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Abstract

This report presents the implementation of a stateless scheme for Faithful
Execution, the design for which is presented in a companion report, “Prin-
ciples of Faithful Execution in the Implementation of Trusted Objects”
(SAND 2003-2328). We added a simple cryptographic capability to an
already simplified class loader and its associated Java Virtual Machine
(JVM) to provide a byte-level implementation of Faithful Execution. The
extended class loader and JVM we refer to collectively as the Sandia Faith-
fully Executing Java architecture (or JavaFE for short). This prototype is
intended to enable exploration of more sophisticated techniques which we
intend to implement in hardware.

1.  The research described in this report was sponsored by the Defense Advanced Research Projects Agency (DARPA) under Project
Kernel.
3



4



Table of Contents
Executive Summary..........................................................................................................7

1 Introduction.......................................................................................................................9

2 Three Java Architectures................................................................................................ 11

3 Class Loader ....................................................................................................................15

4 JVMFE ...............................................................................................................................19
4.1 Translation ....................................................................................................................... 20
4.2 Protection Algorithms.................................................................................................... 21
4.3 Corruption....................................................................................................................... 25
4.4 Input ................................................................................................................................. 26

5 Status ................................................................................................................................27

6 Using the JaveFE..............................................................................................................29

7 Conclusion .......................................................................................................................33

Appendix A Additional Details of the JVMFE ..................................................................35
A.1 JVMFE Input .................................................................................................................... 37
A.2 JVMFE Output ................................................................................................................. 53
A.3 Class Hierarchy............................................................................................................... 55
5



List of Figures
Figure 1 Java Architecture ...............................................................................................11
Figure 2 Javasimple Architecture......................................................................................12
Figure 3 JavaFE Architecture............................................................................................13
Figure 4 Class Loader Functions.....................................................................................16
Figure 5 Basic JVM ............................................................................................................19
Figure 6 Main Loop for the JVM for the Javasimple Architecture ...............................19
Figure 7 JVMFE ..................................................................................................................20
Figure 8 Adding Protection .............................................................................................22
Figure 9 Removing Protection........................................................................................ 22
Figure 10 Key for Figure 8 and Figure 9 ......................................................................... 23
Figure 11 Main Loop for JVMFE, showing the Corruption Facility ............................ 26
Figure 12 A Simple Java Application .............................................................................. 29
Figure 13 RIF for Figure 12 ............................................................................................... 29
Figure 14 Sample Corruption Control File ..................................................................... 30
Figure 15 Modified Code from Figure 12 ....................................................................... 30
Figure 16 RIF for Figure 15 ............................................................................................... 31
Figure 17 Detection of Integrity Fault ............................................................................. 32
Figure 18 Class Hierarchy for the JVM for the Javasimple Architecture ..................... 55
Figure 19 JVMFE Class Hierarchy .................................................................................... 56
Figure 20 JVMFE Class Relationships .............................................................................. 59
Figure 21 JVMFE APIs........................................................................................................ 61

List of Tables
Table 1 Run Command File parameters.......................................................................38
Table 2 Protecting Memory............................................................................................45
Table 4 Intermediate Protection Values........................................................................64
Table 3 MemoryCell Store..............................................................................................64
Table 5 Possible Actions Taken by getPlainByte.........................................................65
Table 6 MemoryCell Fetch .............................................................................................66
Table 7 Runtime Integrity Fault on Uncorrupted Protected Value ..........................67
6



Executive Summary

Definition: Faithful Execution (FE) is a type of software protection that begins when the soft-
ware leaves the control of the developer and ends within the trusted volume of a target pro-
cessor. That is, FE provides program integrity, even while the program is in execution.

This report presents the implementation of a stateless scheme for FE, the design for which is
presented in a companion report, “Principles of Faithful Execution in the Implementation of
Trusted Objects” (SAND 2003-2328). We added a simple cryptographic capability to an already
simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level
implementation of FE. The extended class loader and JVM we refer to collectively as the Sandia
Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable
exploration of more sophisticated techniques which we intend to implement in hardware.

In this report we first review the architectural basis of our prototype and then the changes that
we applied to provide an initial protection scheme that is lightweight yet non-trivial. We also
describe the prototype’s “corruption” capability that enables the user can change any value in
memory while the modified JVM (JVMFE) is in execution. This capability simulates an active
adversary. We also present sample input and corresponding output.

An Appendix provides additional details of the JVMFE including the syntax and semantics of
the four input files, a sampling of output, and the structure and components of the Java
hierarchy.

The modified class loader and JVMFE have been successfully implemented and were
demonstrated in September, 2002. The modified JVM consists of approximately 7,500 lines of
commented Java code in 16 class files, as opposed to the approximately 2,000 lines of code in
five class files for the simplified JVM with which we began. All of the protection algorithms are
grouped in one class which is approximately 600 lines of uncommented code. The code for the
modified class loader and the modified JVM are available, subject to copyright restrictions.
7
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1 Introduction

We begin with the following definitions copied from the companion report entitled “Principles
of Faithful Execution in the Implementation of Trusted Objects” (SAND 2003-2328):

Definition: A trusted volume is the computing machinery (including communication lines)
within which data is assumed to be physically protected from an adversary. A trusted vol-
ume provides both integrity and privacy.

Definition: Program integrity consists of the protection necessary to enable the detection of
changes in the bits comprising a program as specified by the developer, for the entire time
that the program is outside a trusted volume. For ease of discussion we consider program
integrity to be the aggregation of two elements:

instruction integrity (detection of changes in the bits within an instruction or block of
instructions),

and

sequence integrity (detection of changes in the locations of instructions within a pro-
gram).

Definition: Faithful Execution (FE) is a type of software protection that begins when the soft-
ware leaves the control of the developer and ends within the trusted volume of a target pro-
cessor.2 That is, FE provides program integrity, even while the program is in execution.

The “companion report” referred to above describes two simple designs for FE, one stateless,
the other stateful. The implementation of the stateless design is presented in this report in the
form of a prototype based on a simplified Java architecture consisting of three pieces

1. a standard Java compiler,
2. a simplified class loader, and
3. a simplified Java Virtual Machine (JVM).

This simplified architecture we refer to as the Javasimple architecture. We extended this
architecture with FE capabilities to produce what we refer to as the Sandia Faithfully Executing
JavaFE architecture (or JavaFE for short).

The rest of this report organized as follows. In Section 2 we describe the basic Java architecture,
the Javasimple architecture, and the JavaFE architecture. In Section 3 and Section 4 we present the
design of the class loader and the JVM, respectively, for the JavaFE architecture. In Section 5 we
present the status of our implementation of the JavaFE architecture. In Section 6 we show a
sample use of that implementation. In Appendix A we present additional details of the JVM for
the JavaFE architecture. We present that JVM in two pieces—in Section 4 and in Appendix A—in
order to isolate the details that we believe are of particular interest, namely those in Section 4,
from those which only play a supporting role, namely those in Appendix A.

2.  A more intuitive definition is that FE is the assurance that the software that executes is the same as the developer intended. We
presume, of course, that the software is in fact what the developer intended.
9
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2 Three Java Architectures

In this section we present three Java architectures:

• the basic Java architecture,

• the Javasimple architecture, and

• the JavaFE architecture.

The Javasimple architecture is a simplification of the basic Java architecture, and the JavaFE
architecture is an extension of the Javasimple architecture. (The names of the second and third
architectures are our own invention.)

The basic Java architecture consists of two general pieces: a compiler and an interpreter. The
Java compiler, “javac,” converts Java source files—with a .java extension—into Java bytecode
files (which are known as “class” files)—with a .class extension. The Java interpreter, “java,”
also known as the Java Virtual Machine (JVM), is invoked with the name of a class file
containing a “main” method. The interpreter then interprets bytecodes in that file, loading
additional class files dynamically, as it encounters a need for them. This arrangement is shown
in Figure 1.

The Java architecture upon which the prototype presented in this report is based is a simplified
version of the architecture shown in Figure 1. This simplified version loads classes statically,
prior to interpretation, instead of dynamically, during interpretation. A new “class loader” sits

Figure  1 Java Architecture

Java compiler (javac)

.java
file 1

Java interpreter (java)

.class
file 2

.class
file n

...

The interpreter loads classes dynamically, as it needs them.

.class
file 1
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logically between the Java compiler and the modified Java interpreter. This loader gathers all of
the necessary class files into one file that we refer to as a “ROM Image File” (RIF). Another
simplification is that the JVM does not implement the set of “built-in classes” that are defined in
the Java Virtual Machine Specification (e.g., classes for console I/O, networking, and math
functions that are not built into the language). We refer to this simplified Java architecture,
shown in Figure 2, as the Javasimple architecture. (Note that the Java compiler in both
architectures is the same. The modification of the JVM is noted in the figure with a trailing
apostrophe.)

We implemented our prototype by adding a “Protection Engine” to both the class loader and
the JVM of the Javasimple architecture. The modified class loader applies cryptographic
protection to the bytecodes as it builds an RIF. The modified JVM (a) removes protection as it
brings in each bytecode for execution and (b) applies protection when, during execution, it
stores on the disk data that it generates. In this way the bytecodes are protected from the time
they leave the class loader until the time they are actually executed and the generated data is

Figure  2 Javasimple Architecture
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it.
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likewise protected while it sits on the disk, thereby providing Faithful Execution. The modified
class loader and JVM in concert provide a software implementation of FE. We refer to this
extended architecture, shown in Figure 3, as the Sandia Faithfully Executing JavaFE architecture
(or JavaFE for short).

This report presents a prototype implementation of the JavaFE architecture. The protection
algorithm in the Protection Engine of this initial version of the prototype uses lightweight (yet
non-trivial) encryption. The focus of this report is not on the strength of that cryptographic
algorithm but on the structure of the implementation. We intend on using the prototype to
explore more sophisticated techniques as a step toward implementing those more sophisticated
techniques in hardware.

In order to be able to exercise the FE capability, the JVM in our extended architecture can, under
direction of the user, change any value in memory while the JVM is in execution. This capability
simulates an adversary and is referred to as “corruption.”

Figure  3 JavaFE Architecture
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3 Class Loader

The class loader in the Javasimple architecture is a program that takes one or more class files
produced by the Java compiler and coalesces them into a single, executable ROM Image File
(RIF). When the class loader is invoked it is given the name of the class file that contains the
program’s “main” method which is the starting point for execution. The class loader performs a
transitive closure on objects referenced by the main method in order to identify all of the class
files that need to be included in the RIF. The class loader organizes these files into an
intermediate ROM image representation.

As noted above we extended this class loader with a Protection Engine. The Protection Engine is
15



shown explicitly in Figure 4.

One of the reasons we chose the Javasimple architecture as a base was its separate class loader
which would enable us, at loadtime, to insert special “cryptographic opcodes” that would

Figure  4 Class Loader Functions
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enable us, at runtime, to control the Protection Engine in the JVM. One of these opcodes could
provide an initialization vector, for example, to enable synchronization. Another could enable
dynamic key changes. This is a future capability of our class loader as depicted by the note
adjacent to the “Insert Crypto Engine” step in Figure 4. This step appears before the “Resolve
Locations” step because the inserted opcodes would change branch offsets.

After all instruction locations have been resolved our class loader uses its embedded Protection
Engine to apply cryptographic protection to the RIF. During this phase the class loader
identifies the boundaries of the code areas and the constant pools for all classes that were
collected and it generates unique keys for each. The presence of multiple keys enables switching
cryptographic context according to location and memory area. These keys are written to what
we refer to as a “Key Definition File” (KDF) (see Section 4.4 and Appendix A.1.3 for details)
which in a production system would itself be protected in some way, perhaps encrypted using
the public key of the target JVM. The keys in the KDF are used to protect the data in their
respective areas using the process presented in Section 4.2 below. This protection process
provides program integrity and is intended to be the software equivalent of “shrink-wrapping.”
The protected ROM image contents are written to an RIF, and this file is transferred, along with
the KDF, to the target JVMFE.
17
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4 JVMFE

Conceptually the JVM for the basic Java and Javasimple architectures presented in Section 2
consists of two parts: the JVM proper and data storage, as shown in Figure 5, where the dotted
rectangle represents a trusted volume.

The implementation of the JVM for the Javasimple architecture with which we began is itself a
Java class file. The control structure consists primarily of a single loop that, for a specified
number of steps, fetches the instruction at the current value of the Program Counter, then
executes that instruction, then does another fetch, as shown in pseudocode in Figure 6.

As with our modified class loader, to produce the JVM for the JavaFE architecture we added a
Protection Engine to the JVM in the Javasimple architecture, as shown in Figure 7. The Protection
Engine consists of a set of class files, primarily in the MemoryCell class (see Section 4.2 and

Figure  5 Basic JVM

Figure  6 Main Loop for the JVM for the Javasimple Architecture

address, or
address & data data

data storage

trusted volume

JVM

Note: “data storage” includes cache, ram,
secondary storage (disk), network storage, and so
on for both instructions and data.

int n = number_of_instructions_to_execute;
int pc = 0; // program counter;
for ( int i = 0 ; i < n ; i++ )
{

fetch instruction at current value of pc;
execute current instruction;

}
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Appendix A.3.2.9 for details) that provide program integrity, as defined in Section 1.

Note that in Figure 7 “data storage” is outside of the trusted volume, unlike Figure 5. The
Protection Engine protects data as the data is pushed out to storage and it removes that
protection as the data is pulled back in from storage. The Protection Engine enables data in
storage to reside outside of the trusted volume and still be protected. This means that even if an
adversary has control of the data as it resides in the cache, in RAM, on the local disk, or on a
network disk, the data is still protected. One way of describing FE is as a way to move data
storage outside of a trusted volume and still be able to protect that data.

The Protection Engine we have implemented provides byte-level protection and depends on
our underlying “translation” scheme, described next.

4.1  Translation

Note: The JVMFE is designed to accommodate protection techniques of arbitrary robustness
and sophistication. Our intention is to use the JVMFE to explore such techniques. As a first
step in that direction we implemented cryptographic techniques, as presented in this sec-
tion, that are lightweight (yet non-trivial).

The JVMFE provides program integrity via the addition and removal of protection, as we will
describe in Section 4.2. The approach we describe depends upon a single, Electronic Codebook
(ECB) type translation scheme.

The JVMFE has four memory areas—rom, stack, state, and heap—as described in Appendix
A.3.2. For each address in each memory area for which the JVMFE performs either a fetch or a
store we require a set of four keys. Each key is 64 bits. A set of keys can span a range of
addresses and can be used for different memory areas. In fact, any permutation of keys,

Figure  7 JVMFE
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address & data data

Protection Engine

data storage

trusted volume

protected data

JVM

plain address, or
plain address & protected data
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addresses, and memory areas can be accommodated.

One key provides sequence integrity, a second provides instruction integrity, a third program
privacy (i.e., encryption), and a fourth decryption. The class loader generates the first three of
these keys; the JVMFE derives the fourth from the program privacy key.

We translate an eight-bit byte by independently translating both of its two, 4-bit “nibbles.” We
consider each 64-bit key to consist of an array of 16 nibbles indexed from 0 through 15 inclusive.
The result of the translation of a nibble is the value of the key array at the index specified by
that nibble. So, for example, if a key, represented in hex, is 0x123456789ABCDEF0, and the value
of a nibble is 0, then the translation of that nibble using that key is 1, and if the nibble is 1, then
the translation is 2, and so on. We have chosen this approach because it is fast, easy to
implement, and economical in that it can be used for each cryptographic step in the application
and removal of protection.

We use two types of keys: invertible and non-invertible. An invertible key is a permutation of
the hex string 0x0123456789ABCDEF; a non-invertible key is any 16-digit hexadecimal number.

The program privacy key must be invertible so that an inverse key can be derived from it. The
instruction integrity and sequence integrity keys can be non-invertible. In our prototype we ask
that the instruction integrity key be invertible and we allow the sequence integrity key to be
non-invertible, the former to get better integrity (see Section 4.2.2) and the latter so that we can
increase the keyspace. However, there are valid arguments for other arrangements.

4.2  Protection Algorithms

The Protection Engine of the class loader applies protection to each byte using the first
algorithm described in this section. When the JVMFE performs a fetch, it receives the protected
value from storage, which is outside of the trusted volume, and then, inside of the trusted
volume, the Protection Engine of the JVMFE removes that protection using the second algorithm
described in this section. When the JVMFE performs a store it first directs the Protection Engine
to apply protection using the same algorithm that the Protection Engine in the class loader uses,
then it proceeds to store the protected value on the disk, outside of the trusted volume. The
addition and the removal of protection are described diagrammatically below:

adding protection is shown in Figure 8;

removing protection is shown in Figure 9; and
21



the key for both figures is shown in Figure 10.

Figure  8 Adding Protection

Figure  9 Removing Protection
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4.2.1 Adding Protection

The protection algorithm for the plaintext byte “b” to be stored at the two-byte address “a”
consists of five steps:

1. The JVMFE generates an “instruction integrity byte” by translating (see Section 4.1) the
plaintext byte “b” using the instruction integrity key.

2. The instruction integrity byte from step 1 is combined with the plaintext byte “b” to create a
“plaintext short” (a two-byte value).

3. The plaintext short from step 2 is encrypted, i.e., translated using the program privacy (i.e.,
encryption) key, to create an “encrypted short.”

4. The address “a” where the byte is to be stored, is translated using the sequence integrity key
to create a “sequence integrity short.”

5. The sequence integrity short from step 4 is exclusive-or-ed with the encrypted short from
step 3 to create a “protected short.”

Let Tk(g)(h) denote the translation of the one- or two-byte value “h” using key g. Let “s” denote
the sequence integrity key, “p” the program privacy (i.e., encryption) key, and “i” the
instruction integrity key. Let “M(i,j)” denote the function that mixes or combines its two
parameters (e.g., concatenation). And finally let “⊕ ” denote the exclusive-or operation. The
protection algorithm can then be succinctly described as follows:

c = (Tk(s)(a)) ⊕  (Tk(p)(M(b, Tk(i)(b)))) (1)

Figure  10 Key for Figure 8 and Figure 9

M

Tk(s)

+

=?

X1 X2

Key:

denotes a mixing or combining function, such as concatenation.

denote the extraction function that is

the inverse of the mixing function, M.

denotes the XOR operation.

denotes the predicate that returns true iff both inputs are identical.

denotes the translation using the sequence integrity key (“s”)
(the alternatives are the instruction integrity key (“i”), the program privacy
(i.e., encryption) key (“p”), and the decryption key (“d”))
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where “c” is the protected short corresponding to plaintext byte “b” to be stored at address “a,”
under these particular keys.

4.2.2 Removing Protection

Removing protection is the inverse of adding protection (Equation 1) and consists of two
algorithms: decryption (Equation 2) and an integrity check (Equation 3).

The decryption algorithm for the protected short “c” stored at the two-byte address “a” consists
of four steps:

1. The address “a” of the protected short “c” is translated (see Section 4.1) using the sequence
integrity key to create a sequence integrity short.

2. The sequence integrity short from step 1 is exclusive-or-ed with the protected short “c” to
create an encrypted short.

3. The encrypted short from step 2 is decrypted, i.e., translated using the decryption key (i.e.,
the inverse of the program privacy key), to create a plaintext short.

4. The plaintext byte—as opposed to the instruction integrity byte—of the plaintext short
from step 3 is extracted.

Let Tk(g)(h) denote the translation of the one- or two-byte value “h” using key g. Let “s” denote
the sequence key and “d” the decryption key. Let “⊕ ” denote the exclusive-or operation. And
finally let X denote the extract function that is defined as follows, using the function M, defined
above: for all i and j, i = X1(M(i,j)) and j = X2(M(i,j)). The decryption algorithm can be succinctly
described as follows:

b = X1(Tk(d)(c ⊕ Tk(s)(a))) (2)

where “b” is the recovered plaintext byte corresponding to the protected short “c” stored at
address “a,” under these particular keys.

The integrity check covers both sequence integrity and instruction integrity. The check on
instruction integrity is explicit: the instruction integrity byte that is associated and stored with
the plaintext byte is compared with an instruction integrity byte that is generated, based on the
plaintext byte, just before the comparison is made. The sequence integrity is implicit: if the
adversary has moved a protected value to a new address, then the bits that will be fed to the
instruction integrity check will be garbled, causing that check to fail.

The integrity check for the protected short “c” stored at the two-byte address “a” consists of
seven steps (the first four steps are the same as the decryption algorithm):

1. The address “a” of the protected short “c” is translated (see Section 4.1) using the sequence
integrity key to create a sequence integrity short.

2. The sequence integrity short from step 1 is exclusive-or-ed with the protected short “c” to
create an encrypted short.

3. The encrypted short from step 2 is decrypted, i.e., translated using the decryption key (i.e.,
the inverse of the program privacy key), to create a plaintext short.
24



4. The plaintext byte—as opposed to the instruction integrity byte—of the plaintext short from
step 3 is extracted.

5. The instruction integrity byte—as opposed to the plaintext byte—of the plaintext short from
step 3 is extracted.

6. The plaintext byte is translated using the instruction integrity key to create an instruction
integrity byte.

7. The recovered instruction integrity byte from step 5 is compared with the generated instruc-
tion integrity byte from step 6: the plaintext byte has integrity if and only if those two values
are the same.

Let Tk(g)(h) denote the translation of the one- or two-byte value “h” using key g. Let “s” denote
the sequence integrity key, “d” the decryption key, and “i” the instruction integrity key. Let “⊕ ”
denote the exclusive-or operation. And finally let X denote the extract function defined above.
The integrity check can be succinctly described as follows:

Tk(i)(b) == X2(Tk(d)(c ⊕  Tk(s)(a))) (3)

where “b” is the recovered plaintext byte corresponding to the protected short “c” stored at
address “a,” under these particular keys.

4.3  Corruption

In order to simulate an adversary with control of storage the JVMFE enables the user to
“corrupt” (i.e., change) storage contents as the JVMFE executes (see Appendix A.1.4 for details).3

When the JVMFE fetches a corrupted value at runtime it raises what we call a “runtime integrity
fault.” A production version of a JVMFE would not have a facility to simulate an adversary, of
course. On the command line the user provides the name of a file, known as a “Corruption
Control File” (CCF), each line of which provides the following four items of information:

1. the memory area to be corrupted4;
2. when the corruption is to occur, specified as either a range of the number of bytecodes that

have executed or as a range of values of the program counter;
3. the address range of bytes that are to be corrupted; and
4. the value that is to be used to overwrite the current value of the bytes in storage.

During execution of the main loop of the JVMFE the corruption facility is called, as shown in
Figure 11, and it corrupts storage using all of the lines in the corruption file that apply.

As a check on our integrity checking scheme the JVMFE flags each value that is corrupted. If a
runtime integrity fault is not raised when a corrupted value is fetched, the JVMFE announces the
failure (of our integrity checking scheme) and halts.

If corruption is applied to unprotected storage,5 the JVMFE will use the value provided from the

3.  Changing the contents of the ROM Image File prior to execution simulates an adversary with control of the distribution medium.
When the JVMFE reads in such a file the JVMFE should raise what we call a “loadtime integrity fault” (see Table 1 on page 38).

4.  That is, rom, stack, state, or heap (see Appendix A.3.2 for details).
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CCF to change the stored value and the JVMFE will announce the use of a corrupted value as
that value is fetched but the JVMFE will not interrupt execution (see Appendix A.1 for details).

4.4  Input

The JVMFE is invoked with a “Run Control File” (RCF) that can change default settings for the
run, including possibly the names of the three input files:

• a ROM Image File (RIF),

• a Key Definition File (KDF), and

• a Corruption Control File (CCF).

The RIF is a program file that has been compiled into bytecodes and is usually protected via the
algorithm shown in Section 4.2 and as noted in Section 3. (The JVMFE can execute an
unprotected RIF (see below and also Appendix A.1).) The KDF holds the keys for the RIF. The
CCF controls corruption. If the name of a CCF is not provided, no corruption is performed (see
Section 4.3).)

The JVMFE checks the integrity of each byte of the RIF as it reads it in to storage, using the keys
supplied by the KDF. This activity takes place during “loadtime.” If an integrity fault occurs at
this time the JVMFE will announce the fault and by default continue (see the
HALT_ON_LOADTIME_INTEGRITY_FAULT parameter in Table 1).

The JVMFE can also accept an unprotected (i.e., a plaintext) RIF which the JVMFE will protect as
it reads it in to storage if a KDF is provided on the command line. If no KDF is provided, the
JVMFE will not protect such an unprotected RIF and thereafter JVMFE behaves as though it were
the JVM from the Javasimple architecture.

To enable verification of the behavior of this prototype the JVMFE, at the conclusion of loadtime,
writes zero, one, or two output files. One output file is the plaintext version of the RIF. The
second output file, which is generated only if a KDF is provided, is the protected version of the
RIF as it exists in the data storage of the JVMFE.

5.  The JVMFE can operate on unprotected storage (see Appendix A.1 for details).

Figure  11 Main Loop for JVMFE, showing the Corruption Facility

int n = number_of_instructions_to_execute;
int pc = 0; // program counter;
for ( int i = 0 ; i < n ; i++ )
{

call corrupter, passing it i and pc;
fetch instruction at current value of pc;
execute current instruction;

}
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5 Status

The modified class loader and JVM have been successfully implemented and were
demonstrated in September, 2002. The JVMFE consists of approximately 7,500 lines of
commented Java code in 16 class files, as opposed to the approximately 2,000 lines of code in
five class files for our version of the JVM for the Javasimple architecture. The protections
algorithms—i.e., the Protection Engine shown in Figure 7—are contained in the MemoryCell
class which is approximately 600 lines of code (if comments are removed). The code for both the
class loader and the JVM are available, subject to copyright restrictions.
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6 Using the JaveFE

This section describes how to use the class loader and the JVM of the JavaFE architecture to
shrink-wrap and execute Java applications. This section also shows sample output generated
when the JVMFE runs a code that is corrupted during execution.

The first step in using the JVMFE architecture is to write the application that is to be protected.
The JVMsimple does not implement the set of “built-in classes,” as noted in Section 4, and the
JVMFE does not expand on that set. So the set of applications that can run on the JVMFE is
currently limited to those that do not make calls to those built-in classes. An example of a
simple application is shown in Figure 12.

Once the Java source is written it can be compiled using any Java compiler to develop one or
more class files. Using our modified class loader, presented in Section 3, these class files should
then be coalesced into a single ROM Image File (RIF), as shown in Figure 13.

The class loader generates unique keys for the method and constant pool areas for each class
that the RIF contains and it protects the bytecodes and constants using these keys. The class
loader stores those keys in a KDF (not shown). (The KDF also specifies the keys that are to be

Figure  12 A Simple Java Application

Figure  13 RIF for Figure 12

public class count16 {

public static void main (String args[]) {

}

}

for ( i = 0 ; i < 16 ; i+= 3) {

}

[Method 1] count16.main ([Ljava/lang/String;)V
0051 : 03       : iconst_0

0052 : 3d       : istore_2

0053 : 03       : iconst_0

0054 : 3c       : istore_1

0055 : a7 00 03 : goto 3 //005bH

0058 : 84 01 01 : iinc stack index(1)1

005b : 1b       : iload_1

005c : 10 10    : bipush 16

005e : a1 ff f7 : if_icmplt -9// 0058H

0061 : b1       : return
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used to protect the other areas of memory (see Appendix A.3.2 for details).) The protected RIF
and then KDF can then be fed to a JVMFE.

When the JVMFE begins execution it first opens the KDF and loads the keys found in that file.
The JVMFE then loads the protected ROM image in to data storage, checking the integrity of
each protected value as the value is read in. The JVMFE also accepts a CCF that enables the user
to model an adversary who can change bits in storage during execution (see Section 4.3 for
details).

As an example of corruption, we wrote a CCF, shown in Figure 14, designed to corrupt the code
in Figure 12.

This CCF directs the JVMFE to change the protected value in rom memory at byte address 90
through 100 inclusive to 0xab whenever the program counter is set to 17. (For this example we
empirically determined the values for the address, the program counter, and the corruption
value.)

The effect of the CCF in Figure 14 on the RIF in Figure 13 is to change that RIF to one that
corresponds to the code shown in Figure 15.

The arrow in Figure 15 points out the difference between the code in Figure 12 and the code in
Figure 15: the loop increment in Figure 12 is 1, but the loop increment in Figure 15 is 3.

Figure 16 shows the RIF that corresponds to Figure 15. The arrow points out the difference

Figure  14 Sample Corruption Control File

Figure  15 Modified Code from Figure 12

rom pc 17-17 address 90-100 ab

public class count16 {

public static void main (String args[]) {

}

}

for ( i = 0 ; i < 16 ; i+= 3) {

}
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between this RIF and the one shown in Figure 13.

When the JVMFE executes the RIF shown in Figure 13 it checks each time through the main
loop, as shown in Figure 11 on page 26, to see if corruption should be done. When the program
counter is set to 17 the protected value at decimal address 90 (hex 5A) is changed, as the JVMFE
announces in the upper half of Figure 17.6 When the JVMFE subsequently fetches that corrupted
protected value at decimal byte address 90 it announces an integrity fault, then halts, as shown
in the lower half of Figure 17. (Note that Figure 17 is showing protected values, not plaintext
values. That is, 0x77 is the protected value at the given address with the given keys for the value

Figure  16 RIF for Figure 15

6.  The output shown in this Figure has been edited. To see more of this type of output, see Appendix A.2.

[Method 1] count16.main ([Ljava/lang/String;)V
0051 : 03       : iconst_0

0052 : 3d       : istore_2

0053 : 03       : iconst_0

0054 : 3c       : istore_1

0055 : a7 00 03 : goto 3 //005bH

0058 : 84 01 03 : iinc stack index(1)1

005b : 1b       : iload_1

005c : 10 10    : bipush 16

005e : a1 ff f7 : if_icmplt -9// 0058H

0061 : b1       : return
31



1, and 0xab is the protected value at the given address with the given keys for the value 3.)

Figure  17 Detection of Integrity Fault

Execution of code begins.

MemoryCell (rom): byte address 90 (0x5A):

corruption:

 original value: 0x77

corrupted value: 0xab

Fatal error:

MemoryCell (rom) byte address 90 (0x5A):

runtime integrity fault;

(corrupted value);

(no integrity fault when reading rom file);

(no integrity fault when writing rom file);
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7 Conclusion

In this report we have presented the implementation of a stateless scheme for FE, the design for
which is presented in a companion report. We described the architectural basis for the
prototype, the changes we applied to provide protection, the nature of that protection, and a
“corruption” facility. We have shown sample input and output of the running prototype. The
Appendix which follows the body of this report provides additional details.
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Appendix A  Additional Details of the JVMFE

This Appendix provides details on aspects of the JVMFE that play a supporting role to the
material provided in the body of this report.

The details of the various objects in the JVMFE and their relationship to each other are described
later in this Appendix. Unfortunately such understanding is presumed in this introductory
material. Consequently, if the details of this introductory material are confusing, the reader is
encouraged to skip ahead, and then to return after digesting the rest of the Appendix.

This report describes a prototype, not a production system. The most important aspect of the
prototype is the modularity it provides for the “MemoryCell” class that does the protection. The
API for this class has only three methods:

• a constructor to store a byte, and

• two other methods to get a plaintext byte or get a protected value.7

MemoryCell is controlled by only one class (Memory), and it has a reference to only one class
(KeySet). The simplicity of this design will facilitate experimenting with different protection
approaches: all that is required to try a different approach is to change MemoryCell. (If the
names, number or nature of the keys change, then KeyChain and Keyset would also need to be
changed.)

Since the JVMFE is a prototype designed to experiment with different protection approaches a
main design goal of the JVMFE is to confirm the operation of those approaches. As a result, the
JVMFE is neither efficient nor (in and of itself) secure. Both of these design aspects would be
taken care of in a production version.

The JVMFE is not efficient due to the following features:
1. The JVMFE creates a new MemoryCell object each time it stores a byte. This approach

removes problems due to data leftover from a previous store.
2. Each time through the main interpretive loop (i.e., each time a bytecode executes), methods

are called to check to see if an attacker should be simulated. This simulated attacker can
change any bits any number of times while instructions or data are on the disk during exe-
cution.

3. The memory hierarchy opts for method re-use rather than efficiency. For example, the
MemoryBase class implements the getTwoBytes method by returning the concatenation of
two calls to its getOneByte method.

4. The debugging facilities integrated into the JVMFE (see the VIEW parameters in Table 1) use
IF statements, the predicates for which are executed even if the debugging facilities are
turned off. It would be more efficient to use the Java equivalent of IFDEF statements as in C
that can be temporarily removed in a compiler preprocessing step.

The JVMFE is not (in and of itself) secure due to the following features:

7.  There is a fourth method, but this last method implements the corruption facility and would not be included in a production sys-
tem, obviously.
35



1. The Memory class retains each byte, in plaintext, as it is stored in a MemoryCell object.8

This is done to confirm the operation of MemoryCell.
2. MemoryCell, like Memory, retains each byte, in plaintext, as it protects that byte. This is

done to confirm its own operation. MemoryCell also retains all intermediate values gener-
ated in the process of protecting. And again, this is done to confirm MemoryCell’s opera-
tion.

3. The plaintext equivalent of the input protected value given to the JVMFE is written to a file
at the beginning of execution in order to confirm that the protected value corresponds to the
plaintext previously given to the class loader.

The remainder of this Appendix is organized as follows. In Appendix A.1 we show the input to
the JVMFE, including how to run it. In Appendix A.2 we show sample output of the JVMFE.
And in Appendix A.3 we present the class hierarchy of the JVM for both the Javasimple and the
JVMFE architectures.

Note: In this Appendix “JVMFE” refers to all of the code constituting the JVMFE. When we
are discussing the Java class named “JVMFE.java” (see Appendix A.3) we use the name
“JVMFE” (e.g., see NUMBER_OF_STEPS_TO_EXECUTE in Table 1).

8. The following is a detail that can be safely ignored by the reader but is included here for completeness: If the JVMFE is given a pro-
tected RIF (the presumed, normal occurrence), then Memory directs MemoryCell to provide it (Memory) with the plain text corre-
sponding to each protected value that Memory gives to MemoryCell to be stored. In this way Memory is still able to retain a plaintext
byte for each byte given to MemoryCell, even though the ROM Image File is protected.
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A.1 JVMFE Input

The JVMFE uses four input files:
1. a Run Control File (RCF) —required
2. a ROM Image File (RIF) —required
3. a Key Definition File (KDF) —optional
4. a Corruption Control File (CCF) —optional

Each of these are presented in turn below.

A.1.1 Run Control File (RCF)

The Run Control File (RCF) changes parameters for an invocation of the JVMFE. The JVMFE
will use the RCF specified on the command line, or, if none is specified, it will use the default
RCF. If there is no default RCF, JVMFE will write one, then halt, as shown below.

There are two forms of the command line for the JVMFE:

java JVMFE

and
java JVMFE rcfn

where
rcfn is replaced by a run control filename (RCF).

The first form of the command line will use the default RCF, and the second form will use the
RCF given on the command line. In either case, if the RCF file does not exist, then the JVMFE
will (a) write a copy of the default RCF (if the default RCF does not exist), and (b) print the
following information before it halts:

Execution begins.
Writing default run control file to file: run.rcf

Usage:
        java JVMFE      --Use the default run control file:
                          ’run.rcf’.
                          If that file does not exist, then
                          we write out a fresh one.
                          (We just wrote out a fresh one.)

        java JVMFE <run control filename>
                        --Use <run control filename> to change
                          parameters.
                          If that file does not exist, then
                          we write out a default run control file,
                          (see above) then halt.
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The collection of parameters specified in the RCF coalesce into four groups:
1. file specification;
2. run control;
3. key control; and
4. view control.

The parameters and their defaults are shown in Table 1. (The Table presumes familiarity with
the classes that constitute the JVMFE, all of which are presented in Appendix A.3. The
parameters in Table 1 that contain the name of a class of the JVMFE use the standard Java
naming convention for classes, namely, the first letter is capitalized and the first letter of each
subsequent word is capitalized. Thus, for example, “VIEW_MemoryIntegerAddressable” refers
to the MemoryIntegerAddressable class.) Following the Table are shown sample RCFs.

Table 1 Run Command File parameters  (Sheet 1 of 7)

Name Meaning or Action

File Specification

RIF_FILENAME
This is the name of the ROM Image File (RIF).
Default: rif_file.rif

KDF_FILENAME

This is the name of a Key Definition File. If this
parameter is set to “none” or “-”, then no protec-
tion occurs, and if RIF_PROTECTED is also set to
true (see below), then the JVMFE will halt: the
JVMFE cannot execute a protected
RIF_FILENAME if the JVMFE does not have a
KDF.
Default: kdf_file.kdf

CCF_FILENAME

This is the name of a Corruption Control File. If
this is set to “none” or “-”, then no corruption
occurs.
Default: ccf_file.ccf

RIF_PROTECTED

If this parameter is true, then the
RIF_FILENAME is assumed to be protected. Oth-
erwise the ROM _FILENAME is presumed to be
in cleartext.
Default: true.

Run Control

NUMBER_OF_STEPS_TO_EXECUTE

This parameter holds the number of times
through the main loop that the JVMFE will pro-
ceed. The loader arranges the RIF so that after the
useful work is done the JVMFE executes a tight
loop: it executes a bytecode that is a GOTO to the
address of that same bytecode.
Default: 8000 (the default in the JVM in the Jav-
asimple architecture); range of possible values
0…10000.
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HALT_ON_LOADTIME_INTEGRITY_FAULT

If this parameter is set to true (and a KDF file has
been supplied (see above)), then the JVMFE halts
on an integrity fault at loadtime. This would only
occur when the JVMFE is reading in the RIF (via
ReadRom) or when rom storage is being written
out (via WriteRom), both of which occur only at
loadtime. (The rom storage is written out as a
debugging aid.)
(Note: The JVMFE always announces integrity
faults at both loadtime and runtime but does not
always halt. For example, if a KDF file has not
been supplied, then there is nothing against
which the JVMFE can use to check the integrity.
(See Table 2 on page 45.))
Default: false.

HALT_ON_RUNTIME_INTEGRITY_FAULT

If this parameter is set to true (and a KDF file has
been supplied (see above)), then the JVMFE halts
on an integrity fault at runtime.
The JVMFE always halt on a corrupted, protected
value that does not raise an integrity fault.
(See table cell immediately above.)
Default: true.

HALT_ON_ANY_RUNTIME_
UNPROTECTION_ERROR

If this parameter is set to true (and a KDF file has
been supplied (see above)), then JVMFE halts on
any runtime error in the removal of protection,
even if
HALT_ON_RUNTIME_INTEGRITY_FAULT is
false (see above). The JVMFE could halt on a mis-
match between the intermediate values gener-
ated when the byte was stored, for example, or
the JVMFE could halt because the plaintext byte
that is being returned does not match the plain-
text byte that was given to be stored, as recorded
in the MemoryCell class. These latter problems
are not integrity faults but rather faults with our
algorithm or in our implementation.
MemoryCell uses this parameter as its last step in
fetching a byte, after checking integrity.
Default: true.

Table 1 Run Command File parameters  (Sheet 2 of 7)

Name Meaning or Action
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HALT_ON_BAD_FETCH

If this parameter is set to true (and a KDF file has
been supplied (see above)), then the JVMFE halts
whenever either of the following is true:
(a) there is no previously-stored data at the
address specified by a fetch (this can happen
either because there has been no store to the
address since execution began or because there
has been no store since the last clear command),
or
(b) the byte to be returned does not match the
byte previously stored.
Note that this check is performed in the Memory
class and is thus independent of the MemoryCell
class. This check represents a final opportunity to
confirm that the memory hierarchy is returning
the correct value. A user might want to turn this
feature off in order to see the effect on the JVMFE
of corruption of a plaintext file.
Default: true.

CHECK_DERIVEDBYTE

If this parameter is set to true (and a KDF file has
been supplied (see above)), then the JVMFE halts,
when given a plaintext byte to store, if the plain-
text byte that would be returned if it were to be
fetched immediately does not match the plaintext
byte just given.
This parameter implements a check, at the time of
the store, of our internal protection process. The
overhead required for this check can be valuable
for two reasons:
(1) an error, when raised, is associated with the
store that caused it, rather an unrelated fetch; and
(2) this check enables a check of all stores, not just
those stores for which there is a subsequent fetch.
(There is always a check on a fetch.)
Default: true.

Table 1 Run Command File parameters  (Sheet 3 of 7)

Name Meaning or Action
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CHECK_MemoryCell_
CANDIDATE_VALUE

If this parameter is set to true, then the JVMFE
halts if there is extra (i.e., non-zero) data in the
input to a store operation.
The parameter to a store operation is always an
int (4 bytes). If the value is protected, as it will be
when the JVMFE is loading a protected RIF, then
the left two bytes of the input int should be zeros.
If the value is plaintext, as it will be at all other
times, then the left three bytes should be zeros.
The overhead required for this check can be valu-
able to confirm that the input to MemoryCell is
proper. If there happen to be extra byte(s), they
will not cause a problem in and of themselves—
they are ignored. However, the presence of extra
byte(s) indicates a semantic problem prior to
MemoryCell’s invocation: some method may be
trying to store more bytes than MemoryCell is
actually storing.
Default: true.

WRITE_PLAINTEXT_ROM

If this parameter is true, then at loadtime the
JVMFE writes out the plaintext equivalent of what
it loaded in to memory. If what was loaded was
protected, the JVMFE removes that protection as
it writes it to the file.
The name of this file is <RIF>.plain. where <RIF>
is the name of the RIF.
This feature is a debugging aid to enable confir-
mation that what the JVMFE loaded is what was
given to the class loader. A production version of
the JVMFE would not provide this feature.
Default: true.

WRITE_PROTECTED_ROM

If this parameter is true, then the JVMFE writes
out the protected equivalent of what it loaded in
to memory. If what was loaded was plaintext and
a KDF is not available (see above), then JVMFE is
unable to write out protected values.
The name of this file is <RIF>.protected. where
<RIF> is the name of the RIF.
This feature is a debugging aid to enable confir-
mation of what the JVMFE loaded.
Default: true.

Table 1 Run Command File parameters  (Sheet 4 of 7)

Name Meaning or Action
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Key Control

MAX_VALUE_INDEX_MATCHES_IN_KEY

The JVMFE halts if the number of “index
matches” (defined in the next paragraph) exceeds
the value of this field for any key.
Definition of “index match:” Given that each key
is converted internally into an array with indices
from 0 through 15 inclusive, and given that the
value of each such array element is constrained to
the same range, 0 through 15 inclusive, then an
“index match” exists when, for some value i, 0 ≤ i
≤ 15, the value of array element i is i.
This constraint is a measure of the strength of a
key within our protection algorithm and causes
the JVMFE to reject certain “weak keys.”
Default: 4 (possible values 0…16).

MIN_VALUES_IN_KEY

The JVMFE halts if any non-invertible key uses
fewer unique values than the value of this field.
For example, the key 0x1234123412341234 uses
only four unique values—1, 2, 3, and 4.
Invertible keys always use all 16 possible values
but non-invertible keys can use less than 16 val-
ues.
This feature causes the JVMFE to reject certain
“weak keys.”
Default: 4 (possible values 1…16).

ADD_LAST_CHANCE_BLANKET_KEY

If this key is true, then the KeyChain class adds
an additional key that covers or “blankets” the
rest of memory (for non-rom memory only).
Default: true.

Table 1 Run Command File parameters  (Sheet 5 of 7)

Name Meaning or Action
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 View Control
For each of the parameters below, if set to true, then the corresponding class (e.g., the class corre-
sponding to “VIEW_JVMFE” is JVMFE) will generate output about its activity as it executes. (See
Appendix A.3 for details on JVMFE classes.)

VIEW_ALL

This parameter overrides the settings for all of
the other VIEW parameters, regardless of their
default values or the settings in the Run Control
File:
If this parameter is set to “yes”, then all VIEW
parameters are set to true.
If this parameter is set to “no”, then all VIEW
parameters are set to false.
If this parameter is set to “neither”, then this
parameter has no effect.
Default: neither (possible values “yes”, “no”, and
“neither”).

VIEW_JVMFE

Announce the creation of each memory area, the
initialization of variables, the beginning of runt-
ime, and, each time through the main loop, the
step (the number of bytecodes that have been
executed), the value of the pc, and the bytecode
to be executed.
Default: true.

VIEW_MemoryIntegerAddressable As each method in the class is invoked announce
the name of the method, the address that is given,
and the data that is being stored or fetched, as
appropriate.
Default: false.

VIEW_MemoryByteAddressable

VIEW_MemoryBasea

VIEW_MemoryControllerb

VIEW_Memory

Announce the settings of all the fields (upon cre-
ation), each translated address, the address and
value of each store, the address of each fetch and
what is returned, and the address of each clear
command.
Default: false.

VIEW_MemoryCell

Announce the settings of all the fields (upon cre-
ation), each translated address, the address of
each fetch, and the translation of each nibble.
(Viewing corruption is turned on/off via the
VIEW_CORRUPTION_ACTIVITY parameter
(see below).)
Default: false.

Table 1 Run Command File parameters  (Sheet 6 of 7)

Name Meaning or Action
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The behavior of the JVMFE hinges on the presence/absence of the name of a Key Definition File
(KDF). If the name of a KDF is given, then the JVMFE provides protection for data while the
data is outside of the trusted volume. If, on the other hand, the name of a KDF is absent, then
the JVMFE behaves like the JVM for the Javasimple architecture: it provides no protection. This
behavior is complicated by the RIF_PROTECTED parameter and is most succinctly described
via a table, as we have provided in Table 2.

VIEW_KeyChain

Announce the name of the KDF being used and
each line as it is read in (noting those lines that do
not apply), and the addition of the last-chance-
blanket key (if appropriate).
Default: false.

VIEW_KeySet
Announce all of the fields of the key set (upon
creation).
Default: false.

VIEW_CorruptionChain

Announce the name of the CCF being used and
each line as it is read in (noting those lines that do
not apply).
Default: true.

VIEW_CorruptionSet
Announce all of the fields of the corruption set
(upon creation).
Default: false.

VIEW_CORRUPTION_ACTIVITY

Announce, for each value that is corrupted, the
original value, the previously corrupted value (if
appropriate), and the new (corrupted) value, and
if the corruption just happens to restore the value
to its original value.
(This activity takes place in MemoryCell.)
Default: true.

VIEW_ReadRom

Announce each input line as it is read in. (The
name of the RIF that is read in is always
announced.)
Default: false.

VIEW_WriteRom

Announce each output line as it is written. (The
name of the RIF that is read in is always
announced.)
Default: false.

VIEW_Helper
Announce the input and the output of each
method in this class as it is invoked.
Default: false.

a. If this parameter is set to true, the VIEW_MemoryIntegerAddressable and VIEW_MemoryByteAddressable parameters should
probably also be set to true (see Figure 20 on page 59).

b. If this parameter is set to true, then the VIEW_MemoryBase should probably also be set to true (see Figure 20 on page 59).

Table 1 Run Command File parameters  (Sheet 7 of 7)

Name Meaning or Action
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Corruption can be applied to a plaintext file. During such an execution the JVMFE is, with
almost certain probability, fed illegal bytecodes and bad data. The JVMFE will announce each
corrupted byte as it is fetched but it does nothing to preclude unpredictable execution unless the
HALT_ON_BAD_FETCH parameter is set to true (see Table 1).

We present below several example Run Command Files, followed by an explanation of the
action that the JVMFE takes as a result. Each RCF uses the default settings for the parameters
that are not listed in the RCF. Note that the parameter names are case-sensitive.

Example 0:
RIF_FILENAME = myrom
KDF_FILENAME = keyfile
CCF_FILENAME = corruptionfile
RIF_PROTECTED = true

Execute RIF “myrom,” which is declared to be protected (because RIF_PROTECTED is set to
true, which happens to be the default setting), for the default number of steps, using “key-
file” as the KDF and “corruptionfile” as the CCF.

Example 1:
RIF_FILENAME = myrom
// note that either “none” or “-” can be used to
// indicate the absence of a file:
KDF_FILENAME = none
CCF_FILENAME = -
RIF_PROTECTED = false
NUMBER_OF_STEPS_TO_EXECUTE = 10

Execute RIF “myrom,” which is declared to be unprotected (i.e., in plaintext), for 10 steps; no
protection or corruption is done. Executing plaintext enables comparing the JVMFE with the
JVM for the Javasimple architecture.

Example 2:
RIF_FILENAME = myrom
KDF_FILENAME = keyfile

Table 2 Protecting Memory

Is a KDF given? Is RIF_PROTECTED?
JVMFE Action

Loadtime Runtime

Yes
Yes Check integrity as the

RIF is read in. Protect all memory
areas.

No Apply protection to
the RIF as it is read in.

No

Yes Halt: a protected RIF is useless without a KDF.

No
Behave like the JVM for the Javasimple architec-
ture: do not protect instructions or data while
they are outside of the trusted volume.
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CCF_FILENAME = -
RIF_PROTECTED = false
NUMBER_OF_STEPS_TO_EXECUTE = 10

Execute RIF “myrom,” which is declared to be unprotected, for the default number of steps,
using “keyfile” as the KDF; no corruption is done. The RIF is protected as it is read into
memory.

Example 3:
// note that the order of parameters in the file is unimportant;
RIF_PROTECTED = false
RIF_FILENAME = myrom
KDF_FILENAME = none
CCF_FILENAME = corruptionfile
HALT_ON_BAD_FETCH = false

Execute RIF “myrom,” which is declared to be unprotected, for the default number of steps,
using “corruptionfile” as the CCF; no protection is done. Also, the JVMFE is instructed to
ignore fetches that return a value that is different than the byte that was last stored at the
given address (and also ignore whatever returns even if there is no previous store).

Example 4:
RIF_FILENAME = myrom
KDF_FILENAME = none
CCF_FILENAME = corruptionfile
RIF_PROTECTED = true

When given this run control file, the JVMFE halts after announcing that it is not possible for
it to execute a protected RIF without the name of a KDF.

A.1.2 ROM Image File (RIF)

The ROM Image File (RIF) is an ASCII file.

If the RIF is protected, then the format is assumed to be two shorts (16 bits each, for 32 bits
total), in binary, per input line, where each bit is represented by either the character “0” or the
character “1.”

If the RIF is unprotected text, then the format is assumed to be two bytes (8 bits each, for 16 bits
total), in binary, per input line, where each bit is represented by either the character “0” or the
character “1.”

(The syntax of the RIF is outside of the scope of this report.)

A.1.3 Key Definition File (KDF)

The Key Definition File (KDF) specifies all of the keys for a give RIF (see Appendix A.1.2).
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Protection is turned on only when the name of a KDF is provided in the RCF (see Appendix
A.1.1). Each line of a KDF defines a set of keys and is referred to as a “key set.”

A KDF is an ASCII file that consists of one or more lines, the syntax for which is shown in a
simplified BNF below:

S           :== MA [MT] RANGE AK UK EK
MA          :== “rom” | “heap” | “stack” | “state”
MT          :== “I” | “C” --if and only if MA is “rom”
RANGE       :== { START STOP | START “*” | “*” }
START, STOP :== <a non-negative integer, in decimal>
IK, SK, PK  :== <a long, in hex>

where
the input line is both blank- and dash-delimited; in the BNF above

it is shown as blank-delimited but you can use a dash instead of
a space to separate items; you might want to do this between
START and STOP, for example, to make the sense of range clear;

non-terminals are shown in uppercase, unquoted;
terminals are shown either as quoted strings or via their format,

in which case they are shown within angle brackets (“<>”);
square brackets (“[]”) identify optional items;
the vertical stroke (“|”) separates items in a selection (exactly

one in the selection is to be chosen);
comments in the BNF begin with “--” and extend to the end of the

line;
S is the start symbol;
MA denotes a memory area;
MT denotes a memory type;
I denotes the instruction area of rom memory;
C denotes the constants area rom memory;
RANGE denote a range of memory addresses;
* is a wildcard that denotes the rest of a range; if used alone, it

denotes all of a range;
START denotes the beginning of a range;
STOP denotes the inclusive end of a range;
IK denotes an instruction integrity key;
SK denotes an sequence integrity key; and
PK denotes an program privacy key (which serves as the encryption

key).

If MA is “rom”, then MT must be present and denotes whether the memory area contains
instruction (“I”) or constants (“C”); otherwise MT must be absent.

MT is implemented with the future in mind. Currently we require that the range of addresses
for the memory types for the rom memory area be disjoint, which happens to make the MT
parameter superfluous. However, the MT parameter will allow us in the future to use
overlapping addresses for I (“instruction”) and C (“constant”) rom memory.
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START must be ≥ 0 and < sizeInBytes, where sizeInBytes is the number of bytes allocated for the
memory area. In addition, START must be ≤ STOP unless STOP is “*”.

If multiple key sets specify the same address for the same memory area, then the first set to
appear in the KDF is used.9

If there are “holes” (i.e., addresses (a) for which there are no keys and (b) that are between 0 and
the last address for which there is a key) in a set of KeySets, then the JVMFE takes no notice of
them unless it tries to store to or fetch from that hole, whereupon the JVMFE halts, complaining
of a missing keyset.

Comments lines in the KDF begin with “//”.

Fragments of several KDFs follow (the columns do not need to be aligned as they are shown in
these examples).

Example 0:
rom C 0   31  c395ea862bfd714e b15c4d270693ea8f 1e354abc20879fd6
rom I 32  47  f748a2d69b1e3c5d a89125fd746e3cbf d8fb60a5913c274e
rom I 64  115 524fd07b1e38c9a6 a5b06d2ef741c389 c684d1a29f05be37
rom C 116 139 83c75f0aed62b914 f3e2b7c408156a9d 8256b01c943ade7f
rom C 48  63  b305caf7d16284e9 df820c53a6eb4791 1e5d9a8732cb0f46

Note that the addresses do not need to be sorted.

Example 1:
stack 0-200 f748a2d69b1e3c5d a89125fd746e3cbf d8fb60a5913c274e
state 0-100 b305caf7d16284e9 df820c53a6eb4791 1e5d9a8732cb0f46
state 101 * 83c75f0aed62b914 f3e2b7c408156a9d 8256b01c943ade7f
heap      * 524fd07b1e38c9a6 a5b06d2ef741c389 c684d1a29f05be37

This KDF specifies one set of keys for the first 200 addresses of stack memory, two sets of
keys for all of state memory, and one set of keys for all of heap memory.

The only place in the JVMFE where any keys are used is in the “translation” process (in
MemoryCell), described in Section 4.1, which underlies the protection process, described in
Section 4.2 (see also Appendix A.3).

A.1.4 Corruption Control File (CCF)

The Corruption Control File (CCF) contains the information required to operate the
“corruption” facility, the purpose of which is to simulate an attacker that changes bits of the RIF
or other areas of memory during execution. Recall that memory in the JVMFE is outside of the
trusted volume and is thus subject to attack. The corruption facility enables the simulation of

9. The KeyChain class puts new KeySet objects at the end of the list when it reads the KDF. And when KeyChain searches the list for
a matching KeySet, it starts at the front of the list. So the first matching KeySet is the one that is used. A subsequent match is not
found.
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such attacks.

Corruption is turned on only when the name of a CCF is provided in the RCF (see Appendix
A.1.1). Each line of a CCF is referred to as a “corruption set.” Corruption occurs either when the
JVMFE has executed a certain number of steps or when the program counter is at a certain value
(or both).

A CCF is an ASCII file that consists of one or more lines, the syntax for which is shown in a
simplified BNF below:

S           :== MA { “step” | “pc” } RANGE “address” RANGE VALUE
MA          :== “rom” | “heap” | “stack” | “state”
RANGE       :== { START STOP | START “*” | “*” }
START, STOP :== <a non-negative integer value, in decimal>
VALUE       :== <a 16-bit value, in hex>

where
the input line is both blank- and dash-delimited; in the BNF above

it is shown as blank-delimited but you can use a dash instead of
a space to separate items; you might want to do this between
START and STOP, for example, to make the sense of range clear;

non-terminals are shown in uppercase, unquoted;
terminals are shown either as quoted strings or via their format,

in which case they are shown within angle brackets (“<>”);
the vertical stroke (“|”) separates items in a selection (exactly

one in the selection is to be chosen);
S is the start symbol;
MA denotes a memory area;
RANGE denote a range of values;
* is a wildcard that denotes the rest of a range; if used alone, it

denotes all of a range;
START denotes the beginning of a range;
STOP denotes the inclusive end of a range; and
VALUE denotes a corruption value.

The first RANGE is associated with the “step” or “pc” (for ease of reference we call this the
“step/pc range”); the second range specifies the byte addresses that are to be corrupted (we call
this the “address range”). The “address” keyword is not necessary to unambiguously parse; it is
included as a visual separator.

If “step” is specified, then the step/pc range must be within the range of possible steps that the
JVMFE will execute (see NUMBER_OF_STEPS_TO_EXECUTE in Table 1).

If “pc” is specified, then the step/pc range must be within the range of values that the program
counter can assume. The lower bound on this range is 0. The upper bound on this range
depends on whether or not a KDF is provided. If a KDF is provided, the upper bound is the last
address, in rom memory, for which there is a key. If a KDF is not provided, the upper bound is
the size of rom memory.
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Note that the values for step and pc both begin with 0.

VALUE contains the value that is to replace the value in storage for the range of addresses
specified, inclusive.

If multiple corruptions are activated at the same time for the same address for the same
memory, then each set changes the value, with each subsequent set overwriting the previous
set.10

Comments lines in the CCF begin with “//”.

Corruption is applied as follows. At runtime, at the top of the main loop in JVMFE, the
corruption sets are consulted for each memory area (see Figure 11 on page 26). The corruption
sets are checked in the same order that they appear in the CCF. Corruption is activated for each
corruption set for which the “step” range includes the number of steps executed by the JVMFE
or for which the “pc” range includes the current value of the program counter. For the activated
corruption sets, the protected values for the range of addresses in the memory area specified in
that corruption set are set to VALUE and the value is flagged as corrupted, with exceptions as
noted below.

• If there is no value stored at the address, then no corruption is possible so none is done. No
note or complaint is made of this.

• If the value stored at the address is the same as the original value, then this is noted and the
corruption flag is reset.

One example CCF follows. In this example we assume that the memory is protected. (The
columns in the CCF do not need to be aligned as they are in this example).

Example 0:
rom   step 17-17 address 0  100  ab
stack step 25-30 address 10 10   bc
stack pc   25-26 address 20 - 35 cd
stack pc   25 25 address 30 - *  de
state step 50 50 address *       ef

When JVMFE is about to execute its 18th bytecode—that is, JVMFE is at the beginning of
step 17—addresses 0 through 100 inclusive of rom memory will be changed to 0xab.

When the JVMFE is about to execute its 26th through its 31st bytecodes, address 10 of stack
memory will be changed to 0xbc.

When the program counter is 25 through 26 inclusive, addresses 20 through 35 inclusive of
stack memory will be changed to 0xcd.

When the program counter is 25, addresses in stack starting with address 30 and continuing
on through the end of that memory will be changed to 0xde. This will overwrite some of the
changes described in the previous paragraph.

10.  Note that a store can put a new (and thus uncorrupted) value in an address.
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And then when JVMFE is about to execute its 51st bytecode, all of state memory will be
changed to 0xef.
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A.2 JVMFE Output

The JVMFE outputs the following information each time it executes:

• the parameter settings (see Table 1),

• for each of the four memory areas as they are created,
(a) the “key sets,” if the name of a KDF is provided on the command line (see Table 1),

and
(b) the “corruption sets,” if the name of a CCF is provided on the command line (see

Table 1).

Upon normal termination, the JVMFE generates output of the following form:
Execution of code complete.
Total Time: 5789 ms
Time to Build: 736 ms
Time to Execute: 5053 ms

Execution complete.

If HALT_ON_LOADTIME_INTEGRITY_FAULT is true (not its default setting) (see Table 1),
then a protected RIF that is corrupted after having been protected by the class loader and before
it is given to the JVMFE will cause the JVMFE to generate output of the following general form
when the JVMFE reads it in:

MemoryCell (rom) byte address 93 (0x5d):
Fatal error:
        integrity fault on loading
        protected short 0x74 from rom file.

If HALT_ON_LOADTIME_INTEGRITY_FAULT were false (its default setting), then the JVMFE
would generate a non-fatal error message when reading address 93 at loadtime in the example
above. The JVMFE would then proceed to write out the RIF (still at loadtime) and when it
reached address 93 it would generate a second, non-fatal error message. If the integrity-faulted
value is later fetched at runtime, then the JVMFE would generate a third message (e.g., as shown
in Figure 17 on page 32).

Corrupting a byte at runtime causes the JVMFE to generate output, at the time of the corruption,
of the following general form:

MemoryCell (rom) byte address 95 (0x5f):
        corruption:
          original value: 0xae
         corrupted value: 0xec

Output of the following general form is generated if a corrupted byte is subsequently fetched,
without an intervening store:11

MemoryCell (rom) byte 95 (0x5f):
            using corrupted short value: 0xec
        instead of original short value: 0xae

        protected short mismatch12
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        plain short mismatch
        plain byte mismatch
        generated integrity byte mismatch
MemoryCell (rom) byte 95 (0x5f):
        mismatch: stored value(s) do not match saved values;
        (see note(s) above)
MemoryCell (rom) byte address 95 (0x5f):
        Fatal error:
        runtime integrity fault;
        (corrupted value);

        (no integrity fault when reading rom file);13

        (no integrity fault when writing rom file);

11.  The example shows the corruption of a rom byte, for which stores are not permitted. However, stores are permitted on stack,
state, and heap memory areas. So it is possible to corrupt a given byte in one of those latter memory areas, and then, later, before a
fetch is done on the same address, store a new (and thus uncorrupted) value at that same address. In that case the corrupted value is
overwritten before it can do any damage and is thus unreported by the JVMFE: this situation is analogous to a thief returning the
goods before their absence is noticed.

12. As noted at the beginning of this Appendix, the JVMFE saves intermediate values from the protection process. It uses those inter-
mediate values to check the decryption process and the check on integrity as they unfold. These lines of output shown here indicate
which of those values differed.

13.  The reading and writing of the rom file referred to here occurred at loadtime. This line of output just reports on that activity.
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A.3 Class Hierarchy

The class file for the JVM for the Javasimple architecture is named VSSP—an acronym of
historical significance only. The class hierarchy for the JVM for the Javasimple architecture is
shown in Figure 18.

Memory32Bit accesses memory an integer (32 bits) at a time. Memory32BitByteAddressable
accesses memory one byte (8 bits) at a time. However, since Memory32BitByteAddressable
extends class Memory32Bit, instead of the other way around, the addressing for the JVM for the
Javasimple architecture is integer-based, not byte-based. The smallest quantity that Memory32Bit
provides Memory32BitByteAddressable on a fetch is an integer; Memory32BitByteAddressable
just discards the bytes it does not want.

The class hierarchy for the JVMFE is shown in Figure 19. The addressing for this machine is

Figure  18 Class Hierarchy for the JVM for the Javasimple Architecture
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byte-based, where a “byte” is 8 bits, but the memory hierarchy does not reveal this.

Each of the classes in Figure 19 is discussed in the commentary associated with Figure 20,

Figure  19 JVMFE Class Hierarchy
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shown further below. The most important new class is MemoryCell which contains the
Protection Engine shown in Figure 7 on page 20.

We present the simple classes first—NamedValues, Helper, and Error—followed by the more
complex ones.

A.3.1 Simple classes

There are three classes that we classify as “simple:” NamedValues, Helper, and Error. Each is
described below.

A.3.1.1 NamedValues class

The NamedValues class controls execution by using global parameters that can be changed by
the Run Control File (RCF) as presented in Appendix A.1. The relevant values in NamedValues
are shown in Table 1.

A.3.1.2 Helper class

The Helper class provides basic nibble, byte, short, integer, and long manipulations in 20
methods. For example, the

public int getLeftShort ( int input )

method returns an integer, the rightmost 16 bits of which contain the leftmost 16 bits of the
parameter (the leftmost 16 bits of the integer that is returned are set to 0). That is, getLeftShort
could be defined as follows:

public int getLeftShort ( int input )
{

return (( input >> 16 ) & 0x0000ffff );
}

Helper provides methods with the following names: {get, put} {Left, Right} {Int, Short, Byte,
Nibble}, and create {Byte, Short, Int, Long}.

A.3.1.3 Error class

The Error class prints a message, then, optionally, halts.

A.3.2 More Complex Classes

Note: For simplicity of explanation we use the word “byte” in this Section as though there
were no protection being done. If protection is being done, then a plaintext byte is stored in
two bytes in what we call a “protected value.” If protection is not being done, then a plain-
text byte is stored as a single, plaintext byte.
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The seemingly complex object-oriented structure presented here greatly facilitates inspection of
the processes being researched. A production JVMFE might use a far different design, focused
on efficiency of execution, particularly if it is to be implemented in hardware, as we plan
eventually to do.

The classes in Figure 19 that have not already been presented above are best explained in light
of their relationships to each other, as shown in Figure 20. Note that Figure 20 adds “creates”
and “refers to” relationships to Figure 19.

Execution begins with the method main() in the JVMFE class. If a Run Control File (RCF) is
specified (or, if the default RCF exists), then that file is read so that the parameters for the run
can be changed. After this, main creates two objects of class MemoryIntegerAddressable, one
for stack memory and a second for state memory. Main also creates two objects of class
MemoryByteAddressable, one for rom memory and a second for heap memory. Each object of
type MemoryController creates an object of type Memory. This means that there is an object of
type Memory for each memory area.

If the name of a KDF is provided, Memory creates an object of type KeyChain which, in turn,
creates an object of type KeySet for each line of the KDF. If the name of a Corruption Control
File (CCF) is provided, Memory creates an object of type CorruptionChain which, in turn,
creates an object of type CorruptionSet for each line of the CCF.

The MemoryController method for rom memory also creates an object of type ReadRom and an
object of type WriteRom. ReadRom reads in the RIF, creating a MemoryCell object for each
protected value or plaintext byte it reads. WriteRom writes a file that corresponds to the
protected values or plaintext bytes of the MemoryCell objects created by ReadRom.

When the MemoryController method for rom memory creates the ReadRom object, it gives it a
reference to the Memory object for rom memory. The ReadRom object uses that reference to
direct Memory, via Memory’s storeProtectedShort method (see Figure 21), to fill the array,
shown stylistically in the Memory object in Figure 20, with references to the MemoryCell objects
it creates as it reads in the RIF.

A write to memory, at either loadtime or runtime, causes Memory to create a new MemoryCell
object. Memory asks KeyChain for a reference to the KeySet corresponding to the byte address
for the new MemoryCell. KeyChain uses KeySet : isInRange14 to identify the correct KeySet.
The new MemoryCell object is given the reference to that KeySet. When MemoryCell
subsequently needs access to a key, it uses KeySet : getKey, using its own reference. If there are
no keys (i.e., the JVMFE is not protecting memory), MemoryCell is given a null reference.

At loadtime the MemoryController method for rom memory also creates an object of type
WriteRom and likewise gives it the reference to the Memory object for rom memory. The
WriteRom object uses that reference to fetch bytes from the MemoryCells that were created
earlier by ReadRom. The WriteRom object uses MemoryCell : getPlainByte to create an
unprotected (i.e., plaintext) file one byte at a time and, if rom is protected, it uses MemoryCell :
getProtectedShort to create a protected file. These files are intended to enable comparison with

14.  The syntax here is <class name> : <method name>.
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input files, as a check on the JVMFE. A production JVMFE would not be writing the plaintext

Figure  20 JVMFE Class Relationships
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equivalent of a protected input file, obviously.

The API (i.e., public methods) for each of the classes in Figure 20 is shown below in Figure 21.
Non-essential public methods and constructor methods are not shown. The action of most of the
methods can be inferred from their names. We explain the others in this section.

The multi-byte get and set methods (e.g., getLongData in MemoryIntegerAddressable) fetch
and store consecutive bytes in memory.

The details of the corruption facility, when operational, are as follows. Each time through the
central loop in JVMFE : main, the corrupter method is called on each memory area and is
passed the number of bytecodes that have been executed thus far (“step”) and the value of the
program counter (PC) (see Figure 11 on page 26). This invokes MemoryController : corrupter,
which, in turn, invokes Memory : corrupter, which proceeds in the following steps:

1. First Memory : corrupter gets an iterator of the CorruptionSets by invoking Corruption-
Chain : getIterator.

2. Using the iterator from step 1, Memory : corrupter walks through each CorruptionSet. Each
time CorruptionSet : isMatch returns true, Memory : corrupter gets the following from the
CorruptionSet: (a) the start and stop addresses, and (b) the corruption short.

3. For each MemoryCell corresponding to an address within the start/stop range, Memory :
corrupter invokes MemoryCell : corrupt, passing it the corruption short.

4. If the stored value is protected, MemoryCell : corrupt uses the two-byte value provided in
the CCF. If the byte is unprotected (i.e., in plaintext), MemoryCell : corrupt uses only the
low-order (i.e., rightmost) byte of the two-byte value provided in the CCF.

5. MemoryCell : corrupt always retains the original, uncorrupted value, even if corruption has
taken place, to be able to compare it with corrupting values. If on the off chance the corrupt-
ing value is the same as the uncorrupted value, then MemoryCell : corrupt resets the cor-
ruption flag. This corresponds to corruption just happening to restore an original value. The
flag must be reset so that the lack of an integrity fault will not cause the machine to halt on
the next fetch of that value. Otherwise the corrupting value is saved and MemoryCell : cor-
rupt sets the corruption flag, if that flag is not already set. That flag is used the next time
Memory : fetchByte is called on that MemoryCell: if the integrity check does not raise an
integrity fault when fetching a byte for which the corruption flag is set, execution halts on a
failure of our integrity checking scheme.

A.3.2.1 MemoryIntegerAddressable class

The public methods in MemoryIntegerAddressable and MemoryByteAddressable, along with
the method clearMem in MemoryBase, are the set of methods the JVM for the Javasimple
architecture expects from the memory hierarchy. Note that we translate them, eventually, into
just three methods—storeByte, fetchByte, and clearMem—in MemoryController.

The getData method returns the four bytes stored at the four byte addresses starting at the
given integer address.15

15.  An “integer address” is an address that is divisible by 4.
60



The setData(int, int, int, int) method stores three integers, each of which is four bytes, at the

Figure  21 JVMFE APIs
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sequence of integer addresses, the first of which is specified by the first parameter.

A.3.2.2 MemoryByteAddressable class

The getShortData method and the get2BytesData method both return two bytes, but
getShortData requires that the addresses be “short-aligned” (i.e., the address is divisible by 2),
whereas get2BytesData does not. As a result, getShortData calls MemoryBase : getTwoBytes.
But get2BytesData calls MemoryBase : getTwoBytesNonAligned.

The getData method is called only once on rom—when getting “major/minor version
numbers.” It returns a four-byte value.

The getWordData method gets four bytes at an integer address. This method calls
MemoryBase : getFourBytes, the same method that MemoryIntegerAddressable : getData calls.
(The setWordData method is similar.)

A.3.2.3 MemoryBase class

(The getTwoBytesNonAligned method is explained in the explanation for the
MemoryByteAddressable class.)

A.3.2.4 Memory class

The getSizeInBytes method returns the allocated size, in bytes, of the memory. That is, this is the
size of the array in the Memory object of references to MemoryCell objects.

The getRomBytes method returns the number of bytes actually stored in rom memory. In all
cases getRomBytes ≤ getSizeInBytes. An error is raised if this method is called on non-rom
memory.

The getLastKeyedByteAddress method just returns what KeyChain : getLastKeyedByteAddress
returns (see below). An error is raised if this method is called on non-rom memory.

The storeProtectedShort and getProtectedShort methods are used for rom memory only and
only at loadtime.

A.3.2.5 KeyChain class

The getKeySet method returns the KeySet for the given byte address.

A.3.2.6 KeySet class

The isInRange method returns true if the given byte address is in the range covered by this
KeySet. This method is used by KeyChain : getKeySet to identify the KeySet for a given address.

The getKeyString method returns one of the four keys of the KeySet as a string so that it can be
conveniently printed.
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The getKey method returns a key—either the sequence integrity, instruction integrity, program
privacy (i.e., encryption), or the decryption key—of the KeySet. This method is used by the
private method MemoryCell : translateByte (see below) when that latter method wants to do a
translation. That latter method in MemoryCell is the only time any of the keys are used.

The getStopByteAddress method is used by KeyChain : getLastKeyedByteAddress to determine
the last byte (i.e., the numerically highest address) for which there is a key.

A “getStartByteAddress” method is not needed in KeyChain since all that calling methods need
to know is which KeySet applies for a given byte, which is given by KeySet : isInRange.

A.3.2.7 CorruptionChain class

The getIterator method returns an iterator of the associated CorruptionSets, for use by Memory :
corrupter.

A.3.2.8 CorruptionSet class

The isMatch method returns true if the given value of the number of bytecodes executed
(“step”) or the value of the program counter (“pc”), depending on the CorruptionSet, matches
the value specified for this CorruptionSet.

The getStartByteAddress method and the getStopByteAddress method return the range of bytes
that are to be corrupted. These methods are used by Memory : corrupter, when CorruptionSet :
isMatch returns true.

The getCorruptionShort method returns the short (i.e., two bytes) that was specified in the
Corruption Control File (CCF) to be used to replace the value in a particular MemoryCell.

A.3.2.9 MemoryCell class

MemoryCell contains the Protection Engine shown in Figure 7. MemoryCell provides
essentially two functions:

• it stores a protected value (or plaintext byte) in memory, and

• it fetches a protected value (or a plaintext value) from memory.

The constructor method provides the store and the getPlainByte method provides the fetch,
along with getProtectedShort. (MemoryCell : corrupt does the actual corruption, as directed by
Memory.) Each function is presented below.

A.3.2.9.1 Store

The MemoryCell constructor can receive either a plaintext byte or a protected value, and it can
be instructed to apply protection or not. These four cases and the constructor’s corresponding
actions are shown in Table 3.

The MemoryCell constructor saves all of the intermediate values generated during the
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application of protection. This is true even when the constructor is given a protected value to
which protection is to be applied (i.e., case III of Table 3). The names and meaning of these
values are shown in Table 4.

A.3.2.9.2 Fetch

When MemoryCell is asked to fetch a byte it invokes the getPlainByte method which returns the
plaintext associated with the specified address, barring an error.

The action that getPlainByte takes depends on the following boolean values:
1. whether the MemoryCell contains plaintext or protected text;
2. whether the JVMFE is at loadtime or runtime;
3. whether or not the value raised a runtime integrity fault when it was fetched;
4. whether or not the value has been flagged as corrupted (recall that “corruption” is defined

as a change that can occur at runtime only);
5. whether the MemoryCell holds a value for rom memory as opposed to for any of the other

three memories, namely, stack, state, or heap;

Table 3 MemoryCell Store

Input Apply protection? Case Action

Plaintext byte
Yes I Apply protection to the plaintext byte.

No II Store the plaintext byte as is.

Protected value
Yes III

Use the keys to derive the plaintext byte, in
order to check the protection.
This case applies only at loadtime, when the
RIF is being read in. This case requires that
the input file be protected and that a KDF
has been provided on the command line.

No IV Halt: protected values are useless without
keys.

Table 4 Intermediate Protection Values

Name Meaning

plaintext byte The plain byte.

instruction integrity byte The plaintext byte, translated using the instruction integrity key.

plaintext short The plaintext byte concatenated with the instruction integrity byte.

encrypted short The plaintext short, translated using the program privacy (i.e.,
encryption) key.

sequence integrity short The byte address (assumed to be one byte), duplicated to form two
bytes (a short), and then translated using the sequence integrity key.

protected short The instruction integrity byte, duplicated into a short, then XORed
with the encrypted short.
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6. whether or not there was an integrity fault when the value was read in from the RIF at load-
time (this only applies if the MemoryCell holds a value for rom memory); and

7. whether or not the HALT_ON_RUNTIME_INTEGRITY_FAULT flag is set.

Of the 128 conceivable cases only 20 are possible, and those 20 result in only five different
actions, as shown in Table 5.

Table 5 Possible Actions Taken by getPlainByte

Casea

a. The three-digit number for these “cases” shown in this column
provide a correspondence to Table 6 and Table 7.

Action

110
210
230

263-8
270

Halt on internal error:b

corruption should not occur at loadtime.

b. “Internal error” means that the JVMFE is not performing cor-
rectly: we have done something wrong logically, algorithmically,
or programmatically. Thus the JVMFE should halt.

120
140
240
280

Continue execution.

130 Announce corruption,
then continue execution.

220
252
262

Announce integrity fault,
then continue execution.

251
261

Halt on integrity fault.
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The possible cases in Table 5 are shown in Table 6  and continued in Table 7.

Table 6 MemoryCell Fetch

Integrity Fault?
Value Flagged
As Corrupted?

Case Action

Pl
ai

nt
ex

t

L
oa

d
ti

m
e

(Not
applicable)

Yes 110 Halt on internal error:a corruption
should not occur at loadtime.

a. “Internal error” means that the JVMFE is not performing correctly: we have done something wrong logi-
cally, algorithmically, or programmatically. Thus the JVMFE should halt.

No 120 Continue execution.

R
un

ti
m

e Yes 130 Announce corruption, then continue
execution.

No 140 Continue execution.

Pr
ot

ec
te

d
 te

xt

L
oa

d
ti

m
e Yes

Yes 210 Halt on internal error: corruption
should not occur at loadtime.b

b. In this case there has been a change between the time the RIF was generated by the loader and the time
the file was subsequently handed to the JVMFE for execution. This change should be detected at loadtime as
an integrity fault. However, the internal error here is the flag indicating that corruption occurred at loadtime.
By definition, corruption can occur at runtime only.

No 220 Announce integrity fault, then con-
tinue execution.c

c. This action is independent of the HALT_ON_LOADTIME_INTEGRITY_FAULT parameter because
ReadRom, which does not use getPlainByte, executes before WriteRom and will halt execution when it
encounters an integrity fault, should that parameter be set to true.

Nod

d. Meaning the integrity check did not raise a fault.

Yes 230 Halt on internal error: corruption
should not occur at loadtime.

No 240 Continue execution.

R
un

ti
m

e Yes
Yes

251
If HALT_ON_RUNTIME_
INTEGRITY_FAULT is true, then
halt on integrity fault,...

252 ...otherwise announce integrity
fault, then continue execution.

No 26X (See Table 7.)

No
Yes 270 Halt on internal error: a corrupted

value should raise an integrity fault.

No 280 Continue execution.
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The getProtectedShort method returns the protected short associated with the MemoryCell. This
is called by Memory : fetchProtectedShort which is called by WriteRom during loadtime only.

The corrupt method changes the value of the protected short, and flags that the value has been
corrupted so that on the next access either integrity fails (this is one of the main intents of our
modified memory hierarchy) or we halt on a failure of our integrity checking scheme (this flags
a failure of our protection algorithms).

Note that Memory : storeByte never changes an existing MemoryCell object. If there is a
MemoryCell object already stored at the target byte address, Memory : storeByte discards that
existing object and replaces it with a newly created one. MemoryCell has been designed in this
fashion to eliminate errors due to values being retained from previous stores.

Table 7 Runtime Integrity Fault on Uncorrupted Protected Value (see Table 6)

R
om

 m
em

or
y?

In
te

gr
it

y
Fa

u
lt

at
 L

oa
d

ti
m

e?

H
A

LT
_O

N
_

R
U

N
T

IM
E

_
IN

T
E

G
R

IT
Y

_
FA

U
LT

?

Case Action

Yes

Yes
Yes 261 Halt on integrity fault.a

No 262 Announce integrity fault, then continue.

No (Not
applicable)

263
264

Halt on internal error:b a rom byte that did
not raise an integrity fault at loadtime and
has not since been corrupted should not raise
an integrity fault at runtime.

No (Not applicable)

265
266
267
268

Halt on internal error: a non-rom byte that
has not been corrupted should not raise an
integrity fault.

a. “Integrity fault” means that we correctly recognized that the stored value had changed. Thus the
JVMFE halts.

b. “Internal error” means that the JVMFE is not performing correctly: we have done something wrong
logically, algorithmically, or programmatically. Thus the JVMFE should halt.
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