
SAND REPORT

SAND2003-4282
Unlimited Release
November 2003

Algorithms for Improved Performance in
Cryptographic Protocols

Richard Schroeppel and Cheryl Beaver

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

SAND2003-4282
Unlimited Release

Printed November 2003

Algorithms for Improved Performance in

Cryptographic Protocols

Richard Schroeppel and Cheryl Beaver
Cryptography and Information Systems Surety Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0785
rschroe, cbeaver@sandia.gov

Abstract

Public key cryptographic algorithms provide data authentication and non-repudiation for
electronic transmissions. The mathematical nature of the algorithms, however, means they
require a significant amount of computation, and encrypted messages and digital signatures
posess high bandwidth. Accordingly, there are many environments (e.g. wireless, ad-hoc, remote
sensing networks) where public-key requirements are prohibitive and cannot be used. The use
of elliptic curves in public-key computations has provided a means by which computations and
bandwidth can be somewhat reduced. We report here on the research conducted in an LDRD
aimed to find even more efficient algorithms and to make public-key cryptography available to
a wider range of computing environments. We improved upon several algorithms, including one
for which a patent has been applied. Further we discovered some new problems and relations
on which future cryptographic algorithms may be based.

3

Acknowledgement

The authors would like to thank Don Gallup, Nathaniel Blair-Stahn, Erin McNicholas and Livia
Miller for their programming efforts. We also thank Bill Gosper for his research contributions.

4

Contents

1 Introduction . 7
2 Elliptic Curves . 8

2.1 Elliptic Curve Point Addition . 8
2.2 Elliptic Curves In Cryptography . 10
2.3 Computational Considerations . 11
2.4 Secure Curves and Point Counting . 12

3 Faster Point Multiplication. 13
4 Point Halving . 13
5 Double And Add. 14
6 The Reciprocal Sharing Trick . 15

6.1 Special Cases . 17
6.2 Timing Results . 19
6.3 More Applications . 19
6.4 Protection against Side Channel Attacks . 19
6.5 Montgomery’s Reciprocal Sharing . 19
6.6 Other Point Addition Considerations . 20

7 Finite Field Arithmetic and Field Towers. 21
7.1 Field Towers . 22
7.2 Quadratic Solve . 22

8 Available Software . 23
9 Dilogarithms . 24

9.1 The Classical Dilogarithm Function . 24
9.2 Modular Dilogarithms . 27
9.3 Computing Modular Dilogarithms . 28
9.4 Extensions: Other Moduli, Other Fields, Other Functions . 31
9.5 Miscellaneous Musings . 32
9.6 Prospects . 33

10 Recurrence Sequences . 33
11 Other Groups . 33
12 References. 34

Figures

1 Point Addition: M1 = M2 = M3. 10
2 Double and Add . 14
3 Double and Add with Reciprocal Savings Trick . 16
4 Conventional Point Addition . 18
5 Point Addition with RST . 18
6 Dilogarithm Relations . 25

5

6

Algorithms for Improved Performance

in Cryptographic Protocols

1 Introduction

Cryptographic protocols provide means to protect critical data across insecure communication lines.
Protocols such as HTTPS (which uses SSL) are used by browsers such as Netscape to give secure
web sites the ability to provide services like e-commerce. Such protocols are too slow and bandwidth
consuming for many technologies (e.g., wireless or ad-hoc networks). New military applications like
minimally manned warfare and advanced logistics will require fast reliable cryptographic protocols
to ensure the integrity of communications. As technology provides us with a greater ability to access,
quickly and efficiently, all kinds of data, cryptographic protocols are essential to protect sensitive
data from interception or modification. Public key algorithms provide security functionality such as
non-repudiation and unique source authentication that symmetric key algorithms cannot provide.

Public key cryptography is distinguished by the fact that a different key is used to encrypt data
than is used to decrypt the data. Because of this, the encryption key can be made public (hence
the name public key) while the decryption key is kept private. Anyone can encrypt messages using
the public key and only the person with knowledge of the corresponding private key can decrypt the
messages. The owner of a private key can also use it to generate digital signatures (these signatures
work much in the same way as usual signatures) that anyone can verify using the corresponding
public key. The special knowledge of the private key in conjunction with cryptographic algorithms
for digital signatures and encryption allows a means by which people (or any source of data -
e.g. a website, sensor, cell phone) can uniquely identify themselves, authenticate data and provide
receipts that cannot be repudiated even by the source. These capabilities are unique to public key
cryptography and are extremely significant in our electronic world.

Public key cryptography works because the encryption and decryption keys are different but
mathematically related. These mathematical relationships can be exploited. This has a two-fold
ramification. First, the algorithms used to provide the encryption/digital signatures require mathe-
matical operations that are relatively difficult for the computer to do when compared to the machine-
type operations of traditional symmetric key cryptography. Second, since mathematical operations
have “nice” properties and relationships, attacks against the cryptosystems are more sophisticated
and so very large numbers have to be used in the computations to ensure security. This combination
of difficult computations with very large numbers translates to large keys, lots of computer processor
time, and high bandwidth requirements during transmissions for systems that use public key cryp-
tography. For example, the RSA algorithm to provide encryption/digital signatures requires many
modular exponentiations using numbers of size varying from 768-bits (lower security) to 2048-bits
(high security). By comparison, elliptic curve algorithms use numbers of size 140-200-bits to achieve
the same security. This is possible because elliptic curve algorithms use arithmetic operations defined
on elliptic curves, rather than traditional modular arithmetic. The attacks on the usual algorithms
don’t translate over to elliptic curves and so smaller parameters can be used. Using elliptic curve
algorithms in place of these traditional algorithms can speed up the computation time by a factor
of ten.

This research is motivated by the success of using arithmetic on elliptic curves as a means to

7

reduce key size and speed up computations in public key algorithms. We present new algorithms
that further exploit certain properties of elliptic curves and provide additional speedups of signature
algorithms. For one of these algorithms, a patent has been applied for, and another has been used in
a Sandia design for a fast digital signature chip. In addition, we explore the use of other groups as
the basis for new cryptosystems. In particular, we examine the use of Dilogarithm and Recurrence
Sequences.

The report is organized as follows: In Section 2 we introduce elliptic curves and discuss their ap-
plications to cryptography. In Sections 3,4,5, and 6 we discuss fast elliptic curve algorithms. Section
7 address speeding up computations in finite fields. Then in Section 9 we introduce the Dilogarithm
problem and in Section 10 we discuss recurrence sequences and their possible applications.

2 Elliptic Curves

An elliptic curve consists of pairs (x, y) = P (points), which are solutions to a certain cubic equation
together with a distinguished point, O, called the origin (point at infinity). What makes elliptic
curves interesting to the field of cryptography is that there is an addition law that can be defined
on the points of the curve that makes the set of points form a group in which the discrete logarithm
problem is hard. The discrete logarithm problem is defined on the elliptic curve group as follows:
Given an elliptic curve E and points G, P = nG ∈ E, find n. Many public key encryption and digital
signature algorithms base their arithmetic in groups where the discrete logarithm problem is defined
and base their security on the difficulty of solving this problem. Originally, these algorithms were
defined using modular arithmetic over finite fields. However, Victor Miller [24] and Neal Koblitz [15]
noticed that elliptic curve arithmetic could be used just as easily. Furthermore, traditional attacks
on discrete log-based systems over finite fields do not carry over when the base group is an elliptic
curve. For this reason, smaller key sizes/parameters can be used and the algorithms are often more
efficient.

In addition to smaller parameters contributing to more efficient algorithms, further tricks can be
applied to speed up calculations. The most intense computation in any elliptic curve cryptographic
algorithm is the calculation of a large multiple of a point. There are a number of ways to speed this
up: choosing special curves and fields to make the computations easier, improving the elliptic curve
algorithms and improving the algorithms in the underlying fields.

2.1 Elliptic Curve Point Addition

In the most general case, an elliptic curve E is defined over a field K by the equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K and E consists of points P = (x, y) where x, y ∈ K together with a special point O
at infinity. For a general introduction to elliptic curves, see [Sil86]. For use in cryptography, we
consider only those points whose coordinates lie in some finite Galois field. Typically, the field is
either GF (p) for some large prime p, or GF (2n). For our purposes, we consider the case where the
field of definition for the points on the curve is generally GF (2n). The arithmetic is faster and, in

8

that case, the curve E can be given by an equation of the following form

E : y2 + xy = x3 + ax2 + b, (1)

with a, b ∈ GF (2n). For convenience, if P = O we write its coordinates as P = (0, 0) (note (0, 0)
does not satisfy the curve equation, this is just for bookkeeping in our algorithms).

2.1.1 Affine vs. Projective Coordinates

The equation for E can also be given in projective coordinates:

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 (2)

The points of the curve are equivalence classes: P = [X, Y, Z] ∼ P ′ = [X ′, Y ′, Z ′] if there is a λ �= 0
such that X ′ = λX , Y ′ = λY , and Z ′ = λZ. Note that if Z �= 0, then there is always a representative
of the class with Z = 1. These equivalence classes where Z �= 0 correspond to the points on the
curve as defined by equation (1) via the change of coordinates x = X/Z, and y = Y/Z. The only
solution to the equation (2) for Z = 0 is the class containing X = Z = 0, Y = 1 and this corresponds
to the special point O at infinity included with the equation (1). Throughout the rest of the paper
we assume the curve is given in terms of affine coordinates, although most of the algorithms can be
recast in terms of projective coordinates and in some cases this gives some efficiency improvements.

2.1.2 Point Addition

Suppose M1 = (x1, y1) and M2 = (x2, y2) are two points on the curve E. Then, the addition of the
points, M3 = M1 + M2 can be described geometrically (see Fig.1): Draw a line through the points
M1 and M2. Since the curve is a cubic, the line will intersect the elliptic curve at exactly one other
point, P . The point M3 is the point on the curve defined by the reflection of P about the x-axis.
An algebraic description of the algorithm is next.

Alg. 1. Point Addition

Input: a, A = (xA, yA), B = (xB , yB)
Output: C = (xC , yC)

1. If A = O (e.g. xA = yA = 0), then output C = B and stop

2. If B = O, then output C = A and stop

3. If xA �= xB then

(a) Set λ = (yA + yB)/(xA + xB)

(b) Set xC = a + λ2 + λ + xA + xB

(c) GOTO step 7

4. If yA �= yB then output C = O and stop

5. If xB = 0 then output C = O and stop

9

Figure 1. Point Addition: M1 = M2 = M3.

6. Set

(a) λ = xB + yB/xB

(b) xC = a + λ2 + λ

7. yC = (xB + xC)λ + xC + yB

8. C = (xC , yC)

We note that the algorithm gives a different formula depending on whether the points to be added
are different (Step 3) or the same (Step 6). In the latter case, we say the point is being doubled. If
E is given by equation (1), then the negative of a point, P = (x, y), is given by −P = (x, x ⊕ y).
Subtraction Q − P of points is simply Q plus the negative of P . We note that the special point O
acts like the zero of the addition law. In particular, O + P = P + O = P and P − P = O.

We write E(K) for the set of points with coordinates in the field K. E(K) forms a group under
this addition law with identity element O. The order of the group, written #E(K), is the number
of points. Multiplication is defined on E as repeated addition: nP = P + P + · · · + P (n times).

2.2 Elliptic Curves In Cryptography

Any cryptographic algorithm whose security is based on the discrete logarithm problem can be recast
into an elliptic curve based algorithm with security based on the elliptic curve version of the discrete
logarithm problem. The most common such algorithm is the elliptic curve version of the Digital
Signature Algorithm or ECDSA. Other examples include analogs of Diffie-Hellman key exchange and
El Gamal type systems. In all cases, the main components needed are a secure curve (see Section
2.4) and an algorithm to compute a multiple of a point. We describe the ECDSA below to give a
flavor for these types of operations found in EC cryptographic algorithms.

10

2.2.1 ECDSA

We describe the Elliptic Curve Digital Signature and Verification Algorithms for an elliptic curve E
defined over a field F = GF (q). Here q is either a large prime or a large power of 2. Let r be a large
prime divisor of the order of E and let G ∈ E be a point of order r. Let s be the private key and
W = sG the public key. Denote by f the message representative to be signed (the message or hash
of message).

ECDSA Signature Algorithm
1. Generate a random integer u ∈ [1, .., r − 1] and set V = uG. Write V = (xV , yV).

2. Compute an integer c ≡ xV (mod r). If c = 0 go back to step 1.

3. Compute the integer d = u−1(f + sc) (mod r). If d = 0 go back to step 1.

4. Output the signature pair (c, d).

ECDSA Verification Algorithm
1. If c or d is not in the range 1..r − 1 output invalid and stop.

2. Compute integers h = d−1 (mod r), h1 = fh (mod r), and h2 = ch (mod r)

3. Compute the elliptic curve point P = h1G + h2W . If P = O, output invalid and stop, else
P = (xP , yP)

4. Compute an integer c′ ≡ xP (mod r)

5. If c′ = c output valid, else output invalid.

2.3 Computational Considerations

Step 1 in the signature algorithm and Step 3 in the verification algorithm are the most time con-
suming, power-intensive steps in the algorithm. These steps involve taking the multiple of an elliptic
curve point. In fact, other than those steps, the only other computations done are some computa-
tions modulo r. There are well known tricks for optimizing the modulo r computations and so we
concentrate on making the point multiplications more efficient. In a typical cryptographic system,
the quantities involved in these computations (e.g. the finite field elements, the point coordinates,
and the point multipliers) are a few hundred bits long.

2.3.1 The Number of Arithmetic Operations in Point Addition

The basis of the point multiplication is the point addition or doubling. When dissecting these
algorithms for binary fields, we note that the time consuming operations are really the multiplies
and the reciprocals (addition is just an xor and squaring is almost free). Hence, one way to compare
the complexity of algorithms is to determine the number of multiplies and reciprocals used in each
point addition formula and to look for algorithms that minimize point additions. In the general
addition formula (2.1.2), there is a reciprocal required in step (3a) to compute 1/(xA +xB) followed

11

by a multiplication to compute (yA + yB)/(xA + xB). There is another multiplication to compute
the y coordinate in (7). The total work for a point addition (and also doubling) as given by this
algorithm is roughly 2 Multiplies (M) and 1 Reciprocal (R), or 2M + R. There are algorithms that
offer cheaper alternatives: The work can be reduced to M + R in [35, 42], or even just R [36] if
special values of the curve parameter b are chosen. Point halving can be used instead of doubling
[14, 37, 39] to reduce the work to M plus some side calculations (see Section 4). Reciprocals are
generally more expensive than Multiplies. This is true whether we measure cost as simply execution
time of a computer program, or hardware circuit delay, or circuit area or power consumption. Using
program execution time as our cost metric, the relative cost ratio of reciprocals to multiplications,
R/M , varies widely depending on circumstances. In [35], the reported ratio is 2.5. In work with
multi-level field towers (see Section 7.1), the ratio is around 1.5. In [12] ratios are described to be
around 10, and values as high as 60 have been reported.

2.4 Secure Curves and Point Counting

Prior to using an elliptic curve in a cryptographic algorithm, we need a well chosen, secure curve.
As noted above, the curve is secure as long as the discrete logarithm problem is hard in the group
of points over the finite field of interest. If the order of the group is N (i.e. the number of points in
the group) where N =

∏
pi with pi prime, then the discrete log problem can be broken down into

the easier discrete log problems over groups of order pi. Hence, in order for the curve to be secure,
we need the curve order to have a large prime divisor. The definition of “large” varies depending on
the current state of the art in computing power and finding discrete logarithms. Currently the best
attacks are square root in time. Always check current recommendations from experts when choosing
curve parameters. In general, the order having a large prime divisor is a sufficient condition, but
there are some additional properties that may cause some curves to be “weak” (e.g. [23]).

The number of points on an elliptic curve E with coordinates in a finite field F = GF (q) (where
q = pn for some prime p) is given by the formula

#E(F) = q + 1 − t (3)

Here t is the trace of the Frobenius map: Fr(x) = xq. The first polynomial time algorithm for point
counting was due Schoof [33]. The idea was to compute t modulo � for small primes � and then use
the Chinese remainder theorem to calculate t. Improvements to the algorithm were given by Elkies
and Atkin that led to the SEA algorithm [34]. Other improvements were given in [26, 5]. The run
time for these algorithms over fields of small characteristic is approximately O(log4+εq) time.

In 2000, Satoh [31] came up with an alternative method for point counting which effectively solved
the point counting problem in the sense that it is no longer considered hard or time consuming. His
idea was to lift the curve E to the curve Ẽ over the p-adic ring Zq which reduced to E. The trace of
the frobenius could then be computed easily. Variants and improvements of this idea have appeared
since then (e.g. [7, 48, 8, 32, 17]) the main variant being how the curve is lifted. The best run time
for these algorithms over fields of small characteristic is currently about O(log2+εq) (e.g. [17]).

For this project we implemented a version of Satoh’s algorithm for elliptic curves over fields of
characteristic two. For more information or copies of the software contact the authors.

12

3 Faster Point Multiplication

There are many ways to make point multiplication more efficient. The traditional tricks for speeding
up modular exponentiation will also apply to elliptic curve multiplication. Some common techniques
for faster point multiplication inclue precomputing values (e.g. [3], [22]), windowing methods, addi-
tion and subtraction chains (e.g. [27]), mixing projective and affine coordinate point representations
[4], and multi-doubling [21]. Another Sandia project developed a particulary fast method for com-
puting a multiple of a point where the base point is known [47]. Other methods include choosing
particular curves over which computations may be easier (e.g. Koblitz curves [16, 42, 44]), or for
which an eficiently computable endomorphism may speed up the point multiplication (e.g. [9, 44])
or working over special fields (e.g [45, 43, 28]). In the latter cases, one must be careful that the
choice of special curve or field does not lead to reduced security (see [23, 10]).

4 Point Halving

One way to modify the point multiplication algorithm is to use a point halving algorithm in place
of a doubling algorithm. The idea of “halving” a point P = (xP , yP) is to find a point Q = (xQ, yQ)
such that 2Q = P . Note this is the inverse of the point doubling problem. The point halving can
nevertheless be used in algorithms by a simple adjustment on the base point of the elliptic curve
used. The algorithm offers a speed-up in software of a factor of about two to three over the point
doubling algorithm. We follow the algorithm of [37] developed by the first author.

For this algorithm we sometimes write the coordinates of the points P ∈ E as (xP , rP) where
rP = yP /xP . In fact, we use the (xP , rP) form whenever possible, but the input and output of the
point addition algorithm need the Y coordinate, so the halving algorithm must handle Y outputs
and inputs. When the yQ output is not required, the point halving algorithm needs only one field
multiplication. It is most efficient when point halvings are consecutive. If a signed sliding window
multiplication method is used, there are about five halvings between additions.

Alg. 2. Point Halving over GF (2m)

Input: P ∈ E Output: Q = 1
2P ∈ E

1. Mh = Qsolve(xP + a), where a is the curve parameter

2. T = xP ∗ (Mh + rP) or T = xP ∗ Mh + yP

3. If parity(T and tm)= 0, then Mh = Mh + 1; T = T + xP

Here tm is a mask that depends upon the modulus polynomial. In our case, tm = (u51 +
1, 0).

4. xQ =
√

T

5. rQ = Mh + xQ + 1

6. If needed, yQ = xQ ∗ rQ

13

Figure 2. Double and Add

The Qsolve(a) in step 1 is an algorithm to find the solution, x, to the quadratic equation
x2 + x = a. For more details, see section 7.2. The point halving algorithm only requires one
Multiply and some side computations (∼ 1.3M)(note there are no reciprocals required) and hence
often gives a savings over doubling when computing the multiple of a point.

5 Double And Add

Point multiplication is generally done by utilizing two operations: the doubling of a point and the
addition of two different points. As noted in the elliptic curve addition algorithm, there are slightly
different operations for each. One of the simplest ways to compute a multiple of a point is to use
the “double and add” algorithm:

Input: An elliptic curve E, a point P ∈ E and a multiplier, k.
Output: The point Q = kP .

1. Initialize Q = O and W = P .

2. Write out the binary expansion of k = km...k1k0.

3. For i from 0 to m do:

(a) if ki = 1, Q = Q + W

(b) W = 2W

4. Output Q

14

Figure 2 shows a block diagram illustrating this simple method to compute a scalar multiple.
The input point P is placed into the variable W , which is repeatedly doubled, producing 2P , 4P ,
8P , etc. The input K (as a binary number) is placed in a shift register. The bits are shifted off the
low end, and control whether the point-addition box is active. When the shifted bit from K is 0,
the point-add is inactive. When the shifted bit from K is 1, the point-add is active, and the point
in W is added to the running sum Q. Q holds the running sum of selected points from W . Q is
initialized to O. When all bits of K are shifted out of the register, the final value of Q is the answer,
Q = KP .

6 The Reciprocal Sharing Trick

The main result of our elliptic curve work on this project is the development of an algorithm to
combine points using a Reciprocal Sharing Trick. The idea is to rearrange the steps of the “Double
and Add” algorithm presented above. Every time where we would add W to Q, we instead save W
in a list. At the end of the modified algorithm, we add all the values from the list together. This, of
course, will compute the same value Q as before. The advantage of this new method is that we can
be more efficient about adding together multiple elliptic curve points if we organize the addition as
a binary tree. The trick gives an improvement when the Reciprocal to Multiply ratio, R/M , exceeds
3. The idea in effect changes the cost of point addition from 2M + R to 5M + ε ∗ R. The method
has been documented in a patent application [40].

Assume the points are named A, B, C, We group the points to be added into pairs, A + B,
C + D, E + F , etc. (There may be a point left over; it goes into the next level.) Each of these point
additions will need to compute a reciprocal: 1/(xA +xB) for A+B, 1/(xC +xD) for C +D, etc. To
improve efficiency, we use a trick originally invented by Peter Montgomery [25], called the Reciprocal
Saving Trick (RST). The trick computes a group of N reciprocals simultaneously. It computes one
actual reciprocal, and uses 3N − 3 auxiliary multiplications. The net savings is (N − 1)(R − 3M).
The details of the RST trick are explained in Section 6.5. Having computed the reciprocals needed
for the point-pair additions, we complete the calculations for each addition. This has reduced the
number of quantities we need to combine by half. We repeat the pairing procedure, combining point
pairs to make point quads, and keep combining pairs until all points have been combined into one
total. This gives the required point sum, Q = kP . We’ve used about log2(number of points to sum)
reciprocals, and the remaining reciprocals have been replaced by multiplies (3 each).

Figure 3 shows a block diagram illustrating an example of a method to compute a scalar multiple
of an elliptic curve point using this RST idea. The inputs P and K are the same as in Figure 2, as
is the variable W and the shift register that holds K. The variable W is repeatedly doubled, as in
Figure 2. The bits of K determine which values of W are stored in a list of saved points. When all
bits of K are shifted out of the register, the list of saved points is complete. The points in the list are
summed in a binary tree. The list points are paired. (Note: Figure 3 shows an odd number of points
in the list, so the leftover point is forwarded to the next level of the summing tree.) Each point
pair is added using the Reciprocal Saving Trick, which is described in Section 6.5. Each column of
octagons represents one level of the binary summing tree. Each level groups all of its reciprocals
for sharing; this is represented by the line labeled “RST” passing vertically through the octagons.
Each level has one-half as many points as the previous level. The final octagon has nothing to share
reciprocals with, so it has no RST line. Only one actual reciprocal is computed for each level of the
summing tree (according to the RST algorithm).

15

Figure 3. Double and Add with Reciprocal Savings Trick

16

In other words, to speed up the simple algorithm illustrated in Figure 2, instead of keeping a
running sum for the result, we keep a list of all the points we need to add. Then, we simply pair off
the points into a binary tree structure, so that we can compute several reciprocals simultaneously
when we do the additions. Note that we still have to perform all the point doublings sequentially,
se we can’t apply the reciprocal saving trick to speed up that step.

There are a number of variations for using this method besides just that given in the description
of Figure 3. In one variation, a more complex control based on K assigns coefficients of +1 or −1 to
each list value. The points can be negated as they are placed in the list; or a “sign bit” can be kept
for each list point, and used in the first level of point additions. In another variation, point halving
(Section 4) could be used in place of doubling. The bits of K are used in reverse order. Yet another
variation is to save all of the values of W in the list, and the bits of K exercise their control function
later, selecting which of the list values are forwarded into the summing tree. When P is known in
advance, the list can be precomputed. When a Koblitz curve is used [16], and K is expressed in
radix τ (instead of binary), the list can be virtual. Each list point has X and Y coordinates that
are 1-bit rotations of the previous point.

6.1 Special Cases

Special handling is needed in some rare situations: When either point of a pair A+B to be combined
is O, or when two equal points must be combined, or when a point must be combined with its
negative. O points can simply be dropped from the calculation, or excluded when the original list of
points to be combined is generated. If the designer decides to retain them, then it may be useful to
use 1/1 as a place holder for the required reciprocal. The cases of equal points and negative points
are detected when either the X coordinates are equal, or the denominator xA + xB (or xA − xB in
other fields) is 0. For the negative points case, the point pair can simply be discarded, and O used
as a place holder if the algorithm requires one. 1/1 can be used as a place holder in the reciprocal
algorithm when needed. For doubling, the doubling formula requires a different reciprocal (1/xA for
GF (2N) fields), which is used in place of 1/(xA + xB) in the reciprocal saving calculation. In some
systems the designer may know that some of these special cases are impossible, and can omit the
special handling provisions.

Other fields than GF (2N) use similar but different elliptic curve equations, and the addition and
doubling formulas are similar. The reciprocals required are usually for xA − xB instead of xA + xB .

Figure 4 shows the arithmetic used for conventional point addition. Figure 5 shows an example
of a method for point addition using RST. Most of the arithmetic is the same as in Fig. 4, except for
the vertical band down the middle. The denominator Mden = xS + xT is computed just as in Fig.
4. The reciprocal part is different, however. In Fig. 4 the reciprocal Mrec is computed as 1/Mden.
In Fig. 5, all the Mden values in a sharing group (one column of the summing tree in Fig. 3 with
the “RST” line drawn through) are used as inputs to the Montgomery Reciprocal Saving Trick. The
output of the RST is the set of reciprocals, the required Mden values. The rest of the point addition
process is the same as in Fig. 4.

17

Figure 4. Conventional Point Addition

Figure 5. Point Addition with RST

18

6.2 Timing Results

The RST has been programmed on a PC in the C language. A typical test shows a 35% speed
improvement. In the table below, the results are average time in seconds, EC:AddSeveralPoints
refers to the present invention, and the computations were done on an elliptic curve over the finite
field GF (2233) with field polynomial f(x) = 1+x74+x233. The results show that the more points you
have to add, the better the speed-up you get (as would be expected), and that when a computation
involves about 100 points, the speed-up is better than 30%

Elts.inArray EC : AddPoints EC : AddSeveralPoints
25 0.032366167 0.025236667
50 0.066622 0.050608667
75 0.099631 0.0747485

100 0.122037667 0.082580833

6.3 More Applications

The idea of reciprocal sharing applies to many algorithms. For example it can be used in conjunction
with almost all of the ideas referenced in Section 3. See [40] for more details.

6.4 Protection against Side Channel Attacks

One benefit of this RST idea is that in hardware it helps protect against side-channel attacks against
the secret scalar multiplier K. With the normal algorithm for scalar multiplication, an attacker can
often carefully observe the device and determine whether it is executing a point addition or a point
doubling. The pattern of doublings interleaved with some additions can be used to recover the
bits of K. The anual CHES conferences (Cryptographic Hardware and Embedded Systems) have
many papers on more sophisticated versions of this attack. The present invention reorders the
point additions to come after the point doublings. All the attacker learns from his observations
is the number of doublings and additions, rather than the interleaved pattern. (Even this can be
concealed by always doing the maximum number of doublings and additions, but discarding some of
the values.) We might design the chip to always write the doubling point 2NP to the list memory,
even when the point will not be used in the final sum, and selectively advance the list pointer when
we want to retain a point for the final sum. The idea of reordering additions and doublings to protect
against side channel attacks can be used independently of whether reciprocal saving is being used.
The reordering can be random or pseudorandom, and need not put all the additions last; simply
saving a few points to be added and doing point additions as a sporadic operation will offer some
protection.

6.5 Montgomery’s Reciprocal Sharing

The Reciprocal Saving Trick (RST) is a trick (i.e., algorithm) invented by Peter Montgomery [25].
When you need to compute lots of reciprocals (in a mathematical field or ring), you can replace all

19

but one of the reciprocals with three field multiplications each. Hence, a calculation of n reciprocals
can be replaced with a calculation of 1 reciprocal and 3(n − 1) multiplications. Here’s the formula
underlying the trick. We need reciprocals 1/U and 1/V . Instead of computing them directly, we
compute 1/(UV). Then we compute 1/U as V ∗(1/(UV)), and 1/V as U∗(1/(UV)). We’ve saved one
Reciprocal, at a cost of three Multiplications: U ∗V, V ∗ (1/(UV)), and U ∗ (1/(UV)). If our system
has a R/M ratio greater than 3, then this substitution is a win. In other words, if a reciprocal takes
more work than 3 multiplications, this saves us time when we have a lot of reciprocals to compute.

The reciprocal saving trick can be extended to computing several reciprocals. The extension can
be done either as a straight recursion, or as a linear algorithm. As an example of the linear case
for three reciprocals 1/U, 1/V, 1/W : Compute UV, UV W, 1/(UV W), UV ∗ (1/(UV W)) = 1/W, W ∗
(1/(UV W)) = 1/(UV), V ∗(1/(UV)) = 1/U, U∗(1/(UV)) = 1/V . The cost here is six multiplications
and one reciprocal, giving a cost of three multiplications for each reciprocal saved.

The pattern is the same for more reciprocals. Compute the product (UV W) of all the numbers
to reciprocate; reciprocate that product (1/(UV W)); multiply the reciprocal by the two factors
that went into the final product (UV and W) to create the reciprocals of those factors (reversed)
(UV ∗ 1/(UV W) = 1/W , and W ∗ 1/(UV W) = 1/(UV)). Reciprocals of single terms (1/W) are
wanted answers, and the reciprocals of compound terms (1/(UV)) are further multiplied by the
factors of their denominator (U and V) to split them up again as deeply as necessary. Although
the grand product can be created by multiplying one factor at a time, U ∗ V → UV, UV ∗ W →
UV W , this is not a requirement, and other orders may be preferable. For example, on a parallel
processor we might begin to compute four reciprocals U, V, W, Xby computing the product UV WX
as (U ∗ V) ∗ (W ∗X), so that the multiplications U ∗ V and W ∗X can execute in parallel, and the
individual reciprocals can be unwound partly in parallel.

Other considerations that may influence the choice of computing order are the schedule of avail-
ability of the factors, arrangement of memory use, and simplicity of the algorithm (linear is easier
to design).

6.6 Other Point Addition Considerations

During the course of this research we explored other methods to more efficiently combine elliptic
curve points. Although none were as successful as the reciprocal savings trick, the ideas are worth
mentioning and perhaps when combined with a new idea will lead to improved algorithms.

One avenue that we explored was combining several elliptic curve points in one operation. The
scalar multiplication operation combines around a hundred points with addition or subtraction, and
does about two hundred point doubling (or halving, or tripling, etc.) operations. We examined
several ways of combining these operations in groups to look for faster computations.

We also looked at adding three unrelated points (A + B + C) in one step. The mathematical
approach is to compute the formula for the sum in two steps: A + B, then (A + B) + C. The triple
sum formula is then simplified algebraicly, and we look for ways to compute it with the minimum
number of multiplications and reciprocals. If we can do this with less total work than the direct two
point additions (A + B and (A + B) + C), this will lead to an efficiency improvement.

A simple analogy, using circular functions instead of elliptic curves is given by the tangent
function. Suppose we are given tanA and tanB, and need to compute tan (A + B). The formula

20

for the tangent of the sum of two angles A and B is

tan (A + B) =
tan A + tan B

1 − tan A tan B

If we assume free addition, the cost of tangent addition is two multiplications and one reciprocal,
2M + R.

The triple addition formula is

tan (A + B + C) =
tan A + tan B + tanC − tan A tan B tan C

1 − tan A tan B − tan A tan C − tanB tan C
.

This can be computed with four multiplications and one reciprocal, 4M + R. The cost of two
plain additions, A + B and then (A + B) + C, is (2M + R) + (2M + R) = 4M + 2R, so direct triple
addition saves 1R, one reciprocal.

Earlier work in the field showed that direct-formula multiplication of a point by 8, 16, or 32
is sometimes better than repeated doubling. The direct formulas are very complicated, and use
more multiplications and fewer reciprocals than repeated doubling. Whether they are advantageous
depends on the relative costs of multiplication and reciprocal, the ratio R/M .

We examined triple sum (A+B +C), double-and-add (2A+B), and triplication (3A). Of these,
only triplication provided a slight improvement. To use triplication effectively, the scalar multiplier
must be represented in balanced ternary (base 3) notation, with digits 0, 1, and −1. The number
of digits is less than binary by a factor of log2(3) = 1.58, but 0 digits are less likely. The average
number of non-zero digits (2/3 ∗ 1/1.58)*(length of scalar multiplier) is slightly smaller with ternary
than binary (1/2)*(length), but the comparison goes the other way when blocks of 0s are taken
into account. This means that the ternary scheme will need more addition/subtraction steps than
binary when the natural signed-sliding-window method is used. These extra adds defeat the small
advantage of triplication. (Since the RST patent idea above cheapens addition, it may make this
idea work.) One place where triplication has newly recognized importance is in GF (3N) fields.
These are being used in new identity-based encryption schemes [2], and some GF (3N) curves have
very efficient triplication formulas. In these schemes, it will make sense to use the balanced ternary
representation of the scalar multiplier, since triplication is cheap.

After we did this work, Peter Montgomery found a small improvement in computing the combi-
nation 2A+B (see [6]). He used the novel scheme (A+B)+A. (We used the more natural approach
of first computing 2A, followed by adding B. Montogomery’s approach is unnatural because it
uses two point additions, and point addition is generally a little more expensive than doubling.)
His scheme allows one multiplication to be eliminated from the calculation, by not computing the
Y -coordinate of the intermediate value A + B. The net saving is a few percent. One advantage of
Montgomery’s result is that it works with fields of any characteristic. We note that this work is
largely trumped by the RST patent idea, which cheapens point addition for large groups of points.

7 Finite Field Arithmetic and Field Towers

Underlying all elliptic curve arithmetic is the finite field arithmetic. Both GF (p) with p a large
prime and GF (2N) fields are commonly used in elliptic curve cryptography. A careful choice of field

21

may speed up computations. For example choosing a Mersenne prime field will help with GF (p)
computations [43]. We discuss some improvements for GF (2N) fields here.

The finite field

GF (2m) ∼= GF (2)[x]/f(x) = {a0 + a1x + · · · + am−1x
m−1(mod f(x)) | ai ∈ GF (2)}

where f(x) is an irreducible binary polynomial of degree m. An element a ∈ GF (2m) can therefore
be represented as an m−tuple a = (a0, a1, ..., am−1) of zeros and ones. Addition of two elements is
a bitwise exclusive-OR (XOR) operation:

a, b ∈ GF (2m), a + b = (a0 ⊕ b0, a1 ⊕ b1, ..., am−1 ⊕ bm−1)

and multiplication is like a plain multiplication without any carries but with the XOR accumulation
only. The result of the multiplication must, however, be reduced by the field polynomial f(x). As the
degree m of the field gets large, the multiplication can become time-consuming and the representation
of the numbers can become cumbersome. For a general reference on finite field arithmetic, see [13].

There are a number of ways to speed up computations in GF (2N) fields. One way is to choose a
field where the polynomial f(x) can be represented by a trinomial to make the reduction step in the
multiplication easier. The representation of the field elements as described above uses a polynomial
basis. A normal basis representation is sometimes used instead. Squaring and square root in a
normal basis representation is almost free (it’s just a rotation of the bits). See [13] for more details.

7.1 Field Towers

If m is a composite number, we can use field towers to speed-up the computations. Suppose m = ns.
Then we can think of GF (2m) = GF ((2n)s) as a degree s extension of GF (2n). The elements are
a ∈ GF (2m), a = (α0, α1, ..., αs−1), where αi ∈ GF (2n). For example, suppose m = 156 = 12 ∗ 13.
Then we can represent GF (2156) as GF ((213)12). The addition and multiplication of two elements
α = (a0, ..., a11) and β = (b0, ..., b11), ai, bj ∈ GF (213) uses the underlying GF (213) arithmetic
which is much simpler than the arithmetic in GF (2156). If m is highly composite, there are several
possibilities for writing GF (2m) as an extension of a smaller field. We may even write GF (2m) as
a series of field extensions. For instance, GF (2156) = GF (((23)4)13), or GF (2156) = GF (((26)2)13),
etc. We can speed up the arithmetic considerably in such fields. Thinking of GF (2156) as a three-
level tower would make the corresponding arithmetic about three times faster than the arithmetic
in the field, using a polynomial basis. We note that one must be careful if using field towers as there
are some choices where security is compromised (see [46]).

7.2 Quadratic Solve

If a hardware chip is being developed to carry out fast elliptic curve computations, it can be the case
that there are special implementations of finite field algorithms that give savings. The algorithms
may be optimized differently depending on which field is being used. As an example of an efficient
implementation of an elliptic curve signature for hardware we cite [39]. That implementation used
the following special circuit we developed for solving a quadratic equation as needed in the point
halving algorithm (Step 1 in Alg.2).

22

The circuit has a relatively small number of XOR gates (387) and depth (35). The full circuit
and detailed derivation are in [38]. The algorithm is specific to the field GF (289), but the idea could
work to create optimal Qsolve circuits for other fields.

Alg. 3. Qsolve

Input: a = (a00, ..., a88) ∈ GF (289)
Output: z = (z00, ..., z88) ∈ GF (289) where a = z2 + z

Except for odd z in the range z01 − z19 (which are computed directly), the bits of z are
computed from the following equations:
aeven bits: a00 − a36 : a2n = z2n ⊕ zn ⊕ zn+70

a38 − a74 : a2n = z2n ⊕ zn ⊕ zn+51

a76 − a88 : a2n = z2n ⊕ zn

aodd bits:
a01 − a37 : a2n+1 = z2n+1 ⊕ zn+45

a39 − a87 : a2n+1 = z2n+1 ⊕ zn+45 ⊕ zn+26

This derivation uses several observations to reduce the number of gates.

1. QSolve is linear, so we could precompute QSolve(uN) for each N . The runtime circuit XORs
together the appropriate subset for a general polynomial (see [29] for one method of doing the
precomputation). This is fast, but uses a lot of gates. We traded speed for size, getting a
slower but smaller circuit.

2. We reduced the number of required QSolve(uN) values by removing some powers of u from
the problem. For example, the substitution QSolve(u2N) ⇒ uN +QSolve(uN) eliminates even
powers of u. The substitution uN ⇒ uN−38 + uN+51 removes some odd powers of u. After
repeated substitutions like these, QSolve(uN) is only needed for odd N in the range 1...19.

3. Only some of the answer bits are required: zodd in the range z01...z19. This reduces the number
of gates considerably. The remaining bits can be recovered by solving the bit equations for
QSolve. For example, we compute z45 from the equation a01 = z01 ⊕ z45.

4. We assume that a00 is equal to a51. The actual value of a00 is ignored. Furthermore, z00 is
irrelevant, and is set equal to 0.

Our minimal size QSolve circuit used only 287 XOR gates, but had depth 65. We moved back
from this extreme point on the speed-size tradeoff curve to a circuit with 387 XOR gates and depth
35.

8 Available Software

As part of this project many efficient elliptic curve algorithms were implemented in C, including the
ones described in this report. Contact the authors for more information on obtaining and using the
code.

23

9 Dilogarithms

The fact that elliptic curve groups can be used to speed up cryptographic computations caused us to
consider if there were other groups on which to base security that would be usable in cryptographic
applications. This section reports on a generalization of the discrete logarithm, called the Modular
Dilogarithm. The modular dilogarithm is a discrete analog of the Dilogarithm, a special function
defined over the complex variables. The modular dilog satisfies the same functional equations as the
complex dilog, including some equations involving discrete logarithms. The modular dilog can be
defined modulo a prime, or a prime power, or in a finite field. For modular dilogs defined modulo a
prime P, the range of values seems to be modulo P 2 − 1. The modular dilog is harder to compute
than the discrete log. Modular Trilogarithms may also exist.

First, in Section 9.1 we give a brief summary of the properties of the classical dilogarithm defined
on the complex numbers. In Section 9.2 we give an example of the Modular Dilogarithm, and show
which of the properties of the complex function carry over to the modular case. Then in Section
9.3 we explain how we compute modular dilogs. In Section 9.4 we discuss extensions to trilogs and
some other directions. Then in Section 9.5 we pose some questions that have been suggested by this
discovery . The most important is “Why do these exist at all?” Finally in Section 9.6 we discuss the
prospects of this discovery. We note that we have no proofs. All the work is empirical.

9.1 The Classical Dilogarithm Function

Most of this material is drawn from Lewin [19]. The complex dilogarithm Li2(z) may be defined by
the power series

Li2(z) =
∞∑

n=1

zn

n2

or by the integral

Li2(z) =
∫ z

t=0

− log(1 − t)/t dt

The equivalence of the definitions is established by term-by-term integrating the power series for
− log(1 − t)/t.

The power series converges within (and on) the unit circle |z| ≤ 1. The Riemann sheet structure
is complicated: The integrand is defined everywhere except t = 0 and 1, and the singularity at 0 is
removable on the principal sheet. The singularity at 1 is a log-spiral-staircase, and the non-principal
sheets have simple poles at 0. The principal sheet is the complex plane with a branch cut along the
positive real axis for x > 1.

The dilogarithm function was apparently first considered by Leibniz, shortly after calculus was
discovered. It was later studied by Euler and Landen. Euler found that

Li2(1) = ζ(2) =
π2

6

Several simple functional equations were discovered:

Li2(z) + Li2(−z) =
Li2(z2)

2

24

Figure 6. Dilogarithm Relations

This is obvious from adding up the power series for Li2(z) and Li2(−z). The zodd terms cancel.
The zeven terms are Li2(z2)/2. A generalization of this trick gives

Li2(z) + Li2(wz) + Li2(w2z) =
Li2(z3)

3

where w = exp(2πi/3) is a complex cube-root of 1. Analogous results hold for higher roots of 1.

The next two functional equations are established by differentiation.

Li2(z) + Li2(1 − z) =
π2

6
− log(z) log(1 − z)

For complex z, the branches of the logarithms are chosen by walking from z = 1/2.

Li2(z) + Li2(1/z) = −π2

6
− (log(−z))2

2

For complex or positive z, the branch of the logarithm is selected by walking from z = −1

These functional equations are enough to compute Li2(z) anywhere in the complex plane (prin-
cipal branch), by bringing z inside the unit circle and using the power series. Our work generally
ignores branches, so we don’t include the twiddle terms necessary for non-principal branches.

The transformations z → 1/z and z → 1 − z can be combined to generate a set of six related
quantities whose dilogarithms differ by (or sum to) logarithmic terms: z, 1/z, 1− z, 1 − 1/z, 1/(1−
z), z/(z − 1). They can be arranged in a hexagon with alternate edges representing the two trans-
formations (See Figure 6).

For example, we can set z = 1/3, and relate the value of Li2 at 1/3 to those at 2/3, 3/2,−1/2,−2,
and 3. Manipulation of the functional equations allows closed-form values to be determined for Li2

25

at z = 1,−1, 1/2, and 1/φ and 1/φ2, where φ = 1.618... is the golden ratio.

Li2(1) = π2/6
Li2(−1) = −π2/12
Li2(1/2) = π2/12 − log(2)2/2
Li2(1/φ) = π2/10 − log(φ)2

Li2(1/φ2) = π2/15 − log(φ)2

In 1809, Spence made a major advance, a true leap of imagination. The dilogarithm is sometimes
called Spence’s function in his honor. He found a relationship equivalent to

Li2(xy) = Li2(x) +Li2(y) + Li2((xy − x)/(1 − x))
+ Li2((xy − y)/(1 − y)) + 1/2(log((1 − x)/(1 − y)))2 [5term]

valid when x, y, xy < 1, or if all the dilog arguments are inside the unit circle. Slight variations apply
outside this range. This particular form of the functional equation is due to Hill. The equation is
called 5term since it contains 5 dilogarithm terms.

Subsequently, many authors have studied the dilogarithm and related functions, and produced
an abundance (nay, a plethora) of functional equations. None can really be called simple, in contrast
to the simple relationship for logarithms. Lewin [18] contains a good summary of pre-1960 work,
including a good bibliography. [19] is an updated second edition. Lewin has edited a sampler of
recent work [20].

Other dilog functional equations have more terms and/or more variables, both with and without
side conditions. It has been established that all can be derived from the basic five-term functional
equation.

Considerable effort has gone into looking for functional equations without log terms, and into
defining closely related functions without the singularities, or whose functional equations don’t have
the log terms. For example, the contributors to [20] define the Bloch-Wigner Dilogarithm, and
several versions of the Rogers Dilogarithm. Each formulation has its advantages and disadvantages;
there’s no clearly superior choice. A typical sacrifice is the analyticity of the new function. Like a
wrinkle in a rug, the trouble spots can be moved around but not eliminated.

The work described here began with Newman’s six-term symmetric functional equation for the
co-dilogarithm, cLi2(x) = Li2(1 − x). This equation has the nice property of containing no extra
logarithm terms.

2[cLi2(x) + cLi2(y) + cLi2(z)] = cLi2(xy) + cLi2(xz) + cLi2(yz) [6term]

provided that x + y + z = xyz + 2, or equivalently, 1/(1 − x) + 1/(1 − y) + 1/(1 − z) = 1. [This
equation is also true for plain old logarithms, without any relationship among x, y, z except xyz �= 0.
Any multiple of log can be added to a solution of the functional equation to get another solution
valid on the nonzero subdomain.]

There doesn’t seem to be an algebraic way to go from the six-term equation to the five-term
equation.

26

9.2 Modular Dilogarithms

We have invented/discovered the Modular Dilogarithm function, D(). The argument of D is an
integer N modulo a prime P . The value is an integer D(N) (mod P 2 − 1).

Example with P = 19:
N 0 1 2 3 4 5 6 7 8 9 10 11 12

log(N) − 0 1 13 2 16 14 6 3 8 17 12 15
D(N) 120 30 345 358 74 26 344 258 327 108 265 162 3
E(N) 0 0 0 352 56 224 56 192 288 312 160 168 72

N 13 14 15 16 17 18 (mod 19)
log(N) 5 7 11 4 10 9 (mod 18)
D(N) 132 326 44 236 232 345 (mod 360)
E(N) 48 344 296 344 208 0 (mod 360)

D satisfies five functional equations, all modulo 360:

D(x) + D(1 − x) = D(0) + D(1) + K log(x) log(1 − x)

2[D(x) + D(1/x)] = −2D(1) + K log(−x)2 x �= 0

2[D(x) + D(−x)] = D(x2)

D(xy) = D(x) +D(y) − D((x − xy)/(1 − xy)) − D((y − xy)/(1 − xy))
+ D(0) + K log((1 − x)/(1 − xy)) log((1 − y)/(1 − xy)) xy �= 1

2[D(1 − x) + D(1 − y) + D(1 − z)] = D(1 − xy) + D(1 − xz) + D(1 − yz)
with z = (2 − x − y)/(1 − xy) xy �= 1

Here K = 20. The logs are base 2. The arithmetic for arguments of log and D is done modulo
19. The value for log(0) doesn’t matter: it’s always multiplied by log(1) = 0. Any multiple of D also
works, with K adjusted appropriately. E() is another solution for the functional equations, with
K = −40. 3E = 192D (mod 360). Any linear combination dD + eE works, with K = 20d − 40e.
There are 1080 solutions: 360 multiples of D, plus 0, 1, 2 times E. 2D + E gives a ”Modular Rogers
Dilogarithm” without log terms (K = 0).

The Modular Dilogarithm satisfies the same functional equations that the regular dilogarithm
does, with a few adjustments. Log terms are interpreted as discrete logs. Since discrete logs are
mod P − 1, the log terms must be multiplied by P + 1 to fit into functional equations mod P 2 − 1.
The base of the logs is unspecified, so the log terms may need an additional scaling factor. We
replace π2/6 with D(1), and allow the possibility that D(0) is nonzero. D(∞) is left undefined. All
the functional equations of dilogs are simple sums of dilog terms, so any multiple of dilog will also
satisfy the equations if other terms are scaled to match.

Some properties of the solution space: D(x2) is divisible by 2, so quadratic residues have even
dilogs. For P = 19, D(x) is odd exactly when both x and 1 − x are non-residues. Dilogs of cubic
residues are divisible by 3.

27

9.3 Computing Modular Dilogarithms

Individual values of Modular Dilogarithms don’t have meaning; a particular value is not right or
wrong. We must compute the entire function – the value at each residue mod P – to have something
to check.

Our approach is to assign an independent unknown variable to represent each function value.
We substitute numbers into the functional equations, and learn relationships between the function
values.

For example, suppose P = 7. We would use 7 variables, D0, D1, ..., D6. The functional equation
2[D(x) + D(−x)] = D(x2) would be specialized with x = 0...6. X = 2 would give the relationship

2D2 + 2D5 = D4.

Since all the functional equations are linear in the dilog terms, we use matrices to keep track of our
work. We create a non-square matrix, with P columns and many rows. Column J corresponds to
the variable D(J). The matrix entries are integers, representing coefficients of D(J). The rows are
initialized from substitutions into the functional equations. Each row represents one relationship
between the D values, saying “These D values, with these coefficients, sum to 0.” Most of the
coefficients in the row are 0, since there are only a few terms in the functional equations. If the
functional equation has fractions, we clear them, to avoid non-integer entries in the matrix. When
substitution into a functional equation gives an infinity in some argument, we discard the instance,
and don’t make a matrix row. When a functional equation has numerical or log terms, we use an
extra column of the matrix to hold the values. Log terms are evaluated as discrete logs (using a
fixed primitive root mod P), with values defined mod P − 1. Our matrix solution method avoids
combining entries in different columns.

Most of our work uses the co-dilogarithm, which has a nice 6-term functional equation with no
log terms or constants. This allows agnosticism on the base of the logarithms.

An example of the matrix for P = 7, using codilogs. Column J is cD(J) = D(1 − J).

1 0 2 0 0 0 0
0 3 0 0 0 0 0
0 0 0 2 −1 0 2
0 0 0 0 2 2 −1
0 0 4 2 −1 0 −2
0 0 1 −1 0 1 2
0 0 −1 4 2 −2 0
0 0 −1 −2 4 0 2
0 0 0 0 −3 6 0

The first row is cD(0)+2cD(2) = 0. This corresponds to x = 0, y = 0, z = 2 in the 6-term functional
equation:

2[cD(0) + cD(0) + cD(2)] = cD(0) + cD(0) + cD(0)

For larger P , the number of rows is about P 2/6. (Most of the rows turn out to be redundant and
could be dropped or never generated. Probably any set of somewhat more than P rows is adequate.)

28

The matrix entries are regarded as integers, rather than modular residues. This postpones the
choice of modulus. The matrix is “solved” by elementary row operations, adding or subtracting
multiples of one row to or from another row. The algorithm diagonalizes the matrix as best it
can, although there are some remaining non-diagonal elements. Redundant rows are simplified to 0,
and dropped. We avoid division of a row in solving the matrix, to avoid losing potential modular
information.

After the row-reduction, the example matrix reduces to

1 0 0 0 0 0 2
0 3 0 0 0 0 0
0 0 1 0 0 0 11
0 0 0 1 0 −1 9
0 0 0 0 1 −2 −8
0 0 0 0 0 6 −9
0 0 0 0 0 0 24

Some all zero rows have been dropped. The bottom two rows correspond to the equations 6cD(5)−
9cD(6) = 0 and 24cD(6) = 0. We want integer solutions, so the modulus for the dilogarithms must
be a multiple of 48. The other rows are all compatible with 48. Using the bottom row, we assign
cD(6) = 2t. The next row, 6cD(5) − 9cD(6) = 0, gives cD(5) = 3t + 8u. The other cD values can
be computed from the matrix rows. cD(1) requires one new parameter; cD(1) = 16v. Dilog values
are then computed from D(x) = cD(1 − x). The co-dilog functional equation has weight 3, so each
matrix row also has weight 3. The weights of rows in the solution matrix are multiples of 3. The
other dilogarithm functional equations may impose additional conditions on the variables.

We have solved coDilog matrices for primes 5...23. Attempts to use several single variable func-
tional equations instead of the two-variable co-dilog equations have not worked out.

Computational Complexity
Computing a dilog table for P = 1009 would be a major effort with present methods; in contrast,
the discrete log table can be computed in a millisecond.

Our current matrix approach requires O(P 4) arithmetic operations to solve the dilog matrix. This
would drop to O(P 3) if we only used O(P) rows. A successful basis approach, with a basis size of
perhaps

√
P values, would bring the complexity down to O(P 1.5). Checking that a proposed dilog

table satisfies a two-variable functional equation is O(P 2), unless we develop new theorems that
allow checking only a subset of the combinations. These are all much larger than the
corresponding effort for discrete logs, for which naive algorithms are O(P), and good algorithms
begin at O(

√
P) and drop to O(P ε).

Possibilities for Extension to Larger P

Ladders
The matrix method is limited to modest P values, but we have some ideas for larger P . There are
dozens of “polylogarithm ladders” known, which give relationships between Li values of various
algebraic numbers. The relationships involve both dilogarithms and higher polylogs. A simple

29

example is
Li2(φ−6) = 4Li2(φ−3) + 3Li2(φ−2) − 6Li2(φ−1) + 7π2/30

with φ = 1.618..., the golden ratio. If P is a prime ending in 1 or 9, then 5 is a square (mod P),
and there is a residue corresponding to φ, a root of the equation φ2 = φ + 1. The example ladder
above may translate to a “free” modular dilog relation.

A large part of [20] is devoted to ladder relationships. These ladders could map to residues mod P,
and determine relationships among modular dilogs. The most extensive example known [1] uses a
root W of the Lehmer polynomial, W 10 + W 9 −W 7 −W 6 −W 5 −W 4 −W 3 + W + 1, and goes up
to Li17, involves a smattering of powers up to W 630, and coefficients with hundreds of digits.

Symbolic Values
Another possible approach is related to the matrix approach, with “opportunism”. The idea is to
assume a few symbolic values for particular dilogs, and use the functional equations to determine
related dilogs. When all possible dilogs have been derived, another symbolic value is assumed.
Eventually, every dilog is assigned a value based on the assumed symbolic values. Then the
functional equations can be enumerated systematically, and the symbolic values checked.
Occasionally a new relationship among symbolic values will be learned, and a symbolic value is
eliminated from the system.

Example: Mod 101, starting with symbolic values for D5 and D8. We can use the following “rules
of inference”. If we know D(x) we can express D(y) :

x → 1/x and 1 − x and the rest of the 6-ring
x and − x → x2

x and x2 → −x

We begin with D(5) = D5 and D(8) = D8. We also assume D(0) = D0 and D(1) = D1 are known,
and we assume a multiplier K and base 2 for the discrete logs which appear. 2 is a primitive root
mod 101. (We could also use one of the dilog variants which doesn’t need log terms in its functional
equations.) Each residue is in a ring of 6 values. We proceed according to the following plan:

5 → −20,−4, 25,−24, 21
5, 25 → −5
−5 → 20, 6, 17,−16,−19

8 → 38,−7,−29, 30,−37
8,−37 → −8

−8 → −38, 9, 39, 45,−44
9,−20 → −9

etc.

Using the functional equation for D(5) + D(1/5), we find

D(−20) = D(1/5)
= (−2D1 + K(log(−5))2)/2 − D5

30

= −D1 − D5 − (K742)/2 + 5100u

= −D1 − D5 − 2738K + 5100u

The 5100u term arises from dividing an equation mod 10200 by 2. We continue by calculating
expressions for D(−4) and so on, until we have every residue mod 101. Whether this approach
actually will work is speculative.

9.4 Extensions: Other Moduli, Other Fields, Other Functions

Prime Powers
We’ve done experiments to see how far the Modular Dilogarithm idea can be extended. A co-dilog
matrix was created and solved for Mod 25, as an example of a prime power. The dilogs seem to be
defined mod 600. This is analogous to the path from mod 5 to mod 25 for discrete logs, where the
solution range (mod 4) is multiplied by 5 to get (mod 20). The P = 5 dilog range (mod 24) is
multiplied by 25 to get (mod 600).

Composite Moduli
We haven’t tried experiments with composite moduli divisible by different primes. The results
might be simply the cross product of the separate prime power solutions, or there might be new
phenomena.

Finite Fields
Another experiment was with GF (52), the finite field of order 25. Here the dilogs appear to be
mod 624, which is 54 − 1. There’s also a relationship between the dilog of a field element and the
dilog of its conjugate. Curiously, the intermediate partially-reduced matrices included integers of
more than 100K bits. The matrix took ∼ 50K row-reduction steps to process, much more than the
mod 25 case or the mod 19 case. The final matrix only contained 3 digit numbers, with no sign
that the intermediates were huge.

Modular Trilogarithms
We’ve made some limited progress with Modular Trilogarithms. The single variable functional
equations don’t give enough relationships. A 22-term trivariate functional equation due to
Goncharov [20], p. 375 always produced zero solutions. (Our conversion to modular form might be
wrong.) We had some success with a two-variable 10-term equation, eqn 6.93 in [19] p. 174. Lewin
derives this from an 1809 result of Spence. Let u = s + t − st.

T (u) = 2T (s) + 2T (t) + 2T (s/u) + 2T (t/u) + 2T (−st/u) + T (−s/t) + T (−t/s)
− T (s2/u) − T (t2/u) − 2T (1)
+ (π2/6 + log(s/t)2/2) log(u2/st) − (log(u/s)3 + log(u/t)3)/3

The T (1) and π and log terms aren’t counted in the name ”10-term”. We multiplied the non-trilog
terms by 6 to clear fractions, and used π2 => −(p − 1)2/4. This approach yielded matrices with
solutions mod 7(P 3 − 1) for P = 5...17.

31

9.5 Miscellaneous Musings

Toward a Formula for Modular Dilogs
Starting with a functional equation from [19] p. 9.

D(ab) = D(a) + D(b) + D((ab − a)/(1 − a)) + D((ab − b)/(1 − b))
+ K ∗ 1/2(log((1 − a)/(1 − b)))2

Fix a �= 0, 1. Sum over b �= 1(modP). Let S = D(0) + D(1) + ... + D(P − 1).

S − D(a) = (P − 1)D(a) + (S − D(1)) + (S − D(0)) + (S − D(1 − a))

+ K ∗ 1/2
p−2∑
i=0

i2)

−PD(a) = 2S − D(0) − D(1) − D(1 − a) + K/12(P − 2)(P − 1)(2P − 3)

Assume D(a) + D(1 − a) = D(0) + D(1) − K ∗ log(a) ∗ log(1 − a)

−(P + 1)Da = 2S − 2(D(0) + D(1)) + K ∗ log(a) ∗ log(1 − a)
+ K/12(P − 2)(P − 1)(2P − 3)

If we assume that log terms are multiplied by P + 1, then this determines D(a) up to
approximately mod P − 1.

Why the Modulus for Modular Dilogarithms is P 2 − 1
Consider the squaring formula, 2(D(x) + D(−x)) = D(x2). If we are working over a finite field
GF (2N), then x = −x, so 4D(x) = D(x2). N squarings gets us back to x : x2N

= x, so
4ND(x) = D(x2N

) = D(x). Whence (4N − 1)D(x) = 0. So we expect dilogs in GF (2N) to be mod
4N − 1. Similarly, over a general finite field GF (PE), we use the P -tuplication formula

P (D(x) + D(wx) + D(w2x) + D(w3x) + ... + D(wP−1x)) = D(xP)

with wP = 1. But in a field over (mod P), the only P -th root of 1 is 1, so w = 1. Thus
P 2D(x) = D(xP). Taking P -th powers E times gives P 2ED(x) = D(xP E

) = D(x), since
xP E

= xin a finite field. Thus we expect (P 2E − 1)D(x) = 0 for all x in the field, and the dilogs
”exist” mod P 2E − 1.

The argument extends to trilogarithms: P 2(T (x) + T (wx) + ... + T (wP−1x)) = T (xP), with
wP = 1, so P 3T (x) = T (xP), and then P 3ET (x) = T (xP E

) = T (x), and trilogs ”exist” mod
P 3E − 1. The argument also works in the other direction, to “explain” why discrete logs are mod
PE − 1.

This also explains the conjugation mapping, P 2D(x) = D(xP). Taking P -th powers of an element
cycles through the conjugates; in the simple case E = 2, xP = x ∼. This explains the structure in
the GF (52) example; and why the elements in the ground field, which are their own conjugates,
satisfy xP = x and therefore P 2D(x) = D(x), so they are multiples of (P 4 − 1)/(P 2 − 1) = P 2 + 1.

This isn’t rigorous, but it might be the beginnings of a proof.

32

9.6 Prospects

Dilogarithms and polylogarithms are an active area of research. A Net search turned up several
different threads, although our modular idea seems to be new.

The most important unanswered question is: Why Do Modular Dilogarithms Exist?

All simpler modular operations and functions, up through discrete logs, can be derived from
analogies with the integer and real number versions of the functions, and can ultimately be traced
back to counting operations. For example, the familiar “Laws of Exponents” are derived by
counting the number of times various factors are multiplied together. The Dilogarithm concept has
no such grounding: the definition depends on limit operations – integrals and infinite series –
which have no modular counterpart. That there are modular solutions of the functional equations
can only be regarded as magic at this point.

There are many other questions: Give a proof that Modular Dilogarithms exist for all primes P ,
and perhaps for prime powers and finite fields. Give a formula to compute them. Describe the
structure of the solution space. Is there a useful inverse function, a Modular Diexponential? Are
there special primes for which computing dilogs is easy? How far can the concept of Modular
Functions be extended?

10 Recurrence Sequences

We contracted with Bill Gosper to explore (the idea of using formulas in recurrence sequences to
develop) another idea for faster operations with “points” on systems that are closely related to
elliptic and hyperelliptic curves. He developed a number of “point addition” formulas for these
systems. His work confirms that these systems could be used as alternatives to elliptic curves in,
for example, key exchange. More work is needed to make his discoveries efficient. As it stands, his
formulas need more arithmetic than the usual elliptic curve methods, but they may be competitive
with hyperelliptic curves (which have much more complex point addition formulas). His formulas
may also be speeded up by judicious specialization, careful choices of some system parameter values
as 0 or 1 to eliminate some terms from the formulas. Another idea to examine is to use GF (2N)
fields, where squaring is essentially a free operation and terms with even coefficients drop out.

We explored another such system, closely related to classic elliptic function theory over the
complex numbers. This scheme also seems not-quite-competitive with the usual elliptic function
methods. More details for all of this are given in his final report [11]. Contact the authors for more
information.

11 Other Groups

There have been a number of other groups suggested for use in cryptography. For example
hyperelliptic curves or braid groups. Neither of these are competitive with elliptic curves, but a
new idea using torus groups [30] is competitive and in fact offer shorter signatures.

33

12 References.

References

[1] D. Bailey and D. Broadhurst, “A Seventeenth-Order Polylogarithm Ladder“,
http://www.nersc.gov/∼ dhbailey/dhbpapers/ladder.pdf, Oct. 12, 1999.

[2] D. Boneh and M. Franklin, “Identity Based Encryption from the Weil Pairing”, SIAM J. of
Computing, Vol. 32, No. 3, p. 586-615, 2003.

[3] E. Brickell, D. Gordon, K. McCurley, and D. Wilson, “Fast Exponentiation with
Precomputation”, Advances in Cryptology – Eurocrypt ’92, Springer lNCS 658 p. 400-407,
1993.

[4] H. Cohen, A. Miyaji, T. Ono, “Efficient elliptic curve exponentiation using mixed
coordinates”, Advances in Cryptology – Asiacrypt ’98, Springer LNCS 1514, p. 51-59, 1999.

[5] J.-M. Couveignes, “Computing �-isogenies using the p-torsion”, in Algorithmic Number
Theory - ANTS-II, H. Cohen (Ed), Springer LNCS 1122, p. 59-65, 1006.

[6] K. Eisentrager, K. Lauter and P. Montgomery, “Fast Elliptic Curve Arithmetic and
Improved Weil Pairing Evalutation”, CT-RSA 2003, Springer LNCS 2612, p. 343-354.

[7] M. Fouquet, P. Gaudry, and R. Harley, “An extension of Satoh’s algorithm and its
implementation”, Journal of the Ramanujan Mathematical Society, vol. 15, p. 281-318. 2000.

[8] M. Fouquet, P. Gaudry and R. Harley, “Finding Secure Curves with the Satoh-FGH
Algorithm and an Early-Abort Strategy”, Advances in Cryptology – Eurocrypt 2001,
Springer LNCS 2045, p. 14-29.

[9] R. Gallant, R. Lambert, and S. Vanstone, “Faster Point Multiplication on Elliptic Curves
with Efficient Endomorphisms”, Advances in Cryptology – Crypto 2001, Springer LNCS
2139, p. 190-200.

[10] P. Gaudry, F. Hess and N. Smart, Constructive and Destructive Facets of Weil Descent on
Elliptic Curves, in Journal of Cryptology, 15(1), 19-46, Jan. 2002.

[11] W. Gosper, “Sequence Addition Formulae and Related Results”, Sandia Internal Report,
August 2003.

[12] D. Hankerson, J. Hernandez, A. Menezes, “Software Implementation of Elliptic Curve
Cryptography Over Binary Fields”, CHES 2000 workshop notes, p.1-24, 2000.

[13] IEEE P1363, Standard Specifications for Public Key Cryptography. Appendix A, 1997.

[14] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving”, Advances in Cryptology –
Asiacrypt ’99, Springer LNCS 1716, 1999, p. 135-149.

[15] N. Koblitz, “Elliptic Curve Cryptosystems”, Math. Comp. (48) p. 203-209, 1987.

[16] N. Koblitz, “CM-curves with good cryptographic properties”, Advances in Cryptology –
Crypto ’91, p. 279-287, 1992.

34

[17] R. Lercier and D. Lubicz, “Counting Points on Elliptic Curves over Finite Fields of Small
Characteristic in Quasi Quadratic Time”, Advances in Cryptology – Eurocrypt 2003,
Springer LNCS 2656, p. 360-373.

[18] L. Lewin, Dilogarithms and Associated Functions, Macdonald, 1958.

[19] L. Lewin, Polylogarithms and Associated Functions, Elsevier North Holland, 1981.

[20] L. Lewin ed., Structural Properties of Polylogarithms, AMS Surveys and Monograms (37),
1991.

[21] J. Lopez and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in GF(2n)”,
SAC ’98, Springer LNCS 1556, p.201-212.

[22] C. Lim and P. Lee, “More flexible exponentiation with precomputation”, Advances in
Cryptology – Crypto ’94, Springer LNCS 839, p. 95-107.

[23] A. Menezes, T. Okamoto and S. Vanstone, Reducing Elliptic Curve Logarithms to Logarithms
in a Finite Field, in STOC ’91, p. 80-89.

[24] V. Miller, “Use of Elliptic Curves in Cryptography”, Advances in Cryptology – Crypto ’85,
Springer LNCS 218, p. 217-426.

[25] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization”, Math.
Comp. (48), p. 243-264, 1987.

[26] F. Morain, “Calcul du nombre de points sur une courbe elliptique dnas un corps fini: aspects
algorithmiques”, J. Théor. Nombres Bordeaux (7), p. 255-282, 1995.

[27] F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtaction chains”, Informatique Théorique et Applications (24) p. 531-544, 1990.

[28] V. Müller, “Fast multiplication in elliptic curves over small fields of characteristic two”,
Journal of Cryptology (1), p. 219-234, 1998.

[29] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications, 1999.

[30] K. Rubin and A. Silverberg, “Torus-based Cryptography”, Advances in Cryptology – Crypto
2003, Springer LNCS 2729, p. 349-365.

[31] T. Satoh, “The Canonical Lift of an Ordinary Elliptic Curve over a Finite Field and its Point
Counting”, in J. Ramanujan Math. Soc., 15 (4), 2000, pp. 247-270.

[32] T. Satoh, B. Skjernaa and Y. Taguchi, “Fast Computation of Canonical Lifts of Elliptic
Curves and its Application to Point Counting”, Finite Fields and their Applications (9) p.
89-101, 2003.

[33] R. Schoof, “Elliptic Curves over Finite Fields and the Computation of Square Roots mod p”,
in Math. Comp. Vol. 44, no. 170, April 1985, pp. 483-494.

[34] R. Schoof, “Counting points on elliptic curves over finite fields” J. Théor. Nombres Bordeaux
(7), p. 219-254, 1995.

[35] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast Key Exchange with Elliptic
Curve Systems”, in Advances in Cryptology – Crypto ’95, Springer LNCS 963, 1995, p. 43-56.

35

[36] R. Schroeppel, “Faster Elliptic Calculations in GF (2N), preprint March 1998.

[37] R. Schroeppel, “Elliptic Curves – Twice as Fast”, Midwest Algebraic Geometry Conference,
Urbana, IL, November 2000.

[38] R. Schroeppel, “Circuits for Solving a Quadratic Equation in GF (2N)”, in preparation, 2003.

[39] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller and T. Draelos, “A Low Power Design for
an Elliptic Curve Digital Signature Chip”, CHES 2002, Springer LNCS 2523, p. 366-380.

[40] R. Schroeppel and C. Beaver, “Faster Elliptic Curve Computations using Montgomery’s
Reciprocal Sharing Trick”, patent filed Sept. 2003.

[41] J. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

[42] J. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves”, Advances in
Cryptology – Crypto ’97, Springer LNCS 1294, p. 357-371.

[43] J. Solinas, “Generalized Mersenne Numbers”, Technical Report CORR 99-39, University of
Waterloo, 1999.

[44] J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptography (19),
p. 195-249, 2000.

[45] N. Smart, “Elliptic curve cryptosystems over small fields of odd characteristic”, Journal of
Cryptology (12), p. 141-151, 1999.

[46] N. Smart, “How Secure Are Elliptic Curves over Composite Extension Fields?”, in Eurocrypt
2001, LNCS 2045, May 2001, p. 30-39.

[47] M. Torgerson, “Fast DL Secret Exponentiation with Pre-Computation”, patent application
filed Sept. 2003.

[48] F. Vercauteren, B. Preneel and J. Vandewalle, “A Memory Efficient Version of Satoh’s
Algorithm”, Advances in Cryptography – Eurocrypt 2001, Springer LNCS2045, p. 1-13.

[49] D. Zagier, Special Values and Functional Equations of Polylogarithms, Appendix A in [20],
p. 377-400.

36

DISTRIBUTION:

5 MS 0785
C. L. Beaver, 6514

5 MS 0785
R. C. Schroeppel, 6514

1 MS 0785
T. S. McDonald, 6514

1 MS 0451
S. G. Varnado, 6500

1 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 9616

37

	Abstract
	Acknowledgement
	Contents
	Figures
	1 Introduction
	2 Elliptic Curves
	2.1 Elliptic Curve Point Addition
	2.2 Elliptic Curves In Cryptography
	2.3 Computational Considerations
	2.4 Secure Curves and Point Counting

	3 Faster Point Multiplication
	4 Point Halving
	5 Double And Add
	6 The Reciprocal Sharing Trick
	6.1 Special Cases
	6.2 Timing Results
	6.3 More Applications
	6.4 Protection against Side Channel Attacks
	6.5 Montgomery’s Reciprocal Sharing
	6.6 Other Point Addition Considerations

	7 Finite Field Arithmetic and Field Towers
	7.1 Field Towers
	7.2 Quadratic Solve

	8 Available Software
	9 Dilogarithms
	9.2 Modular Dilogarithms
	9.3 Computing Modular Dilogarithms
	9.4 Extensions: Other Moduli, Other Fields, Other Functions
	9.5 Miscellaneous Musings
	9.6 Prospects
	9.1 The Classical Dilogarithm Function

	10 Recurrence Sequences
	11 Other Groups
	12 References.
	DISTRIBUTION:

