
SANDIA REPORT
SAND2007-2735
Unlimited Release
Printed May 2007

MatSeis Developer’s Guide

Version 1.0

Lane C. McConnell and Christopher J. Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2007-2735
Unlimited Release
Printed May 2007

MatSeis Developer’s Guide
Version 1.0

Lane C. McConnell and Christopher J. Young
Next Generation Monitoring Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0401

Abstract

This guide is intended to enable researchers working with seismic data, but lacking backgrounds
in computer science and programming, to develop seismic algorithms using the MATLAB-based
MatSeis software. Specifically, it presents a series of step-by-step instructions to write four
specific functions of increasing complexity, while simultaneously explaining the notation,
syntax, and general program design of the functions being written. The ultimate goal is that that
the user can use this guide as a jumping off point from which he or she can write new functions
that are compatible with and expand the capabilities of the current MatSeis software that has
been developed as part of the Ground-based Nuclear Explosion Monitoring Research and
Engineering (GNEMRE) program at Sandia National Laboratories.

4

ACKNOWLEDGMENTS

MatSeis was originally developed by Mark Harris, but the current version has contributions from
many people, most notably Darren Hart and John Merchant. We are grateful to all of those that
have worked on MatSeis, and to the many users who have given us valuable feedback that has
helped to improve the package.

5

CONTENTS

Introduction... 7

Function 1: Cut out a segment of a waveform.. 9

Function 2: Integrating a waveform.. 13

Function 3: Show waveforms for an origin .. 19

Function 4: Automatically make waveform measurements from recipe file................................ 31

Conclusions... 51

References... 53

Distribution ... 55

6

7

INTRODUCTION

The MATLAB-based MatSeis software (Harris and Young, 1997) was developed as part of the
Ground-based Nuclear Explosion Monitoring Research and Engineering (GNEMRE) program at
SNL as a tool to aide in the investigation and prototyping of seismic algorithms. It was
designed to take advantage of the broad array of basic utilities available in MATLAB as well as
the advanced signal process utilities provided by the MATLAB Signal Processing Toolbox.
MatSeis provides quick and easy access to data in an Oracle database or in properly formatted
flatfiles, as well as an easy to understand graphical user interface. The current incarnation of
MatSeis delivers many of the basic utilities routinely needed by seismologists for their research,
but it is by no means complete, and it is not our intention to make the package comprehensive.
That’s where this guide comes in.

One of the most useful aspects of MatSeis and its associated tools is that it has readily
expandable functionality. That is to say, once the user understands the basic data types and
functionality associated with MatSeis, new functions are very easy to write. The purpose of this
guide, then, is to explain how to write these new functions so that MatSeis users can customize
the package to meet their needs. All that is required is a rudimentary knowledge of the
MATLAB programming language and a bit of familiarity with using MatSeis.

With this in mind, our hope is that anyone working on seismic algorithm development and
application prototypes will be able, with the help of this guide, to quickly learn the basic steps
required to transform the theoretical concept into workable code. Essentially, the guide, much
like the MatSeis program itself, should serve as a jumping off point to do this. It will, we hope,
impart its readers with the programming skills and understanding to help make MatSeis a better
tool.

8

9

FUNCTION 1: CUT OUT A SEGMENT OF A WAVEFORM

To demonstrate the ease of writing new functionality for MatSeis, let’s write a function that will
allow us to cut out a segment of a waveform and save that segment separately. And let us, for
lack of creativity, call this function “cutseg” because it “cut”s a “seg”ment of a waveform out.

Begin with the normal MATLAB function header… the word “function” to indicate that what
follows is a function, and the function’s name (in this case “cutseg”) followed by empty
parenthesis to indicate that the function takes no input parameters. Note that there is also no
assignment in the function header, a fact that indicates this is a void function with no return.

function cutseg()

There. Now we have a void function that takes no parameters. It doesn’t do anything yet, but
it’s a start.

In order to cut out a segment from a waveform, two criteria need to be fulfilled. First, we must
have one or more waveforms to work with, and second, we must have a time segment specified
to cut out. Both of these would be done interactively using the MatSeis display. Let’s make sure
that we meet the first of these criteria (one or more waveforms have been selected) before going
any further. As a check, we should add something like the following lines.

%%
% Find selected waveforms.
%
N = waveform('index','select');
if isempty(N)
 errordlg('No waveforms selected!');
 return;
end

Firstly, any line beginning with the ‘%’ character will be considered a comment by MATLAB
and will therefore not be executed as part of the program. These lines are there only for the code
developer and anybody who might have to read the code as an explanation of the purpose of an
individual piece of the function. In fact, the ‘%’ need not appear at the beginning of the line, but
anything that follows it and is on the same line will be treated as a comment.

The piece of code above makes use of a couple of functions, one included as part of MATLAB
and the other written by Sandia as part of the MatSeis package. To see whether a function is
from MATLAB or MatSeis, type ‘which function_name’ at the MATLAB prompt, where
function_name is the name of the function in question. The location of the file containing the
function will be shown. Generally it does not matter whether a function to be used is from
MATLAB, MatSeis, or a programmer’s own suite--that is one of the reasons that
MATLAB/MatSeis is such a powerful prototyping environment--but it can be useful to check if
problems are encountered.

10

Returning to our example, the ‘waveform’ function is a MatSeis function (i.e. written by Sandia)
that provides access to one of our five main data-types: waveforms, origins, arrivals, travel times,
and measurements. There are also corresponding functions for the other 4 data types (‘origin’,
‘arrival’, ‘traveltime’, and ‘measurement’). Each of these has many uses which are dictated by
the specified parameters. The particular use of ‘waveform’ above finds the indices (hence
‘index’) of the selected waveforms (hence ‘select’) and returns them in an array which is
assigned to the variable N. A full description of the waveform function can be seen by typing
‘help waveform’ at the MATLAB prompt, and you can use similar commands to get information
about the other 4 data-type functions. We strongly encourage would-be MatSeis programmers to
become familiar with these functions as they are the key to using our package to develop seismic
applications.

But let’s get back to our example. Once N has been returned, the code then checks whether that
array has anything in it. To do this, it calls the MATLAB function isempty()on the array N.
If there is nothing in the array, the message “No waveforms selected!” will be printed to the error
dialog. Then the return that follows will cause a normal return to the invoking function.

Now comes another big decision. MatSeis will allow the user to either manipulate the original
waveform or to create a new copy of the original, manipulate that, and display both. We use an
‘if’ statement to make this decision by checking how the parameter is set. MatSeis parameters
are set in MatSeis config files, and you can check (or set) parameter values using the ‘ms_par’
MatSeis function.

If you do not specify a parameter in a MatSeis config file, this does not necessarily mean that the
parameter has no value. Most of the parameters are set to default values in the function
gui/ms_config.m.

Returning to our example, if the MatSeis parameter ‘SIGPRO_REPLACE’ is not set (the “~”
indicates a “not”) to true, then we have to make a new copy of the waveform to cut (i.e. the
default behavior is to create a new waveform). Making a copy of a waveform (which includes
the data, sample rate, station, channel, etc.) would involve several steps if we did it by hand, but
we can do it in a single step using the ‘copy’ option of the ‘waveform’ function’. All we need to
do is specify the index of the waveform that we wish to copy.

%%
% Create new waveform?
%
if ~ms_par('SIGPRO_REPLACE')
 N = waveform('copy', N);
end

Note that we not only use N as a function parameter to specify the index of the waveform to
copy but we also use the same variable on the left hand side to get the index of the new
waveform. This isn’t absolutely necessary. A different variable could have been used on the
left hand side, but we chose to use N instead because we know that the original index will not be
used after this point in our function and thus we can avoid introducing another variable if we
recycle N.

11

Now that we’ve decided whether to edit a copy of the waveform or the original, it’s time to
actually edit it. To cut the waveform according to the limit lines set using the main MatSeis
display, is an incredibly simple task, because the functionality to do so is already written. All we
have to do is call the waveform function with the input parameters ‘cut’ to indicate that we want
to perform the cut operation on the selected waveform, N to indicate which waveforms are
selected (the new one!), and ‘segment’ to indicate that the portion of the waveform to be cut out
is determined by the displayed limit lines. To do this, we use the code below:

%%
% Segment data.
%
waveform('cut', N, 'segment');

At this point, the new copy of the waveform has been cut, but we can’t see that until we update
the MatSeis display. To do this, we simply call the MatSeis function “ms_draw”. This
automatically redraws the waveforms and prints them to their correct locations in the MatSeis
window.

%%
% Plot data.
%
ms_draw;

Now we can give ourselves a pat on the back. We’ve just written our very first function using a
combination of MATLAB functions and MatSeis functions. Putting it all together, we should
have code that looks something like the following:

function cutseg()

%%
% Find selected waveforms.
%
N = waveform('index','select');
if isempty(N)
 errordlg('No waveforms selected!');
 return;
end

%%
% Create new waveform?
%
if ~ms_par('SIGPRO_REPLACE')
 N = waveform('copy', N);
end

%%
% Segment data.
%
waveform ('cut', N, 'segment');

%%
% Plot data.
%
ms_draw;

12

13

FUNCTION 2: INTEGRATING A WAVEFORM

Okay. So it’s probably seems impossible that all MatSeis Functions will be that easy to write.
Well, there is some truth to that, but less than you might think given the rich set of functionality
provided by MATLAB and MatSeis. Most functions can be broken down into enough smaller
pieces for which functionality is already available that actually writing the code is fairly
straightforward. In fact, the most difficult part of writing a function for most people tends to be
translating a geophysical concept into a sequence of function calls, that is, to come up with a
viable algorithm. Putting this algorithm into computer language is comparatively simple.

Let’s look at a somewhat more intimidating function and show how, in reality, it isn’t all that
much more complicated.

As an example, let’s write a function that we can use to integrate a waveform, e.g. to go from
velocity to displacement. This may sound complicated, but it’s really not that bad. We’ll call
the function “sp_integ”.

function sp_integ()

Again, the function header consists of nothing more than the word “function” followed by the
function’s name and empty parenthesis. This is, therefore, going to be another void and
parameterless function.

Also like before, the first step of this function is to locate the selected waveforms. We create an
array called N which holds the indices of any selected waveforms. Then we check to make sure
that N has something in it, because if it doesn’t, then there are no waveforms selected (and we
can’t do much with nothing).

%%
% Find selected waveforms.
%
N = waveform('index','select');
if isempty(N)
 errordlg ('No waveforms selected!');
 return;
end

Now comes the new part. We have to actually process each of these waveforms and integrate
them… separately. That means we’re going to have to repeat the same steps on each of them.
For this, we’ll use a ‘for’ loop:

%%
% Process each waveform.
%
for i = 1:size(N,1)
 n = N(i);

14

The function size(N,1) gets the number of rows in the matrix N, while size(N,2) would get the
number of columns. In this case, N is an array (i.e. a matrix with only one column) that has the
index of each selected waveform in a separate row, so size(N,1) is the number of selected
waveforms. The line for i = 1:size(N,1) can be read as saying “for every instance of i
from i equals one to i equals the number of selected waveforms”. This colon notation specifies
the first and last number that i should be as we travel through the loop. Unless otherwise
specified, the increment is one. Therefore, this piece of code will dictate that every piece of code
contained within it will be executed first with i equal to 1, then with i equal to 2, then with i
equal to 3, all the way up to the point where i is the the number of the selected waveforms. In
this way, we can iterate through each waveform that has been selected and integrate them one by
one.

In the first line after the ‘for’ loop, we set the variable n to hold the index of the waveform we’ll
be integrating each time we go through the ‘for’ loop. In this manner, we only select the
waveforms one at time.

Now we have to extract the data from the waveform at the nth index. To do this, we use the
waveform function with the parameters of ‘data’ to indicate that’s what we want to extract, ‘n’ to
indicate which waveform we want to extract it from, and ‘segment’ to indicate that we only want
the data falling in the specified time segment (which is specified on the MatSeis screen). Calling
the waveform function with these parameters will return a vector holding all of the data, and we
store this in a variable that we have chosen to call “data”. The code to do so looks like this:

 %%
 % Get data vector.
 %
 data = waveform ('data', n, 'segment');

Once we’ve tried to extract the data we’re going to process, we have to make sure that we’ve
actually extracted something. We check this with a quick ‘if’ statement. If the “data” variable
we created isn’t empty, then we continue on in the code.

 %%
 % If the data vector is not empty,
 % continue to process the waveform.
 %
 if ~isempty(data)

So, assuming there’s data to process, we can process it. This is the hard part… the part where
the algorithm comes into play. What, we have to ask ourselves, is a simple way to integrate a
waveform consisting of evenly spaced, linearly connected data points? Well, the simplest way to
attain a decent approximation is to simply add up all of the data values then divide by the number
of sampling points per unit of time.

To do this, we can use MATLAB’s built in ‘cumsum’ function, which just gives a vector with
the total sum (up to the given entry) of all previous entries in the vector which it is applied to.
For instance, applying the ‘cumsum’ function to the vector [1 2 3 4 5] would return the vector [1
3 6 10 15]. This is exactly what we are looking for.

15

Now all that is left for us to do is to divide by the sampling rate (data points/time). We can get
this for free using the waveform function again with the parameter ‘samprate’. The code to
integrate the waveform, then, appears as follows:

 %%
 % Integrate data.
 %
 data = cumsum(data)/waveform('samprate', n);

Phew! That wasn’t too bad, was it? And now we’re back to familiar territory. We have to
decide whether to replace the existing waveform with the one we’ve just processed or to print
them both out to the screen. We do this just as before, storing the index of the copy of the
waveform into the variable n (which otherwise continues to hold the index of the original
waveform).

 %%
 % Create new waveform?
 %
 if ~ms_par('SIGPRO_REPLACE')
 n = waveform('copy', n);
 end

Note that at this point our new waveform is a copy of the unsegmented, selected waveform.
That’s not ultimately what we want, but it’s quicker than creating a new waveform from scratch
because we now only have to update the parts of the waveform data object that will be different
for the final new waveform (e.g. the data, the start time, etc.).

Let’s see how that can be done.

First, we want to update the data in our new waveform to be the integrated value stored in our
data variable. The first line, waveform('data', n, data), essentially executes this. Notice the
difference between the first ‘data’ and the second data. The first one indicates that we’re going
to construct a waveform from data, and the second data is the actual “data” variable holding the
vector representing the processed information. The ‘n’ of course still indicates that all of this
should be done to the waveform specified by the nth index.

The second line, waveform('time', n, 'segment'), updates the start time of the new waveform to be
the start of the time segment.

 %%
 % Store data vector.
 %
 waveform('data', n, data);
 waveform('time', n, 'segment');

16

Now we need to update the channel label for the new waveform to show that it is an integrated
version of the original selected waveform. We set a variable called channel equal to a new string
(i.e. a word or phrase) formed by appending the letters “INT” to the channel of the original
selected waveform, then pass that variable to the waveform function.

 %%
 % Adjust channel name.
 %
 channel = sprintf('%sINT ', ms_deblank(waveform('channel',n)));
 waveform('channel', n, channel);

The MATLAB function sprintf is used to write out a formatted string. The function ms_deblank
is a MatSeis function that gets rid of any leading or trailing blanks in a string. We use this so
that the new channel name will not have any unexpected blanks in it (i.e. we want things like
“SHZINT” and not “SHZ INT”

Now we’re pretty much done. The only thing left to do is make sure that we close any open
loops or if statements that are still hanging around and print out the new, integrated waveform.
We use the keyword ‘end’ to complete this. The first end closes the ‘if’ statement from way
back where we decided to proceed only if there was data to process. The second one goes back
even further to close the ‘for’ loop that allowed us to execute all of the code since on each
selected waveform individually.

 end

end

Now we plot the data, just as we did with the first function we wrote, by calling the ms_draw
function.

%%
% Plot data.
%
ms_draw;

Gathering all of the code we’ve just written into one cogent piece, our function should look like
this:

function sp_integ()

%%
% Find selected waveforms.
%
N = waveform('index','select');
if isempty(N)
 errordlg('No waveforms selected!');
 return;
end

%%
% Process each waveform.

17

%
for i = 1:size(N,1)
 n = N(i);

 %%
 % Get data vector.
 %
 data = waveform('data', n, 'segment');

 %%
 % If the data vector is not empty,
 % continue to process the waveform.
 %
 if ~isempty(data)

 %%
 % Filter data.
 %
 data = cumsum(data)/waveform('samprate',n);

 %%
 % Create new waveform?
 %
 if ~ms_par('SIGPRO_REPLACE')
 n = waveform('copy', n);
 end

 %%
 % Store data vector.
 %
 waveform('data', n, data);
 waveform('time', n, 'segment');

 %%
 % Adjust channel name.
 %
 channel = sprintf ('%sINT ', ms_deblank(waveform('channel',n)));
 waveform('channel', n, channel);

 end

end

%%
% Plot data.
%
ms_draw;

Notice that only about half of this code is actually new. The other half could be copied and
pasted directly from the previous function. This is another secret of writing computer code; there
are no rules to keep you from copying and pasting snippets of code that you’ve already written!
In fact, it can save you a lot of time and energy.

18

19

FUNCTION 3: SHOW WAVEFORMS FOR AN ORIGIN

Now we’re really rolling! Let’s write another function, slightly more complicated than the
previous couple. A common need in seismology when studying waveforms is to make sure that
you’re only looking at waveforms from a single origin, that is, waveforms who have arrivals
associated with a given origin. We can write a function that will allow us to check this
automatically. In fact, we can make it such that if any waveforms appear that don’t have arrivals
associated with a specified origin, then they are automatically deleted. Let’s get started on this
now.

Let’s name our new function “showassoc_wf” to indicate that it will “show associated
waveforms”, and create the header like before.

function out = showassoc_wf(orid)

As you might have noticed, however, this function header isn’t exactly like the previous two.
This function is different from the others because it will take parameters (the variables input
when calling the function) and will have an output that it returns.

The parameter we want it to take should be called “orid”. This will allow us to specify the origin
id of interest when we call the function so that it only gives us waveforms associated with that
origin.

We’ll just call the return value “out” to indicate that it is the output.

A fancy trick for functions written in MATLAB code is that one function can be specially
designed to take different types and numbers of parameters. Even though we wrote the header
for this function to indicate that we want to pass it the value of an “orid”, we can allow the
function to also work when no parameters are passed. In this case, we can make the function use
the currently selected origin in the MatSeis window. This may sound difficult, but it only
requires three lines of code:

%%
% Check for any parameters. If none
% are present, assume origin is already
% selected in MatSeis.
%
if nargin == 1
 origin('current', find(origin('orid') == orid));
end

The line if nargin == 1 checks to see if the “n”umber of “arg”uments passed “in” (hence
“nargin”, which is an implicit MATLAB function) is equal to 1. If it is, then a parameter has
been passed in and we call the ‘origin’ function with the parameters specified. The ‘origin’
function is another one of the five basic data types (like waveform) previously mentioned, and
you can learn more about it by typing ‘help origin’ at the MATLAB command prompt.

20

The use of the origin function above isn’t exactly trivial, so it probably warrants some
explanation. Calling ‘origin’ with the parameter ‘current’ indicates that we are going to reset the
index of the current origin to a new value. The new value should be specified in the next
parameter. To decide what this new value should be, however, is not that simple. As you can
see, the new value uses other function calls to get its value.

The expression origin('orid') returns an array holding all of the current origin ids loaded in
MatSeis. Therefore, using an expression like origin('orid') == orid , as we do above, will
check for equality among each entry of the array of origin ids and the value of the ‘orid’ variable
that we input as a parameter. The result will be that the expression returns a Boolean array. That
is, it returns an array of 1s and 0s where 1 indicates true (i.e. equality between that entry of the
orid array and the input orid) and 0 indicates a false (i.e. inequality between that entry of the orid
array and the input orid).

As an example, if we had given ‘orid’ the value of 6, and if origin(‘orid’) returned an array
containing the orids like [0 2 3 6 7], then origin(‘orid’) == orid would give the array [0 0 0
1 0].

The find function, then, gives the nonzero indices of the array we just created . So, using the
example above, calling ‘find’ on the array [0 0 0 1 0] would return a value of 4, the index of the
nonzero term.

Putting this all together now, the line origin('current', find(origin('orid') == orid))
will reset the index of the selected origin to the index of the origin whose id was input as a
parameter (to 4 if we continue to use the example above).

Okay, that was a lot of explanation for a relatively simple concept. So, if you’ve got it down,
let’s move on.

Now we set the variable num_stachan to 14, the total number of characters that will be used (6
for the station name plus 8 for the channel name).

%%
% From CSS3.0 sta = 6 chars,
% chan = 8 chars.
%
num_stachan = 14;

Now we are going to create an array holding the indices of the arrivals for this origin.

%%
% For arrivals, form arrays of stachan
% and of time.
%
arr_index = find(arrival('orid') == origin('orid', origin('current')));

21

The line arrival(‘orid’) returns an array of the orids associated with the arrivals. The
expression origin('orid', origin('current')) returns the ‘orid’ of the currently selected
origin (remember we set this to be the orid that was passed in to the function). Comparing the
array of arrival orids with the current orids using “==” will return a Boolean array with 1s
representing arrivals that match the current orid and 0s for arrivals that that don’t. The ‘find’
function, as before, will return the indices of the 1s that appear in the aforementioned Boolean
array, and hence the indices of the arrivals associated with the current origin.

Now to find out how many arrivals there are, we simply need to find the size of the arr_index
array we just created.

%%
% Get the number of arrivals
%
num_arriv = size(arr_index, 1);

If there are no arrivals, then we shouldn’t be able to proceed any further. If this is the case, then
we simply print out “No arrivals for this event” to the error dialog and then return to the calling
function.

%%
% Bail if there are no arrivals...
%
if num_arriv == 0
 errordlg('No arrivals for this event');
 return;
end

If, on the other hand, there are some arrivals, then we will proceed to work with them. Our
ultimate goal is to look for waveforms that have the same sta/chan as these arrivals and who
have start/end times that contain the arrival times.

Let’s begin by getting the sta/chan info for our associated arrivals. To do this, we need to set the
arriv_stachan variable. We will concatenate (that is, put together) two separate strings so that
they make up one string, and this single string will be given as the value of the ‘arriv_stachan’
variable.

The piece of code arrival('sta',arr_index) will return the station names at each arrival
index, while arrival('chan',arr_index) will return the channel names at each arrival index.

When we then call the ‘bpad’ function on each of these strings along with an integer, each string
is adjusted to the length specified by the integer. Therefore, the first string, the station name,
will be either abbreviated or padded to 6 characters, and the second string, the channel name,
will be abbreviated or padded to 8 characters. These will then be put together (either a space or
the “…” will serve this purpose) forming an array of 14 character strings and assigned to the
‘arrive_stachan’ variable.

22

%%
% If there are arrivals, set the station
% channel.
%
arriv_stachan = [bpad(arrival('sta', arr_index), 6) ...
 bpad(arrival('chan',arr_index), 8)];

We also need to get the times for these arrivals so we can look for waveforms that contain them.
Calling the ‘arrival’ function with the parameters of ‘time’ and ‘arr_index’ will give an array
holding the epoch times for each arrival index. These will then be assigned to the ‘arriv_time’
variable.

%%
% Also if there are arrivals, set the
% arrival time.
%
arriv_time = arrival('time', arr_index);

Now that we’ve taken care of the arrivals, we must do similar housekeeping for the actual
waveforms with which these arrivals are associated. First, we get an array of all indices of
waveforms loaded, then we get the size of this array to indicate how many waveforms there are.

%%
% Similarly for waveforms, get count of
% total number of waveforms in memory.
%
wf_index = waveform('index');
num_wf = size(wf_index, 1);

Now, like before, we set the name of the waveform station and channel by appending each name
to the proper length and sticking them together.

%%
% Set station and channel name.
%
wf_stachan = [bpad(waveform('sta', wf_index), 6) ...
 bpad(waveform('chan', wf_index), 8)];

When we set the time, however, we must do something a little bit different than before. Whereas
the arrivals were only associated with a single moment in time, the waveforms have a beginning,
a duration, and, therefore, an ending.

We get the start time as before. But to get the ending time, we have to add the duration to the
start time. To get the duration, however, requires some math, for there is no implicit function of
the ‘waveform’ datatype that gives the duration. We must instead divide the length of the
waveform (the number of sampling points) by the sampling rate (number of sampling points per
unit time). This will give us the total time (we can tell from the units of the measurements that
we’re doing this correctly,
i.e. # points / (# points / time) = time).

23

%%
% Set the beginning and ending times
% for the waveforms.
%
wf_time1 = waveform('time', wf_index);
wf_time2 = wf_time1 + (waveform('length', wf_index)./waveform('samprate',
 wf_index));

Notice, however, the dot (‘.’) that appears immediately before the division sign. This is a special
MATLAB notation that indicates the operation is to be done term by term as opposed to using
regular matrix operations. For instance, if we were to use the following matrices, dot and regular
operations would be executed as shown:

>> A = [1 2; 3 4]
A =
 1 2
 3 4

>> B = [5 6; 7 8]
B =
 5 6
 7 8

>> A./B
ans =
 0.2000 0.3333
 0.4286 0.5000

The dot operation of division divides the corresponding terms of the matrices. If we didn’t use
the dot operator, the division yields something entirely different. In fact, “A divided by B”
without the dot operator is the same as “A times the inverse of B”.

>> A/B
ans =
 3.0000 -2.0000
 2.0000 -1.0000

>> A*inv(B)
ans =
 3.0000 -2.0000
 2.0000 -1.0000

Using the dot operator in this way, the ‘wf_time2’ variable will be an array of properly
calculated times.

Now we initialize an array call ‘wf_vis’ which will represent which waveforms should be left
visible when we print them out in MatSeis. Calling the function zeros(num_wf,1) will create a
column array containing only 0s that is the same size as the ‘num_wf’ variable. The 0s will
indicate that the corresponding waveform should not be displayed.

24

%%
% Initialize visibility array
%
wf_vis = zeros(num_wf,1);

Now we update the ‘wf_vis’ array using the information we’ve acquired in the previous steps to
decide which waveforms will actually remain invisible. We need to insert a ‘1’ into every index
of a waveform that should be visible.

We do this using a for loop over the associated arrivals, checking each arrival’s station and
channel against the list of all waveform stations and channels and also checking whether the
waveforms span the arrival time.

The whole code to determine which waveforms should be visible appears as follows. It’s very
complicated, but I’ll explain it all in a minute.

%%
% For each arrival, turn on any
% corresponding waveform
%
for i = 1:num_arriv
 wf_vis = wf_vis | ...
 ((sum([wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) ...
 (arriv_time(i) >= wf_time1) & ...
 (arriv_time(i) <= wf_time2)]'))' == (num_stachan + 1));
end

Let’s start with the basics. The ‘wf_stachan’ variable is a column of station and channel names.
Depending on the actual station names and channels, a set of 4 waveforms might look something
like this:

wf_stachan =

ADI SHZ
ATZ SHZ
CRI SHZ
DOR SHZ

The ‘arriv_stachan’ variable is a very similar column; it also contains station and channel names.
The station and column names that it contains, however, can be of a different type, number, or
order than those in the ‘wf_stachan’ column. It may look something like:

arriv_stachan =

ATZ SHZ
CRI SHZ
CRI SHZ
MML SHZ
ADI SHZ
GLH SHZ
ZNT SHZ

25

Our job is to find the index of each ‘wf_stachan’ in the first column that matches one of the
‘arriv_stachan’ from the second column. These indices will represent all of the waveforms that
should remain or become visible in MatSeis after our function is run.

As you may have noticed, the stachan “CRI SHZ” appears twice in the ‘arriv_stachan’ column,
meaning that there are two arrivals associated with that station and channel. As you’ll see
shortly, this is inconsequential; a waveform will be made visible whether it has one arrival or
hundreds.

Okay, so how are we actually going to compare these two columns? It seems like it should be
simple. It isn’t difficult to pick out the entries from the first column that have a match in the
second column by simply eyeballing it. Unfortunately, there is no ‘eyeball_it’ function; it’s
going to be tough to actually write code to do this. We’re going to have to get creative.

One possible solution is to take each entry of the second column individually and compare it to
each entry of the first column. Let’s give it a try.

Calling arriv_stachan(i,:) will give the ith entry of the ‘arriv_stachan’ column. If we then
call the MATLAB function ‘repmat’, we can replicate the matrix that represents that entry as
many times as we want. The portion of the code that says repmat(arriv_stachan(i,:),
num_wf,1) gives a column containing the ith entry of ‘arriv_stachan’ as many times as there are
waveforms. Continuing with the example above, calling repmat(arriv_stachan(i,:),
num_wf,1) with i equal to 1, we would get…

repmat(arriv_stachan(1,:), num_wf,1) =

ATZ SHZ
ATZ SHZ
ATZ SHZ
ATZ SHZ

If we compare this to the ‘wf_stachan’ matrix using the code wf_stachan ==
repmat(arriv_stachan(i,:), num_wf,1) we’ll end up getting a big matrix of 1s and 0s.
There will be a 1 wherever the characters of the two matrices are the same and a 0 wherever they
differ. In our example, we’ll wind up with…

wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) =

1 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1

The line of all 1s represents the match, where every character is the same in both rows. This is
not quite enough to give us what we’re looking for, though. We also need to know that the
arrivals we have fall somewhere on the correct time interval of the waveform. To do this, we’ll
add an extra column to the tail end of the matrix above representing whether the time interval is
correct.

26

We do this with the portion of the code that says (arriv_time(i) >= wf_time1) &
(arriv_time(i) <= wf_time2). This code uses the logical operator “&”, meaning “and”. For
the whole statement to be true and be assigned a 1 indicating that the arrival is in the correct time
interval, the arrival must both come after the beginning of the waveform and before the end of
the waveform. If either of these two criteria are false, then the whole statement is false.

arrival late enough and arrival early enough equals correct time interval

1 & 0 = 0
0 & 1 = 0
1 & 1 = 1
0 & 0 = 0

Again, we’ll get a 1 if the time interval is correct and a 0 if not. So, assuming that the time
interval is correct for this particular arrival, we’ll get an extra column of 1s tacked on:

[wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) (arriv_time(i) >=
wf_time1) & ... (arriv_time(i) <= wf_time2)] =

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

To decide whether or not we’ve found any equalities, we need to know whether or not we have
any rows that are entirely full of 1s. Again, an ‘eyeball_it’ function would come in awfully
handy, but we’re going to have to figure out something else. Luckily, MATLAB provides a
function called ‘sum’. If we can sum up each row and find those that come out to 15 (the six 1s
for that same station characters, the eight 1s for the same channel characters, and the extra 1 for
the correct time interval), then we’ve found the row that has equality. We should write
something like this:

((sum([wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) (arriv_time(i) >=
wf_time1) ... & (arriv_time(i) <= wf_time2)]'))' == (num_stachan + 1)) =

0
1
0
0

Finally, we’ve found a match. We now reset the ‘wf_vis’ variable to reflect the match that
we’ve found. Remember that the ‘wf_vis’ variable is, before the code is run, a column of 0s.
Every time we find a 1 representing a match, we need to put that into the ‘wf_vis’ variable in the
correct spot. We do this using the logical operator “|”, meaning “or”. Our new ‘wf_vis’ should
consist of 1s wherever the old ‘wf_vis’ had a 1 or wherever we found a match.

wf_vis = wf_vis | ...
 ((sum([wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) ...
 (arriv_time(i) >= wf_time1) & ...
 (arriv_time(i) <= wf_time2)]'))' == (num_stachan + 1));

27

The “or” operator would work as follows after going through the for loop one time.

old wf_vis or new match equals new wf_vis

0 | 0 = 0
0 | 1 = 1
0 | 0 = 0
0 | 0 = 0

But, like I’ve said, we’ve only gone through the for loop once. After we’ve traversed it for each
arrival and the loop has finished, we should be left with…

wf_vis =

1
1
1
0

This means that the 1st, 2nd, and 3rd, but not the 4th waveform, waveforms have arrivals in the
correct time interval associated with the given origin. The first 3 waveforms should be
displayed.

Now, as the final step, we turn on all of the waveforms that should be visible so that they’ll
appear in the MatSeis display. Then we zoom the MatSeis display to show all of the data
displayed. These operations can be performed with the following two lines of code.

%%
% Finally, turn on the waveforms
%
waveform('visibile', wf_index, wf_vis);
ms_zoom('data');

Finally, when we put this all together, we are left with a very useful piece of code.

function out = showassoc_wf(orid)

%%
% Check for any parameters. If none
% are present, assume origin is already
% selected in MatSeis.
%
if nargin == 1
 origin('current', find(origin('orid') == orid));
end

%%
% From CSS3.0 sta = 6 chars,
% chan = 8 chars.
%
num_stachan = 14;

%%
% For arrivals, form arrays of stachan

28

% and of time.
%
arr_index = find(arrival('orid') == origin('orid', origin('current')));

%%
% Get the number of arrivals
%
num_arriv = size(arr_index, 1);

%%
% Bail if there are no arrivals...
%
if num_arriv == 0
 errordlg('No arrivals for this event');
 return;
end

%%
% If there are arrivals, set the station
% channel.
%
arriv_stachan = [bpad(arrival('sta', arr_index), 6) ...
 bpad(arrival('chan',arr_index), 8)];

%%
% Also if there are arrivals, set the
% arrival time.
%
arriv_time = arrival('time', arr_index);

%%
% Similarly for waveforms, get count of
% total number of waveforms in memory.
%
wf_index = waveform('index');
num_wf = size(wf_index, 1);

%%
% Set station and channel name.
%
wf_stachan = [bpad(waveform('sta', wf_index), 6) ...
 bpad(waveform('chan', wf_index), 8)];

%%
% Set the beginning and ending times
% for the waveforms.
%
wf_time1 = waveform('time', wf_index);
wf_time2 = wf_time1 + (waveform('length', wf_index)./waveform('samprate',
wf_index));

%%
% Initialize visibility array
%
wf_vis = zeros(num_wf,1);

%%

29

% For each arrival, turn on any
% corresponding waveform
%
for i = 1:num_arriv
 wf_vis = wf_vis | ...
 ((sum([wf_stachan == repmat(arriv_stachan(i,:), num_wf,1) ...
 (arriv_time(i) >= wf_time1) & ...
 (arriv_time(i) <= wf_time2)]'))' == (num_stachan + 1));
end

%%
% Finally, turn on the waveforms
waveform('visibile', wf_index, wf_vis);
ms_zoom('data');

30

31

FUNCTION 4: AUTOMATICALLY MAKE WAVEFORM
MEASUREMENTS FROM RECIPE FILE

As you have probably seen, these functions can become longer and more conceptually
complicated, but the actual coding doesn’t get much more difficult. If you are still doubtful of
this, then let’s see if I can’t make my point a little more convincingly. It’s time for a really long
function…

We want the function to be able to automatically make measurements based on the specifications
of the recipe file. Therefore, our function should take a recipe file as a parameter. We’ll write
the header as before.

function auto_meas(recipe_file);

Now if we’re going to use the recipe file to decide what to do, we should probably figure out
what it contains. To do this, we can read the file into a string matrix. We’ll do this with the
command ‘readrect’, a function provided by MATLAB. The code to do this looks as follows:

%%
% Read in recipe file
%
out = readrect(recipe_file, 77);

The line out = readrect(recipe_file,77) reads the recipe file into a matrix containing rows
that are 77 characters apiece and assigns that matrix to the variable ‘out’. The number 77 is not a
magic one; the specifications of a recipe file designate that 77 characters are needed to fully
describe all the fields and corresponding values of the file. For more information on the format
of the recipe file, look at one of the example recipe files (e.g.
SNL_Tool_Root\matseis\testing\matseis\northridge\nr.recipe or
SNL_Tool_Root\matseis\testing\matseis\galilee\galilee.recipe).

Here, for instance, is the Northridge recipe file “nr.recipe”:

STA CHAN PHASE FLO FHI FPLS OFF1 GV1 OFF2 GV2 MEAS_TYPE IC
NNA BHZ P -1.0 -2.5 3 2.0 11.1 2.0 10.8 Zero-Peak 0
NNA BHZ P -1.0 -2.5 3 2.0 11.1 2.0 10.8 RMS 0
KIV BHZ P -1.0 -2.5 3 0.0 13.6 0.0 13.2 Zero-Peak 0

As you can see, parts of this file contain extraneous material, such as the header. We’ll get rid of
the header so that we’re only working with the real content of the file.

%%
% Get rid of header line
%
out = out(2:end,:);

This code reassigns the ‘out’ matrix to be the part of the original ‘out’ matrix from row 2 through
the end with all columns. Basically, it removes the first line.

32

This snippet is an important piece of code because it introduces a new MATLAB syntax
commonly known as “colon notation”. Colon notation, designated as such because of its use of
the colon, can often be used to replace a “for” loop. In fact, colon notation is greatly preferred to
the for loop because it is much faster and less computationally expensive. In plain English, the
colon can be thought of as meaning “for each”. For instance, in the code above, the portion that
says 2:end which lies in the row position of the ‘out’ matrix means that we’ll copy the rows for
each row starting at the 2nd row and ending at the end. The lone colon in the column position of
the ‘out’ matrix means that we’ll copy the columns for each column.

The rest of the lines contain the valuable information that we want to extract and put into a
certain structure. We set up this structure with the following piece of code.

%%
% Setup then populate recipe structure
%
recipe = struct('sta',[],'chan',[],'phase',[],...
 'flo',[],'fhi',[],'fpls',[],...
 'off1',[],'gv1',[],'off2',[],'gv2',[],...
 'meas_type',[],'ic',[]);

The ‘struct’ function, another MATLAB one, creates a structured array with the given fields and
values. As you can see, the fields we are using are ‘sta’, ‘chan’, ‘phase’, ‘flo’, ‘fhi’, ‘fpls’,
‘off1’, ‘gv1’, ‘off2’, ‘gv2’, ‘meas_type’, and ‘ic’, each of which is associated with an empty
value given by empty square brackets ‘[]’. This structured array is assigned to the variable
‘recipe’.

Each line of the recipe file (except, of course, for the header which we already removed) contains
a different “recipe”. To treat each of these separately, we need to know how many of them there
are. We can do this by simply calling the size function on the first column of the ‘out’ variable
we created earlier to get the total number of rows. We do this as follows:

%%
% Get number of recipes
%
num_recipes = size(out,1);

Now we need to clear up the recipe structure so we can parse the recipe file and populate the
recipe structure correctly.

%%
% Clear the recipe matrix so we can
% repopulate with correct info.
%
recipe = recipe(ones(num_recipes,1));

This clears it out leaving only a column of 1s, one for each recipe in the file to preserve the size.

33

Now we actually go through and populate it.

We populate the structure for each recipe, so we actually will end up having multiple instances
of the recipe variable. We do this using a for loop (using colon notation here would be far too
messy).

%%
% Repopulate the recipe matrix
%
for i=1:num_recipes
 recipe(i).sta = deblank(out(i,1:5));
 recipe(i).chan = deblank(out(i,8:11));
 recipe(i).phase = deblank(out(i,15:18));
 recipe(i).flo = str2num(out(i,22:26));
 recipe(i).fhi = str2num(out(i,28:32));
 recipe(i).fpls = str2num(out(i,34:36));
 recipe(i).off1 = str2num(out(i,38:43));
 recipe(i).gv1 = str2num(out(i,45:49));
 recipe(i).off2 = str2num(out(i,51:56));
 recipe(i).gv2 = str2num(out(i,58:62));
 recipe(i).meas_type = deblank(out(i,64:73));
 recipe(i).ic = str2num(out(i,76:76));
end

The first line after the for loop begins will take the ith recipe file and assign the first 5 characters
of the ith row of the ‘out’ matrix to its ‘sta’ field. The next line will take the ith recipe file and
assign the characters in lines 8-11 of the ith row of the ‘out’ matrix to the ‘chan’ field. The
remaining fields are populated similarly in the subsequent lines.

As a side note, the ‘deblank’ function is a MATLAB function that removes any extraneous
empty spaces from the string, and the ‘str2num’ function is a MATLAB function that converts a
string to a number. These are used to ensure proper formatting when the various fields are
populated.

Now that we’ve organized all of the info from the recipe file and can access it, it’s time to
actually make the measurements. First we need a waveform to measure. Therefore, we need to
know the origin and get the time associated with it. We get this information in what is, by now,
hopefully a familiar manner.

%%
% Now check the current origin and make
% measurements (if possible)
%
otime = origin('time','current');

We also need to know the station and channel of the waveforms to see if any match what was
specified in the recipe file. Again, these can be retrieved quite easily and familiarly.

%%
% Get the station and channel of
% currenly selected waveform(s).

34

%
sta = waveform('sta');
chan = waveform('chan');

In case there are multiple waveforms selected to measure, we need to know how many there are.
To figure this out, there are, again, no new tricks:

%%
% Get number of waveforms selected.
%
num_wf = size(sta,1);

Now come the actual calculations. We need to perform them independently for each waveform
selected, so we’ll put the calculations into a for loop.

%%
% For each waveform, perform all
% measurements.
%
for i=1:num_wf

Because each recipe from the recipe file is associated with a given station and channel, we need
to make certain that these (or at least some of these) match those actually loaded and selected in
MatSeis. To do this, we need to use the MATLAB string comparator function called ‘strcmp’.

 %%
 % Check for a recipe for this waveform
 % (sta & chan).
 %
 index = find(strcmp({recipe(:).sta}, deblank(sta(i,:))) & ...
 strcmp({recipe(:).chan}, deblank(chan(i,:))));

The line strcmp({recipe(:).sta}, deblank(sta(i,:))) compares the names of the stations
for each recipe and the current waveform being processed. The line
strcmp({recipe(:).chan}, deblank(chan (i,:))) does the same for the names of the
channels for each recipe and the current waveform being processed. If both of these match
(hence the ‘&’) then the ‘find’ function will return the index of the match and thus give the index
of the recipe that corresponds to the selected waveform.

If there is at least one match, then we can proceed with the measurements. If there is no match,
then there is nothing we can do. We check this condition in the same manner as previous times.

 %%
 % If there is at least one match
 % then we proceed.
 %
 if ~isempty(index)

All we’ve checked for at this point, however, is if at least one recipe matches. There could have
been more than one match. We need to get the total number of matches so that we can make
measurements based on each recipe individually.

35

To do this, we again use a for loop. It’s pretty much the same story as before:

 %%
 % Get total number of matches. Perform
 % measurements for each recipe file
 % individually.
 %
 num_recipe = length(index);
 for j=1:num_recipe

Once we’ve got matching stations and channels for a recipe and a waveform, we should also
check that the time intervals of these coincide. We must first calculate the time intervals for the
recipe and for the actual waveform.

%%
% Calculate the time intervals
%
meas_time1 = otime + recipe(index(j)).off1 + ...

 deg2km(waveform('distance',i)) / recipe(index(j)).gv1;
 meas_time2 = otime + recipe(index(j)).off2 + ...
 deg2km(waveform('distance',i)) / recipe(index(j)).gv2;
 wfm_time1 = waveform('time',i);
 wfm_time2 = wfm_time1 + waveform('length',i)./waveform('samprate',i);

The first measured time is calculated by starting with the origin time ‘otime’, adding the offset
time ‘off1’, and adding the time computed by dividing the distance (which the MatSeis function
‘deg2km’ converts from epicentral degrees to kilometers) from the origin by the group velocity
‘gv1’. The second measured time is calculated similarly.

The time span of the waveforms themselves is easy to calculate. We do it as we did previously,
first getting the start time by calling wfm_time1 = waveform('time',i) and then getting the
stop time by adding the duration (which we must calculate) to the start time with the code
wfm_time2 = wfm_time1 + waveform('length',i)./waveform('samprate',i).

Now we check to make the time intervals actually overlap. We need the waveform to entirely
contain the measured time interval specified by the recipe.

%%
% Check to see if waveform is in right
% time interval. Note that this check
% is conservative; it must have the full
% waveform available!!
%

 if wfm_time1 < meas_time1 & wfm_time2 > meas_time2

Once it is determined that the time intervals do, in fact, correctly overlap, then we can move on.
We’re getting close to actually making the measurement, so maybe we should give the user a
heads up that that’s what we’re going to do. To do this, we print out to the display what station,
channel, and measurement type we’re making.

36

 %%
 % Print out a display.
 %
 disp(['making measurement for ' recipe(index(j)).sta ...
 recipe(index(j)).chan ' ' recipe(index(j)).phase ...
 ' ' recipe(index(j)).meas_type]);

Now, because our convention is to link measurements to arrivals, we should check if there are
any arrivals associated with the particular origin, station, and phase.

 %%

 % Check if there is an arrival for
 % this phase.
 %

 ar_index = find(arrival(‘orid’) == origin(‘orid’, ’current’) & ...
 compstr(arrival(‘sta’), recipe(index(j)).sta) & ...
 compstr(arrival('phase'), recipe(index(j)).phase));

If there is no existing arrival that has already been picked for the given phase and origin, then we
need to pick one automatically. This can be done as follows:

 %%
 % If no arrival exists, pick one.

 %
 if isempty(ar_index)

 ar_index = arrival('create',1);
 arrival('orid', ar_index, origin('orid', 'current'));
 arrival('sta', ar_index, recipe(index(j)).sta);
 arrival('chan', ar_index, recipe(index(j)).chan);
 arrival('phase', ar_index, recipe(index(j)).phase);
 arrival('time', ar_index, meas_time1);
 end

For any of the parameters that don’t already exist, assignments are made based on the values
given in the recipe file. As you can see in the code above, the arrival gets an orid, a station, a
channel, a phase, and a time. As the only purpose of this arrival is to provide something to tie
measurements to, we will just set the time to be that determined by the first group velocity.

Now, for a little housekeeping, we should make certain that we don’t accidentally have any
duplicate arrivals.

 %%
 % Make sure there are no duplicates.
 %
 ar_index = ar_index(1);

Once we’ve done that, there’s nothing to stop us from actually working with the data. First, we
read it into a variable that we’ll call (what else?) ‘data’. This can be done very easily using the
prewritten waveform function that we talked about in previous sections. While we’re at it, we’ll
also get the total number of data points for future reference.

37

 %%
 % Read in the data and get total amount
 % of data.
 %
 data = waveform('data',i);
 n = length(data);

Now we’ll get the time at each data point for the current waveform. We do this by adding the
initial time to the duration, up to the given point, of the time since the initial one. We can do this
much like before.

 %%
 % Get the time at each data point.
 %
 time = waveform('time',i) + (0:n-1)'/waveform('samprate',i);

Before we measure the waveform, we need to filter it. The recipe file actually specifies several
of the filtering criteria, so we’ll use them here. First, we create an empty variable called ‘cutoff’
that will hold any of the filtering criteria we add. If no filtering is done, it will remain empty.

 %%
 % Start with no filter.

 %
 cutoff = [];

We then use several embedded ‘if’ statements to decide what filtering to apply. The first ‘if’
decides whether there is a low end cutoff frequency to filter. Inside of this, we decide with
another ‘if’ whether there is a high end cutoff frequency to filter. If there is, then we have both a
low and a high and therefore a general “band” of frequencies in which to stay. If there is a low
but no high, then we have a low band cutoff. If there is a high but no low, then we have a high
band cutoff. If there are neither, then there is no filtering to be done.

Our code to determine this functionality should appear as follows:

 %%
 % Decide how to filter the waveform
 % according to the recipe file.

 %
 if recipe(index(j)).flo > 0
 if recipe(index(j)).fhi > 0
 cutoff = [recipe(index(j)).flo recipe(index(j)).fhi];
 band = 'band';
 else
 cutoff = [recipe(index(j)).flo];
 band = 'low';
 end
 else
 if recipe(index(j)).fhi > 0
 cutoff = [recipe(index(j)).fhi];
 band = 'high';
 end

38

 end

We check the values specified in the recipe file for the frequency cutoffs, and if they are valid we
set them as the values of the ‘cutoff’ variable and note which type of filter they specify with the
‘band’ variable.

If some sort of filtering is required, we must perform it now. The ‘cutoff’ variable holds all of
the information describing what kind of filtering is needed.

So, assuming that there are filtering values specified and the ‘cutoff’ variable isn’t empty, we
apply filtering to the waveform.

The variable name ‘nyquist’ is a signal processing term related to the sampling frequency of data
used to represent the waveform. It turns out that the waveform can only be accurately recreated
if it has no frequencies higher than one-half the sampling frequency. We call this cutoff
frequency, one-half the sampling rate, the nyquist frequency.

Because of MATLAB filtering conventions, we then calculate the normalized cutoff frequency
by dividing the cutoff frequency (or frequencies) specified in the recipe file by the nyquist
frequency. The code to do all of this appears as follows:

 %%
 % Get nyquist frequency and calculate
 % the normalized cutoff frequency.
 %

 if ~isempty(cutoff)
 nyquist = waveform('samprate',i)/2.;
 Wn = cutoff/nyquist;

Once we have this information, we can use the implicit MATLAB function ‘filterd’ to generate
the coefficients for the filter we specified. We do this with the line of code [b, a] =
filterd('Butterworth', recipe(index(j)).fpls, Wn, band). This will use a
Butterworth filter of order recipe(index(j)).fpls with normalized cutoff frequency Wn on the
specified band.

We then use these coefficients to reconstruct the waveform with the line of code data =
filtfilt(b, a, data), which uses another MATLAB function called ‘filtfilt’ to apply a
“zero-phase forward and reverse” filter.

 %%
 % Filter the waveforms.
 %
 [b, a] = filterd('Butterworth', recipe(index(j)).fpls, Wn, band);
 data = filtfilt(b, a, data);
 end

39

Now that the filtering is done, we can finally take the measurements we set out to make so long
ago. To do this is simple; we just call the ‘measure’ function with the specified criteria. BUT
WAIT, it turns out that there isn’t a ‘measure’ function! No such function exists! So what do we
do now?

Well, doesn’t it seem like it would be useful if there was, in fact, a ‘measure’ function? Then we
could do exactly what we tried to do a minute ago… simply call it with the appropriate criteria.
Well, as long as we’re writing one function, why not write two?

Why not indeed. In fact, this is exactly what we’ll do. We’ll write a subfunction called
‘measure’ that will allow us to quickly and easily measure the waveform using whatever criteria
we need it to accept. Once it’s written, we can use it wherever we want.

So let’s pretend that such a function exists, call it now like we normally would, and actually
write it later.

 %%

 % Make measurements
 %

 [meas] = measure(data, time, meas_time1, meas_time2,...
 recipe(index(j)).meas_type, i);

We call the function with the parameters of ‘data’, ‘time’, ‘meas_time1’, ‘meas_time2’,
‘meas_type’, and ‘i’, each of which will be used in the calculation of the waveform’s
measurement. The results are returned in the structure ‘meas’.

Now we need to set the amplitude and period of the arrival associated with the waveform we
measured so it contains the updated measurements. We’ll also retrieve the arrival id of this
arrival so we can use it when we record the measurement. We do this with the following code.

 %%
 % Create a new arrival with the given
 % measurements.
 %
 arrival('amp', ar_index, meas.amp);
 arrival('per', ar_index, meas.per);
 arid = arrival('arid', ar_index);

Now we actually have to set up a new measurement entry so we can record all of the information
that we just acquired with our ‘measure’ function. First we’ll get the number of measurements
that have already been made and advance that by 1 to get the index for the new measurement we
plan to store. The first time through, if no measurements are already stored in MatSeis,
measurement(‘n’) will be 0 so our ‘num_amps’ index will be 1. Then we allocate a new blank
(null) measurement entry, which will correspond to the index ‘num_amps’ and call it ‘temp’
because it will only temporarily hold our data.

 %%
 % Set up a new measurement entry.
 %

40

 num_amps = measurement('n') + 1;
 temp = measurement('null',1);

Now we populate our ‘measurement’ entry with all of the values of data that we’ve got. The first
call of the ‘measurement’ function, the line measurement('data', num_amps, temp), sets the
‘num_amps’ object to be our empty ‘temp’ object. Therefore, in each subsequent call, we’ll be
populating the various values of a blank temporary measurement object. Basically, it allows us
to start from scratch and create an entirely new instance of our ‘measurement’ object.

So let’s start filling in our blank object. We start by setting the ‘arid’ field with the arrival id we
just retrieved a few lines ago. We do this using the MatSeis function ‘measurement’ by calling it
as follows: measurement('arid', num_amps, arid).

For the ‘sta’, ‘chan’, ‘phase’, and ‘amptype’ fields associated with the measurement, we simply
use the ‘sta’, ‘chan’, ‘phase’, and ‘amptype’ names dictated in the recipe file. We call the
‘cellstr’ function on these names to solidify each one as a separate string object rather than as an
array of characters. Each of these is set to its respective field in the same manner as the ‘arid’.

Following this are the ‘amptime’, ‘amp’, and ‘per’ fields. These fields are populated using the
information garnered from our ‘measure’ function. We set the ‘amptime’ to the time associated
with the ‘meas’ variable we returned from the measure function. We reference this value by
calling meas.time and set it to the ‘measurement’ object with the line
measurement('amptime', num_amps, meas.time). The amplitude and period are accessed
and set similarly.

Lastly, we assign the ‘start_time’ and ‘duration’ fields using the ‘meas_time1’ and ‘meas_time2’
variables that we calculated earlier.

Putting all of these field assignments together and then wrapping up our function with a series of
‘end’ statements, our code should look as follows.

 %%
 % Populate measurement fields.
 %
 measurement('data', num_amps, temp);
 measurement('arid', num_amps, arid);
 measurement('sta', num_amps, cellstr(recipe(index(j)).sta));
 measurement('chan', num_amps, cellstr(recipe(index(j)).chan));
 measurement('phase', num_amps, cellstr(recipe(index(j)).phase));
 measurement('amptype', num_amps,cellstr(recipe(index(j)).meas_type));
 measurement('amptime', num_amps, meas.time);
 measurement('amp', num_amps, meas.amp);
 measurement('per', num_amps, meas.per);
 measurement('start_time', num_amps, meas_time1);
 measurement('duration', num_amps, meas_time2 - meas_time1);
 end
 end
 end
end

41

So now that we’re done with our main function, it’s time to introduce another new topic in
MatSeis function writing… the subfunction. Subfunctions, also known as helper functions, are
written within the same M file as the main function, and they use the same syntax. Their
purpose, however, is to “help” the main function. They cannot, therefore, be called outside of
file that contains the main function. Basically, the only difference between a main function and a
subfunction is that a subfunction must appear after the main function. If there are multiple
subfunctions, they may appear in any order, but they must all appear after the main function.

Subfunctions are often used if there is a particular task that is to be repeated multiple times
within the main function. It makes the code more readable, more understandable, and it’s easier
to write.

The subfunction that we’re going to write will allow us to measure the waveform. We’ll call it
‘measure’ and give it a header. However, we have to remember that when we wrote the function
call before, we passed in a handful of parameters. So now, as we’re actually writing the body of
the function, we need to make sure our function header specifies that it should accept those same
parameters. In this case, we need it to take the parameters of the ‘data’ we want to measure, the
‘time’, the type of measurement we want to make, and the index of the waveform to which all of
the other parameters belong.

%%%
%%%% SUBFUNCTION %%%%
%%%
function [meas] = measure(data, time, time1, time2, meas_type, wfm_index);

We’ll start off by setting our output variable, ‘meas’, to be an empty vector.

%%
% Clear the meas variable.
%
meas = [];

Then we’ll use the parameters passed in to construct a set of data that is consistent with what we
want to measure. First, we construct a Boolean array called ‘range’ that signifies which of the
times in the ‘time’ parameter fall within the time interval specified. We then use the piece of
code data = data(range) to truncate the ‘data’ variable so it doesn’t contain any of the
extraneous data falling outside of the interval we’re interested in. We also update the ‘time’
variable in a similar manner so that it still corresponds to the data correctly. The code for this
appears as follows:

range = time >= time1 & time <= time2;
data = data(range);
time = time(range);

Once we’ve whittled down the data we want to measure, there are three possible cases for the
type of waveform measurement we want to make: peak to peak, zero to peak, and RMS (root
mean square). The ‘meas_type’ field in the recipe file should specify which of these types of
measurements is to be taken for the data.

42

We decide which case to use with a ‘switch’ statement. This is similar to an ‘if’ statement, but
actually uses specific cases to decide what should be done. In our case, we’ll “switch” using the
string representing the measurement type. However, because the switch statement is case
sensitive, we must make sure to match the capitalization of the strings on which we are
switching. To do this, we can use the MATLAB function ‘lower’. This will convert any string
to all lower case letters so that we know what to expect when the switch statement compares the
strings. The code looks like this:

%%
% Decide which type of measurement to
% make.
%
switch(lower(meas_type))

And we follow this immediately with the possible cases. Each case gets its own block of code to
determine the specific actions to take in the given case. We’ll write the first of these cases now,
the case when our measurement type is ‘peak-peak’.

 %%
 % If peak to peak is specified, execute
 % this code.
 case 'peak-peak'
 [ymin, imin] = min(data);
 [ymax, imax] = max(data);
 meas.time = min(time(imin), time(imax));
 meas.per = 2.*abs(time(imin) - time(imax));
 meas.amp = ymax - ymin;
 meas

For a peak-peak measurement, the amplitude is measured as the difference between the highest
and lowest points on the waveform, the period is double the time difference between these two
points, and the time is the time associated with the beginning of the period being measured. We
can find these high and low points as well as their indices very easily using MATLAB’s ‘max’
and ‘min’ functions. The line [ymin, imin] = min(data) will set ‘ymin’ to the minimum
value of the data and ‘imin’ to the index of that value. The ‘max’ function works similarly.

We assign the value to the ‘time’ field with the line meas.time = min(time(imin),
time(imax)), we assign the value to the ‘per’ field with the line meas.per =
2.*abs(time(imin) - time(imax)), and we assign the value to the ‘amp’ field with the line
meas.amp = ymax – ymin.

Next, we’ll write the block of code used when a ‘zero-peak’ measurement is specified. In this
case, all of the measurements except that of amplitude are exactly the same as in a ‘peak-peak’
measurement. The amplitude, however, is calculated differently. It picks the greater of the
absolute values of the max and min values, then assigns it a positive or negative sign depending
on which of the two values was used. This is executed with the line of code meas.amp =
sign(ymin + ymax)*max(abs(ymin), abs(ymax)). This is followed by another ‘if’ statement
for any instrument corrections that need to be made. The code for the ‘zero-peak’ case appears
as follows:

43

 %%
 % If zero to peak is specified, execute
 % this code.
 %
 case 'zero-peak'
 [ymin, imin] = min(data);
 [ymax, imax] = max(data);
 meas.time = min(time(imin), time(imax));
 meas.per = 2.*abs(time(imin) - time(imax));
 meas.amp = sign(ymin + ymax)*max(abs(ymin), abs(ymax));
 meas

For the last case, a root mean square measurement, we use the square root of the average of the
squares of the all the data measurements to calculate the amplitude. We get this value using the
line rms = sqrt(sum(data.^2)/length(data)). For our measurement time, we use the
variable ‘time1’ because it is time associated with the beginning of our measurement. Our
“period” will be ‘time2’ minus ‘time1’, the span of the whole set of data. The code for the ‘rms’
case should look something like this:

 %%
 % If root mean square is specified,
 % execute this code.
 %
 case 'rms'
 rms = sqrt(sum(data.^2)/length(data));
 meas.time = time1;
 meas.per = time2 - time1;
 meas.amp = rms;
 meas

Once we’ve written the code for all of the cases we would expect to encounter, we should write
one last statement to deal with any unexpected measurement types. To do this, we use the
keyword ‘otherwise’ to take care of all other cases. In our ‘otherwise’ case, we print out a
warning to inform the user that an unknown measurement type was requested and tell them what
the measurement type was called. Once we do this, we can end our switch statement and, with it,
our ‘measure’ function. We do this all with the following line of code:

 %%
 % If none of previous cases, execute
 % this code.
 %
 otherwise warning(['unknown measurement type: ' meas_type]);
end

And that’s it. Our ‘auto_meas’ function (replete with ‘measure’ subfunction) is complete.
Putting all of our code together, the final function should look something like this.

function auto_meas(recipe_file);

%%
% Read in recipe file

44

%
out = readrect(recipe_file, 77);

%%
% Get rid of header line
%
out = out(2:end,:);

%%
% Setup then populate recipe structure
%
recipe = struct('sta',[],'chan',[],'phase',[],...
 'flo',[],'fhi',[],'fpls',[],...
 'off1',[],'gv1',[],'off2',[],'gv2',[],...
 'meas_type',[],'ic',[]);

%%
% Get number of recipes
%
num_recipes = size(out,1);

%%
% Clear the recipe matrix so we can
% repopulate with correct info.
%
recipe = recipe(ones(num_recipes,1));

%%
% Repopulate the recipe matrix
%
for i=1:num_recipes
 recipe(i).sta = deblank(out(i,1:5));
 recipe(i).chan = deblank(out(i,8:11));
 recipe(i).phase = deblank(out(i,15:18));
 recipe(i).flo = str2num(out(i,22:26));
 recipe(i).fhi = str2num(out(i,28:32));
 recipe(i).fpls = str2num(out(i,34:36));
 recipe(i).off1 = str2num(out(i,38:43));
 recipe(i).gv1 = str2num(out(i,45:49));
 recipe(i).off2 = str2num(out(i,51:56));
 recipe(i).gv2 = str2num(out(i,58:62));
 recipe(i).meas_type = deblank(out(i,64:73));
 recipe(i).ic = str2num(out(i,76:76));
end

%%
% Now check the current origin and make
% measurements (if possible)
%
otime = origin('time','current');

%%
% Get the station and channel of
% currenly selected waveform(s).
%
sta = waveform('sta');
chan = waveform('chan');

45

%%
% Get number of waveforms selected.
%
num_wf = size(sta,1);

%%
% For each waveform, perform all
% measurements.
%
for i=1:num_wf

 %%
 % Check for a recipe for this waveform
 % (sta & chan).
 %
 index = find(strcmp({recipe(:).sta}, deblank(sta(i,:))) & ...
 strcmp({recipe(:).chan}, deblank(chan(i,:))));

 %%
 % If there is at least one match
 % then we proceed.
 %
 if ~isempty(index)

 %%
 % Get total number of matches. Perform
 % measurements for each recipe file
 % individually.
 %
 num_recipe = length(index);
 for j=1:num_recipe

%%
% Calculate the time intervals
%
meas_time1 = otime + recipe(index(j)).off1 + ...

 deg2km(waveform('distance',i)) / recipe(index(j)).gv1;
 meas_time2 = otime + recipe(index(j)).off2 + ...
 deg2km(waveform('distance',i)) / recipe(index(j)).gv2;
 wfm_time1 = waveform('time',i);
 wfm_time2 = wfm_time1 + waveform('length',i)./waveform('samprate',i);

%%
% Check to see if waveform is in right
% time interval. Note that this check
% is conservative; it must have the full
% waveform available!!
%

 if wfm_time1 < meas_time1 & wfm_time2 > meas_time2

 %%
 % Print out a display.
 %
 disp(['making measurement for ' recipe(index(j)).sta ...
 recipe(index(j)).chan ' ' recipe(index(j)).phase ...
 ' ' recipe(index(j)).meas_type]);

46

 %%

 % Check if there is an arrival for
 % this phase.
 %

 ar_index = find(arrival(‘orid’) == origin(‘orid’, ’current’) & ...
 compstr(arrival(‘sta’), recipe(index(j)).sta) & ...
 compstr(arrival('phase'), recipe(index(j)).phase));

 %%
 % If no arrival exists, pick one.

 %
 if isempty(ar_index)

 ar_index = arrival('create',1);
 arrival('orid', ar_index, origin('orid', 'current'));
 arrival('sta', ar_index, recipe(index(j)).sta);
 arrival('chan', ar_index, recipe(index(j)).chan);
 arrival('phase', ar_index, recipe(index(j)).phase);
 arrival('time', ar_index, meas_time1);
 end

 %%
 % Make sure there are no duplicates.
 %
 ar_index = ar_index(1);

 %%
 % Read in the data and get total amount
 % of data.
 %
 data = waveform('data',i);
 n = length(data);

 %%
 % Get the time at each data point.
 %
 time = waveform('time',i) + (0:n-1)'/waveform('samprate',i);

 %%
 % Start with no filter.

 %
 cutoff = [];

 %%
 % Decide how to filter the waveform
 % according to the recipe file.

 %
 if recipe(index(j)).flo > 0
 if recipe(index(j)).fhi > 0
 cutoff = [recipe(index(j)).flo recipe(index(j)).fhi];
 band = 'band';
 else
 cutoff = [recipe(index(j)).flo];
 band = 'low';
 end
 else
 if recipe(index(j)).fhi > 0

47

 cutoff = [recipe(index(j)).fhi];
 band = 'high';
 end
 end

 %%
 % Get nyquist frequency and calculate
 % the normalized cutoff frequency.
 %

 if ~isempty(cutoff)
 nyquist = waveform('samprate',i)/2.;
 Wn = cutoff/nyquist;

 %%
 % Filter the waveforms.
 %
 [b, a] = filterd('Butterworth', recipe(index(j)).fpls, Wn, band);
 data = filtfilt(b, a, data);
 end

 %%

 % Make measurements
 %

 [meas] = measure(data, time, meas_time1, meas_time2,...
 recipe(index(j)).meas_type, i);

 %%
 % Create a new arrival with the given
 % measurements.
 %
 arrival('amp', ar_index, meas.amp);
 arrival('per', ar_index, meas.per);
 arid = arrival('arid', ar_index);

 %%
 % Set up a new measurement entry.
 %

 num_amps = measurement('n');
 temp = measurement('null',1);
 num_amps = num_amps + 1;

 %%
 % Populate measurement fields.
 %
 measurement('data', num_amps, temp);
 measurement('arid', num_amps, arid);
 measurement('sta', num_amps, cellstr(recipe(index(j)).sta));
 measurement('chan', num_amps, cellstr(recipe(index(j)).chan));
 measurement('phase', num_amps, cellstr(recipe(index(j)).phase));
 measurement('amptype', num_amps,
cellstr(recipe(index(j)).meas_type));
 measurement('amptime', num_amps, meas.time);
 measurement('amp', num_amps, meas.amp);
 measurement('per', num_amps, meas.per);
 measurement('start_time', num_amps, meas_time1);
 measurement('duration', num_amps, meas_time2 - meas_time1);
 end

48

 end
 end
end

%%%
%%%% SUBFUNCTION %%%%
%%%
function [meas] = measure(data, time, time1, time2, meas_type, wfm_index);

%%
% Clear the meas variable.
%
meas = [];
range = time >= time1 & time <= time2;
data = data(range);
time = time(range);

%%
% Decide which type of measurement to
% make.
%
switch(lower(meas_type))

 %%
 % If peak to peak is specified, execute
 % this code.
 case 'peak-peak'
 [ymin, imin] = min(data);
 [ymax, imax] = max(data);
 meas.time = min(time(imin), time(imax));
 meas.per = 2.*abs(time(imin) - time(imax));
 meas.amp = ymax - ymin;
 meas

 %%
 % If zero to peak is specified, execute
 % this code.
 %
 case 'zero-peak'
 [ymin, imin] = min(data);
 [ymax, imax] = max(data);
 meas.time = min(time(imin), time(imax));
 meas.per = 2.*abs(time(imin) - time(imax));
 meas.amp = sign(ymin + ymax)*max(abs(ymin), abs(ymax));
 meas

 %%
 % If root mean square is specified,
 % execute this code.
 %
 case 'rms'
 rms = sqrt(sum(data.^2)/length(data));
 meas.time = time1;
 meas.per = time2 - time1;
 meas.amp = rms;
 meas

49

 %%
 % If none of previous cases, execute
 % this code.
 %
 otherwise warning(['unknown measurement type: ' meas_type]);
end

50

51

CONCLUSIONS

In this MatSeis Developer’s Guide, we have shown the reader how to use MATLAB and
MatSeis to develop four seismic algorithms of increasing complexity, which we hope will
provide them with enough knowledge to move on to developing MatSeis algorithms on their
own. The examples showed how to make use of many useful MATLAB utilities and more
importantly, introduced the MatSeis functions that provide access to our five core data-types:
waveforms, origins, arrivals, travel times, and measurements. Mastering the use of these
functions is the key to developing algorithms using MatSeis.

52

53

REFERENCES

Harris, M. and C. Young, 1997. MatSeis: a seismic GUI and tool-box for MATLAB, Seism. Res. Lett.,

68, 267-269.

54

55

DISTRIBUTION

1 Leslie Casey

NNSA Office of Nonproliferation Research and Development/NA-22
1000 Independence Avenue SW
Washington, DC 20585

1 Mark Woods
 Air Force Technical Applications Center/TTR

1030 S. Highway A1A
Patrick AFB, FL 32925-3002

1 Dean Clauter
 Air Force Technical Applications Center/TTR

1030 S. Highway A1A
Patrick AFB, FL 32925-3002

1 John Dwyer
 Air Force Technical Applications Center/TTR

1030 S. Highway A1A
Patrick AFB, FL 32925-3002

1 Jorge Roman-Nieves

Air Force Technical Applications Center/TTR
 1030 South Highway A1A

Patrick AFB, FL 32925-3002

1 Jeff Miller
 Air Force Technical Applications Center/TTR

1030 South Highway A1A
Patrick AFB, FL 32925-3002

1 Jon Creasey
 Air Force Technical Applications Center/TTR

1030 S. Highway A1A
Patrick AFB, FL 32925-3002

1 Gordon Kraft
 Air Force Technical Applications Center/TNDC/QTSI

Suite 514
1980 N. Atlantic Avenue
Cocoa Beach, FL 32931

56

1 Michael Begnaud
 Los Alamos National Laboratory

MS F6665
P.O. Box 1663
Los Alamos, NM 87545

1 W. Scott Phillips
 Los Alamos National Laboratory

MS D408
EES-11 P.O. Box 1663
Los Alamos, NM 87545

1 George Randall
 Los Alamos National Laboratory

MS D408
EES-11 P.O. Box 1663
Los Alamos, NM 87545

1 Charlotte Rowe
 Los Alamos National Laboratory

MS D408
EES-11 P.O. Box 1663
Los Alamos, NM 87545

1 Rodney Whitaker
 Los Alamos National Laboratory

MS J577
EES-2 P.O. Box 1663
Los Alamos, NM 87545

1 Leigh House
 NNSA Office of Nonproliferation Research & Development/NA-22/LANL

GH-068
1000 Independence Ave SW
Washington, DC 20585

1 Samuel Heller
 Lawrence Livermore National Laboratory

L-205
P.O. Box 808
Livermore, CA 94551

57

1 Doug Dodge
 Lawrence Livermore National Laboratory

MS L202
PO Box 808
Livermore, CA 94551-0808

1 Dale Anderson
 Pacific Northwest National Laboratory

MS K5-12
P.O. Box 999
Richland, WA 99352-0999

1 Rick Schult
 Air Force Research Laboratory/VSBYE

29 Randolph Road
Hanscom AFB, MA 01731-3010

1 Robert Shumway
 University of California Davis

Division of Statistics 1 Shields Avenue
Davis, CA 95616-8500

1 MS0401 Jeff Hampton 05533
1 MS0401 Jake Jones 05533
1 MS0401 John Merchant 05533
1 MS0401 Chris Young 05533
1 MS0404 Eric Chael 05736
1 MS0404 Mark Harris 05736
1 MS0404 Darren Hart 05736
1 MS0750 Greg Elbring 06314
1 MS0750 Neill Symons 06314

2 MS9018 Central Technical Files 8944
2 MS0899 Technical Library 4536

	MatSeis Developer’s Guide
	Abstract
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	FUNCTION 1: CUT OUT A SEGMENT OF A WAVEFORM
	FUNCTION 2: INTEGRATING A WAVEFORM
	FUNCTION 3: SHOW WAVEFORMS FOR AN ORIGIN
	FUNCTION 4: AUTOMATICALLY MAKE WAVEFORM MEASUREMENTS FROM RECIPE FILE

	CONCLUSIONS
	REFERENCES
	DISTRIBUTION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.000 270.000]
>> setpagedevice

