
would be useful to lower overall execution times for
many large SAMR applications. Due to its usefulness
and its parameterization, the proposed algorithm oper-
ating within Nature+Fablewould constitute a nat-
ural and important component of the meta-partitioner.

To lower the complexity of the re-mapping algo-
rithm, the parameter threshold should be set as low as
possible. A lower setting means that more approxi-
mating box pairs will be removed from the list of pos-
sible mappings. The present results show that a fairly

18

Parameter Setting Description in [35]
smoothing 2 Chapter 6
growing 2 Chapter 6
NRmode Strategy 2: Off Chapter 6

Smoothing: On
Connect regions: On

actualLevels Off Chapter 8
goodEnough 20.0 Chapter 8
whiteSpace 0.5 Chapter 8
atomicUnit 2 Chapter 4

bMode MULT/FRAC Chapter 7
Q 4 Chapter 7

maxNRLoadImb 0.10 Chapter 9
maxVirtualPFactor 1 Chapter 9

mapping on/off Present paper
mapThresHold 0-100 Present paper

Table 1: Parameter settings for Nature+Fable in the experiments.

Scheme avg comm max comm avg migration max migration
FB 24 14 -7 -5
MB 5 4 -3 -4

Table 2: RM2D: Results in percent improvement when using the re-mapping with threshold=0. FB=fractional
blocking and MB=multiple blocking. Note the significant improvement on average communication for FB and
the marginal improvement for MB.

low setting is sufficient for FB to generate good re-
sults. Since FB has the two advantages over MB, viz.
(1) it generates fewer boxes per processor, and (2) it is
much faster to compute, we conclude that the present
results are sufficient to choose FB over MB in all cases
where data migration does not have a significant im-
pact on overall application execution time.

We also draw the conclusion that data migration
has to be improved for the FB scheme, and we out-
line a model for achieving this below. Increased data
migration is a major problem for re-mapping algo-
rithms reducing inter-level communication. That is,
the SFC ordering ensures that data will not move
much (loosely speaking). Destroying this ordering
(which is what a re-mapping will do), for one or
more bi-levels, will affect to what extent data tend to
stay/migrate.

Therefore, a re-mapping scheme aiming to reduce
inter-level communication should be constrained to

move data as few hops as possible and maintain data
locality, which is important considering the hierarchi-
cal nature of parallel computers (0 hops is the lo-
cal processor, 1 hop could be on the same processor
board, 2 hops could be in the same SMP, and so forth).
Moreover, in the next partitioning step, the same data
will end up “close” to the local processor again. Hav-
ing moved this data many hops, decreases the pos-
sibility for having any luck regarding not having to
move the data again.

Models incorporating a weighted metric for qual-
ity will be investigated further in future research. The
suggestion for incorporating a penalty for the number
of hops introduced by the re-mapping algorithm is as
follows (assume two boxes ä and å from the lists ×
and Ø):

quality _ rçæ intersect(ä , å) � � ¨5� r � æ ¨è � nrOfHops

19

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000
RM2D AVERAGE Communication Comparison

Time step

C
om

m
un

ic
at

io
n

vo
lu

m
e

FB+map Intralevel
FB+map Total=inter+intra
FB Intralevel
FB Total=inter+intra

Figure 9: RM: Results for the fractional blocking scheme with threshold=0. The blue is with mapping and red
is without. Note a 24 percent improvement of total communication.

where �ªé r éê¨ and è is a small number. This
is a simple linear model allowing for the weighting of
communication and data migration costs.

In this paper, we proposed a fast heuristic algo-
rithm reducing the amount of inter-level communi-
cation in parallel SAMR applications partitioned by
Nature+Fable. Reducing this component may be
crucial to reduce execution times for many SAMR
applications. The proposed algorithm was particu-
larly useful for the FB partitioning method in Na-
ture+Fable, for which the reduced amount of
communication volume was established reliably and
fast. With the proposed re-mapping algorithm, Na-
ture+Fable takes another step towards a complete
implementation of the meta-partitioner.

References

[1] The ASCI allience. http://www.llnl.gov/asci-
alliences/asci-chicago.html, University of Chicago,
2000.

[2] The ASCI/ASAP center.
http://www.carc.caltech.edu/ASAP, California
Institute of Technology, 2000.

[3] CHOMBO. http://seesar.lbl.gov/anag/chombo/,
NERSC, ANAG of Lawrence Berkeley National Lab,
CA, USA, 2003.

[4] Scott B. Baden, Scott R. Kohn, and S. Fink. Program-
ming with LPARX. Technical Report, University of
California, San Diego, 1994.

[5] Dinshaw Balsara and Charles Norton. Highly parallel
structured adaptive mesh refinement using language-
based approaches. Journal of parallel computing,
(27):37–70, 2001.

[6] M. Berger, et al. Adaptive mesh refinement for 1-
dimensional gas dynamics. Scientific Computing,
17:43–47, 1983.

[7] M. J. Berger and P. Colella. Local adaptive mesh re-
finement for shock hydrodynamics. Journal of Com-
putational Physics, 82, 1989.

[8] Marsha J. Berger and Joseph Oliger. Adaptive mesh
refinement for hyperbolic partial differential equa-
tions. Jounal of Computational Physics, 53:484–512,
1984.

[9] G. Bryan. Fluids in the universe: Adaptive mesh re-
finement in cosmology. Computing in Science and
Engineering, pages 46–53, 1999.

[10] S. Chandra and M. Parashar. An evaluation of par-
titioners for parallel SAMR applications. Lecture
Notes in Computer Science, 2150:171–174, 2001.
Euro-Par 2001.

[11] S. Chandra, J. Steensland, and M. Parashar. An exper-
imental study of adaptive application sensitive parti-
tioning strategies for SAMR appliations, 2001. Re-
search poster presentation at Supercomputing Confer-
ence, November 2001.

20

0 10 20 30 40 50 60 70 80 90 100
5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000
RM2D

Good enough overlap percentage

To
ta

l c
om

m
un

ic
at

io
n

MB
FB

0 10 20 30 40 50 60 70 80 90 100
620

630

640

650

660

670

680
ENO2D

Good enough overlap percentage

To
ta

l c
om

m
un

ic
at

io
n

MB
FB

Figure 10: Impact of the parameter threshold for the applications RM (left) and ENO (right).

0 10 20 30 40 50 60 70 80 90 100
1400

1500

1600

1700

1800

1900

2000

2100
SC2D

Good enough overlap percentage

To
ta

l c
om

m
un

ic
at

io
n

MB
FB

0 10 20 30 40 50 60 70 80 90 100
1150

1200

1250

1300

1350

1400

1450
TP2D

Good enough overlap percentage

To
ta

l c
om

m
un

ic
at

io
n

MB
FB

Figure 11: Impact of the parameter threshold for the applications SC (left) and TP (right).

[12] S. Chandra, J. Steensland, M. Parashar, and J. Cum-
mings. An experimental study of adaptive applica-
tion sensitive partitioning strategies for SAMR appli-
ations. Santa Fe, NM, USA, 2001.

[13] Sumir Chandra. ARMaDA: a framework for adap-
tive application-sensitive runtime management of
dynamic applications. Master’s Thesis, Graduate
School, Rutgers University, NJ, USA, 2002.

[14] Mattew W. Choptuik. Experiences with an adap-
tive mesh refinement algorithm in numerical relativ-
ity. Frontiers in Numerical Relativity, pages 206–221,
1989.

[15] Karen Devine et al. Design of dynamic load-
balancing tools for parallel applications. Technical
report, Sandia national Laboratories, Albuquerque,
NM, USA, 2000.

[16] Stephen J. Fink, Scott B. Baden, and Scott R. Kohn.
Flexible communication mechanisms for dynamic
structured applications. In Proceedings of IRREG-
ULAR ’96, 1996.

[17] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20:359–392, 1998.

[18] Scott Kohn. SAMRAI homepage, structured adap-
tive mesh refinement applications infrastructure.
http://www.llnl.gov/CASC/SAMRAI/, 1999.

[19] Z. Lan, V. Taylor, and G. Bryan. Dynamic load bal-
ancing for structured adaptive mesh refinement appli-
cations. In Proceedings of ICPP 2001, 2001.

21

0 10 20 30 40 50 60 70 80 90 100
380

400

420

440

460

480

500
BL2D

Good enough overlap percentage

To
ta

l c
om

m
un

ic
at

io
n

MB
FB

Figure 12: Impact of the parameter threshold for the application BL.

RM2D ENO2D SC2D TP2D BL2D
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Best possible mapping

C
om

m
un

ic
at

io
n

Application

MB
MB+Map
FB
FB+Map

RM2D ENO2D SC2D TP2D BL2D
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data migration caused by mapping

D
at

a
m

ig
ra

tio
n

Application

MB
FB
FB+Map

Figure 13: Best-achieved mappings for the all applications (left) and the impact on data migration (right).

[20] Z. Lan, V. Taylor, and G. Bryan. Dynamic load bal-
ancing of SAMR applications on distributed systems.
In Proceedings of Supercomputing 2001, 2001.

[21] Peter MacNeice. Paramesh homepage, 1999.
sdcd.gsfc.nasa.gov/ESS/macneice/paramesh/-
paramesh.html.

[22] Peter MacNeice et al. PARAMESH: A parallel adap-
tive mesh refinement community toolkit. Computer
physics communications, (126):330–354, 2000.

[23] M. Norman and G. Bryan. Cosmological adaptive
mesh refinement. Numerical Astrophysics, 1999.

[24] M. Parashar and J. C. Browne. On partitioning dy-
namic adaptive grid hierarchies. In Proceedings of
the 29th Annual Hawaii International Conference on
System Sciences, 1996.

[25] M. Parashar, J.A. Wheeler, G. Pope, K.Wang, and
P. Wang. A new generation EOS compositional reser-
voir simulator: Part II - framework and multiprocess-
ing. Proceedings of the Society of Pertroleum En-
gineerings Reservoir Simulation Symposium, Dallas,
TX, June 1997.

[26] Manish Parashar and James Browne. System engi-
neering for high performance computing software:
The HDDA/DAGH infrastructure for implementa-
tion of parallel structured adaptive mesh refinement.
IMA Volume on Structured Adaptive Mesh Refinement
(SAMR) Grid Methods, pages 1–18, 2000.

[27] S.G. Parker. A component-based architecture for par-
allel multi-physics PDE simulations. In Proceed-
ings of ICCS 2002, number 2331, pages 719–734.
Springer Verlag, 2002.

22

[28] R. Pember, J. Bell, P. Colella, W. Crutchfield, and
M. Welcome. Adaptive cartesian grid methods for
representing geometry in inviscid compressible flow,
1993. 11th AIAA Computational Fluid Dynamics
Conference, Orlando, FL, July 6-9.

[29] Jarmo Rantakokko. Data Partitioning Methods and
Parallel Block-Oriented PDE Solvers. PhD thesis,
Uppsala University, 1998.

[30] Hawley S. and Choptuic M. Boson stars driven to
the brink of black hole formation. Physic Rev, D
62:104024, 2000.

[31] Jeffrey Saltzman. Patched based methods for adap-
tive mesh refinement solutions of partial differential
equations, 1997. Lecture notes.

[32] K. Schloegel, G. Karypis, and V. Kumar. A unfified
algorithm for load-balancing adaptive scientific sim-
ulations. In Proceedings of Supercomputing 2000,
2000.

[33] Mausumi Shee. Evaluation and optimization of load
balancing/distribution techniques for adaptive grid
hierarchies. M.S. Thesis, Graduate School, Rutgers
University, NJ, 2000
http://www.caip.rutgers.edu/TASSL/Thesis/mshee-
thesis.pdf, 2000.

[34] Johan Steensland. Domain-based partitioning for par-
allel SAMR applications, 2001. Licentiate thesis. Up-
psala University, IT, Dept. of scientific computing.
2001-002.

[35] Johan Steensland. Efficient partitioning of dynamic
structured grid hierarchies. PhD thesis, Uppsala Uni-
versity, 2002.

[36] Johan Steensland, Sumir Chandra, and Manish
Parashar. An application-centric characterization of
domain-based SFC partitioners for parallel SAMR.
IEEE Transactions on Parallel and Distributed Sys-
tems, December:1275–1289, 2002.

[37] Erlendur Steinthorsson and David Modiano. Ad-
vanced methodology for simulation of complex flows
using structured grid systems. ICOMP, 28, 1995.

[38] M. Thuné. Partitioning strategies for composite grids.
Parallel Algorithms and Applications, 11:325–348,
1997.

[39] N. Touheed, P. Selwood, P. Jimack, and M. Berzins.
A comparison of some dynamic load-balancing algo-
rithms for a parallel adaptive flow solver. Journal of
Parallel Computing, 26:1535–1554, 2000.

[40] C. Walshaw and M. Cross. Multilevel mesh partition-
ing for heterogeneous communication networks. Fu-
ture generation computer systems, 17:601–623, 2001.

[41] C. Walshaw, M. Cross, and M. G. Everett. Parallel
dynamic graph partitioning for adaptive unstructured
meshes. Journal of Parallel and Distributed Comput-
ing, 47(2):102–108, December 1997.

[42] P. Wang, I. Yotov, T. Arbogast, C. Dawson,
M. Parashar, and K. Sepehrnoori. A new generation
EOS compositional reservoir simulator: Part I - for-
mulation and discretization. Proceedings of the Soci-
ety of Pertroleum Engineerings Reservoir Simulation
Symposium, Dallas, TX, June 1997.

[43] Andrew M. Wissink et al. Large scale parallel sctruc-
tured AMR calculations using the SAMRAI fram-
work. In proceedings of Supercomputing 2001, 2001.

23

Distribution List

External Distribution

1 Manish Parashar
Department of Electrical & Computer Engineering
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854-8058

1 Sumir Chandra
CAIP Center at Rutgers University
CORE Building, Busch Campus
96 Frelinghuysen Rd. Piscataway, NJ 08855-1390

1 Michael Thuné
Information Technology
Department of Scientific Computing
P.O. Box 337, SE-751 05 Uppsala, Sweden

1 Jarmo Rantakokko
Information Technology
Department of Scientific Computing
P.O. Box 337, SE-751 05 Uppsala, Sweden

Internal Distribution

2 MS 9915 Johan Steensland, 8961
1 MS 9051 Jaideep Ray, 8961
3 MS 9018 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 0612 Classification Office, 8511 for Technical Library,

MS 0899, 9616
DOE OSTI via URL

24

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 SAMR and Related Work
	2.1 Introduction to SAMR
	2.2 Partitioning SAMR Grid Hierarchies

	3 A Heuristic Algorithm for Reducing Inter-Level Communication
	3.1 Analytical Model
	3.2 Case Study: Richtmyer-Meshkow Instability
	3.3 Re-Mapping Complexity
	3.4 Re-Mapping Algorithms

	4 Methods Š Experimental Setup
	4.1 Five SAMR Applications
	4.2 Deriving the Amount of Component Communication
	4.3 Partitioning Set-Up

	5 Results
	6 Discussion, Conclusion, and Future Work
	References
	Distribution

