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Abstract 
 

Production of hydrogen (H2) from biomass and organic wastes is considered an effective 
approach to mitigating the environmental problems caused by pollutant emissions from 
fossil fuel combustion and allaying our dependence on the limited oil reserves. However, 
current technological inefficiencies render such biomass utilization economically 
unviable. A promising alternative to realizing the goal of hydrogen from renewable 
sources is to convert biomass-derived carbohydrates to H2. To make the process 
economically attractive, catalysts with higher performance and low cost need to be 
developed. This research aims to develop new zeolite-based catalysts for highly efficient 
liquid phase conversion of carbohydrates to H2.  Particulate platinum-loaded Y-type 
zeolite (Pt/NaY) catalysts have been synthesized, characterized, and evaluated for H2 
production from methanol. The catalysts were also tested for liquid phase reforming of 
ethanol and glucose to hydrogen. 
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Summary 

Production of hydrogen (H2) from biomass and organic wastes is considered an 

effective approach to mitigating the environmental problems caused by pollutant 

emissions from fossil fuel combustion and allaying our dependence on the limited oil 

reserves. However, current technological inefficiencies render such biomass utilization 

economically unviable. A promising alternative to realizing the goal of hydrogen from 

renewable sources is to convert biomass-derived carbohydrates to H2. Recently, the γ-

Al2O3 supported platinum (Pt/γ-Al2O3) catalysts have been successfully demonstrated for 

the liquid phase reforming of various carbohydrates into hydrogen at temperatures below 

300oC. However, the throughput of the catalytic conversion is low and the cost of the 

catalyst is high because of the high load of Pt metal, typically in a range of 3wt% - 5wt%.  

To make the process economically attractive, catalysts with higher performance and low 

cost need to be developed. This research aims to develop new zeolite-based catalysts for 

highly efficient liquid phase conversion of carbohydrates to H2.  Particulate platinum-

loaded Y-type zeolite (Pt/NaY) catalysts have been synthesized, characterized, and 

evaluated for H2 production from methanol. The catalysts were also tested for liquid 

phase reforming of ethanol and glucose to hydrogen. The catalytic performances of the 

Pt/NaY catalysts have been compared with that of the Pt/γ-Al2O3 catalysts reported in the 

literature as well as synthesized in this work.  The Pt/NaY catalyst with a Pt load of 0.5 

wt% was found to outperform the Pt/γ-Al2O3 catalysts with a Pt load of ~3 wt% for 

conversion of methanol to H2.  The Pt/NaY catalyst was demonstrated to be active for 

ethanol reforming in liquid phase, but incapable of catalyzing glucose because the ringed 

glucose molecules are too large to effectively transport into the zeolite pores (~0.7 nm 

diameter), where the Pt metal clusters locate.  Results of this research indicate that the 
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transition metal-load Y-type zeolite catalysts have great potential for use in catalytic 

reforming of carbohydrates to H2.  
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INTRODUCTION 

Hydrogen is a clean energy carrier which can serve as an alternative to fossil fuels 

such as gasoline or diesel.  Alternative sources of fuel are needed for two main reasons.  

The first is that there is a limited supply of petroleum in the world. In the future, an 

alternative supply of fuel will be necessary.  Secondly, there are environmental concerns 

associated with combustion of fossil fuels that include the buildup of CO2 and pollutants, 

such as NOx and SOx, in the atmosphere.  As the world’s economy continues to grow, 

consumption of fossil fuels will increase and so will the CO2 buildup in the atmosphere.  

In 2000, the CO2 level in the atmosphere rose above 370 parts per million by volume 

(ppmv). The highest recorded level from Greenland ice core data was 310 ppmv over the 

previous 240,000 years.1 The high level of CO2 and other greenhouse gases in the 

atmosphere is believed to be responsible for the global warming effect, which, if not 

controlled effectively, will result in catastrophic extreme climates, while the other 

pollutants have caused severe problems to the earth environment, agriculture, and human 

health. 

Approximately two-thirds of oil used in the United States and half of the oil used 

worldwide is for transportation.2 As more motor vehicles and highways are built in 

developing countries the demand for oil will grow.  From 1992 to 2001, world oil 

production grew from 65.7 to 74.7 million barrels a day.1  While these numbers may 

seem staggering, oil demand is expected to increase another 50 to 120 million barrels a 

day by 2015.1  The current estimated oil reserve is expected to support the global 

consumption for less than forty years. Because of these predictions, tremendous research 

efforts have recently been made on finding alternative fuels, hydrogen in particular, and 
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developing fuel cells, the key technology for H2-driven vehicles, to achieve low or zero 

emission and high efficiency of energy utilization.  There are many types of fuel cells 

under research and development (e.g. proton exchange membrane fuel cells (PEMFC), 

solid oxide fuel cells, molten carbonate fuel cells etc.).  Currently, almost all the fuel cells 

are powered by hydrogen.  A PEMFC operates based on the following electrochemical 

reactions:  

Anode:  −+ +⎯⎯⎯ →⎯ eHH Catalyst 222  

Cathode:   2e- + OHOH Catalyst
222

12 ⎯⎯⎯ →⎯++  

As illustrated in Figure 1 below, hydrogen is ionized at the anode forming H+ ions 

(protons) and electrons.  The electrons pass through the outer circuit, providing the 

vehicle electrical power, while protons pass through the electrolyte to react with the 

oxygen at the cathode to form water.  Thus, the only chemical product from the fuel cell 

is clean water. Fuel cell technology is thought of as a potential solution to the energy 

crisis and many environmental problems because it has much higher energy efficiency 

compared to the traditional internal combustion and thermal-based technologies.3 

Although hydrogen fuels do not produce CO2, production of H2 may involve CO2 

production as fossil fuels are currently the predominant sources for H2 generation. It is 

highly desired that hydrogen can be generated by technologies free of CO2 emission or 

reformed with CO2 readily captured for sequestration so that the reduction of CO2 

emission can be maximized. 
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Figure 1. Operation mechanism of the proton exchange membrane (PEM) fuel 
cell. 
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CURRENT STATUS OF HYDROGEN PRODUCTION 

Currently, hydrogen from fossil fuels, i.e. natural gas, oil, and coal, accounts for 

95% of its total production in the United States with 90% coming from natural gas.4  The 

state-of-the-art industrial technologies, i.e. steam-reforming of natural gas (methane), 

coal, and liquid petroleum gases, produce hydrogen that costs more than gasoline for the 

same amount of energy/power. In order to make the transition to the hydrogen economy, 

a cheap and efficient method must be developed for producing hydrogen.  While great 

efforts are still being made to improve the steam-reforming technology to lower the H2 

cost, other methods of hydrogen production are being actively researched. These new 

methods include water electrolysis using electricity from solar or wind energy, 

gasification of coal, petroleum coke and biomass conversion with CO2-capture, and 

thermochemical water splitting powered by high temperature nuclear or solar heat.5  

Hydrogen from Steam Reforming 

Hydrogen made from methane or coal is produced by the following catalytic 

reactions: 

Natural gas: CH4(g) + H2O(g) ↔ 3H2(g) + CO(g) 

Coal: C (s) + H2O(g) ↔ H2(g) + CO(g) 

Water-gas shift CO(g) + H2O(g) ↔ H2 (g) + CO2(g) 

 

These reactions are overall endothermic, requiring the input of heat by burning 

part of the natural gas or coal.6 When looking for a method of hydrogen production, it is 

important to compare the amount of green house gases (GHG) produced for generating a 

unit amount of hydrogen. This is also called ‘well to wheels’ air pollutant emissions.  
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Hydrogen fuel cells are a clean and efficient technology in which the only byproduct is 

water. However, in the production of hydrogen from fossil fuels, CO2 is produced. Figure 

2 below shows the well to wheels production of air pollutant emissions for various types 

of vehicles and fuels.[7-12] As can be seen in the figure, there are a number of different 

methods which are better options in terms of emission reduction. However, the list of 

“better options” narrows down when cost considerations are accounted for.  For instance, 

zero emission electrolytic hydrogen supply options such as wind, solar and nuclear 

energy are currently several times as expensive as hydrogen produced from natural gas.5 

  

Figure 2. Well to wheels GHG emissions normalized to efficient gasoline 
vehicles.[7-12] 

 

Hydrogen produced from coal is anticipated to be the main option for near- and 

mid-term  solutions because there are large reserves in the United States as well as the 

rest of the world.  Currently 18% of the world’s hydrogen is made from coal.13  Although 

producing hydrogen from coal is more capital intensive then production from natural gas, 
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the costs of coal are less than that of natural gas.6  The United States Department of 

Energy’s Office of Fossil Energy has been continuously soliciting industrial interest in 

the FutureGen plant, a coal fed plant that will produce both hydrogen and power with 

reduced CO2 emission.[14,15]  

In summary, steam reforming is currently the benchmark technology of hydrogen 

production with industrial maturity.  Natural gas, coal, and other petroleum products are 

common feed stocks for catalytic reforming to hydrogen.  However, because of the 

limited resources of these fossil fuels and their associated net CO2 production, finding 

renewable sources for hydrogen generation is strategically important to the world’s 

energy security and environmental safety. 

Hydrogen from Water Electrolysis 

It has been proposed to use different energy sources to produce hydrogen from 

water via electrolysis, which is free of CO2 byproduct:   

222 22 OHOH yelectricit +⎯⎯⎯ →⎯  

Electrolysis technology has been used commercially in the gas industry.16  The proton 

exchange membrane (PEM) has been used for decades to produce oxygen in submarines 

and spacecraft, and to produce hydrogen.17 Because of energy loss due to the limited 

efficiency in this process, it may not seem beneficial energy-wise to have a fuel cell 

membrane running in reverse to create hydrogen for a fuel cell.  Since neither process is 

100% efficient, there would be a net energy loss by the total process.  This is not the case 

when the electricity supplied for electrolysis comes from a cheap or “free” renewable 

energy source, such as solar and wind energies.  Another benefit of this method is that the 

hydrogen could be produced onsite.  This would eliminate the need for hydrogen storage 

and transportation, which are both fairly expensive and lacking of safety assurance at 
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present. The major drawbacks to this method are high cost (using electricity from solar 

and wind energies) and low efficiency.17 

Hydrogen from Biomass and Other Renewable Resources 

Production of hydrogen and liquid fuels from biomass and organic wastes is 

considered an effective approach to mitigating the environmental problems caused by 

pollutant emissions from fossil fuel combustion and allaying our dependence on the 

limited oil reserves. However, current technological inefficiencies render such biomass 

utilization economically unviable. Technologies for production of hydrogen from 

biomass or by bioprocess including high-temperature pyrolysis combined with catalytic 

reforming processes[18,19] and direct photocatalytic and biosynthesis20 have been explored 

in recent years. These strategies, however, encountered problems of low catalyst 

efficiency and very limited productivity. 

An alternative to realizing the goal of “hydrogen from biomass” is to produce 

intermediate carbohydrates or hydrocarbons from biomass via bioprocesses or 

biochemical processes and then convert the intermediates to H2 through subsequent 

chemical processes. For example, CH4 can be produced from biomass by cost-effective 

technologies such as anaerobic fermentation while the existing natural gas infrastructure 

can be used for storage, transportation, and processing of the vast volume of CH4 

products. However, conversion of CH4 to H2 and CO2 also lacks technologies that can 

meet the economic targets proposed by the DOE (i.e. $3.00 per gallon equivalent). 

Technologies currently under investigation for CH4 conversion include the syngas and 

water-gas shift (WGS) processes, high-temperature catalytic pyrolysis[21-23] and low-

temperature, two-step nonoxidative dehydrogenation[24,25]. 
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Hydrogen production from municipal wastes is also being researched.[26,27]  

Pretreatment of the waste creates a slurry of suitable viscosity and heating value for 

efficient production of hydrogen.  The key component in this process is the downdraft 

gasifier, which has four reaction zones: drying, pyrolysis, oxidation and reduction zones.  

Sewage sludge is a renewable resource that can successfully produce hydrogen; however, 

the downsides are low production rates and high cost. 

The exothermic WGS process converts all the carbon to CO2 and CO, which requires 

costly processes to purify and sequestrate in order to produce H2 without significant 

emission of greenhouse gases to the atmosphere. Nonoxidative pyrolysis is an 

endothermic process, which does not generate CO2. The pyrolysis reaction, however, 

must be operated at extremely high temperatures (typically above 1250°C), requiring 

expensive, thermally resistant equipment and high-grade heat. A large amount of 

nonreactive graphite carbon is usually generated that can deactivate the catalyst or 

insulate the heating elements. The nonoxidative dehydrogenation method mainly 

produces higher hydrocarbons with H2 as “hydrogen byproduct” and is also limited by its 

low conversion and two-step barrier. 

Microalgae has also been shown to successfully reform hydrogen from biomass at 

temperatures ranging from 850-1000oC.[28,29]  This method is based on catalytic steam 

gasification of biomass with concurrent separation of hydrogen in a membrane reactor.  

The membrane reactor is selective to hydrogen and separates it as it is produced.  Again 

one of the major problems with hydrogen from algae is the low production rate of 

hydrogen. 
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More recently, the method of catalytic conversion of biomass-derived 

carbohydrates to hydrogen has shown great potential for production of renewable 

hydrogen. The reaction is carried out at the surface of metal catalyst, e.g. Pt, Pd, Co, Rh 

and Ru, in liquid water under elevated temperature and high pressure.[18,30,31] However, 

other catalysts such as Sn and Ni have successfully been used to reform hydrogen.[32,33]  

Using liquid phase reforming of oxygenated hydrocarbons eliminates the need to 

vaporize water and the oxygenated hydrocarbon, thereby reducing the energy 

requirements.17 The current operating temperature for this reaction is less than 300oC 

under pressures slightly above the autogenous vapor pressure of the feed solution. 

Experiments have been run using γ-Al2O3-supported platinum catalysts (3wt%Pt 

load) by Cortright et. al.[18,34] Their experimental results on different oxygenated 

hydrocarbon molecules are shown in Table 1 and Figure 3.  The H2 selectivity decreases 

as the number of carbons in the oxygenated hydrocarbon molecule increases. 
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Table 1.  Experimental results for reforming of oxygenated hydrocarbons to 
hydrogen at 498 K and 538 K.18 

 
 

 Glucose  Sorbitol Glycerol 

Ethylene 

Glycol Methanol

Temperature (K) 498 538 498 538 498 538 498 538 498 538 

Pressure (bar) 29 56 29 56 29 56 29 56 29 56 

% Carbon in liquid effluent 51 15 39 12 17 2.8 11 2.9 6.5 6.4 

% Carbon in gas-phase effluent 43 84 61 90 83 99 90 99 94 94 

Gas-phase compositions 

H2 (mol %) 51 46 61 54 65 57 70 67 75 75 

CO2 (mol %) 43 42 35 36 30 32 29 29 25 25 

CH4 (mol %) 4 7 2.5 6 4.2 8.3 0.8 2 0.4 0.6 

C2H6 (mol %) 2 2.7 0.7 2.3 0.9 2 0.1 0.3 0 0 

C3H8 (mol %) 0 1 0.8 1 0.4 0.7 0 0 0 0 

C4, C5, C6 alkanes (mol %) 0 1.2 0 0.6 0 0 0 0 0 0 

% H2 Selectivity 50 36 66 45 75 51 96 88 99 99 

% Alkane Selectivity 14 35 15 32 19 31 4 8 1.7 2.7 
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Figure 3. Selectivity of hydrogen and alkanes.18 

 

Figure 4 below shows a schematic representation of the reaction pathways 

believed to be involved in the formation of H2 and alkanes over a platinum catalyst (Pt). 
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Figure 4. Proposed reaction pathways for production of H2 by reaction of 
oxygenated compounds and water.18 

 

The first step for the reactant (carbohydrate) is to undergo a dehydrogenation step 

on the metal surface to create adsorbed intermediates before the C-C or C-O bonds are 

cleaved.18 The cleavage activation barriers for O-H and C-H bonds is similar, but Pt-C 

bonds are more stable than Pt-O bonds.  Thus, the reactant is most likely bonded to the 

surface via the Pt-C bond.  As seen on the bottom reaction pathway, cleavage of the C-C 

bond will then lead to the formation of CO and H2.  CO will then react with water to form 

CO2 and H2 via the water-gas shift reaction. The further reaction of CO2 with H2 will then 

form alkanes and water by methanation and Fischer-Tropsch reactions:30  

CO2(g) + H2(g) ↔ CH4(g) + 2H2O(g) 
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The reactant needs to remain on the catalyst surface long enough to form CO2 and 

H2, but these two products must immediately leave the surface before they react to form 

alkanes and water.  Undesirable alkanes can also be formed from the other two reaction 

pathways after dehydrogenation by the cleavage of the C-O bond.  This process presents 

a parallel selectivity challenge.  Another parallel reaction selectivity challenge occurs 

from cleavage of C-O bonds via dehydration reactions catalyzed by acid sites associated 

with the catalyst support, or catalyzed by protons in the aqueous solution followed by 

hydrogenation reactions on the catalyst.18 

Although the proof-of-concept was successful, the commercial realization of H2 

production from renewable biomass through this catalytic reforming process demands 

new catalysts that can provide higher conversion rates and H2 selectivity and a capability 

to work with feed streams of higher concentration (higher throughput), while the cost of 

catalyst must also be reduced. 
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OBJECTIVE AND TASKS 

The main objective of this proposed research is to develop new Pt/NaY zeolite 

catalysts for high-efficiency liquid (water)-phase conversion of biomass-derived 

carbohydrates to H2.  The specific tasks of this research include: 

1. To design and establish a packed-bed reactor system for high pressure liquid 

phase reaction.  The reactor system will be tested by using a similar catalyst (i.e. 

Pt/γ-alumina) to that reported in the literature.   

2. To synthesize and characterize Pt/NaY and Pt/γ-alumina catalysts.  Synthesis 

procedures will be developed and optimized for both Pt/NaY and Pt/γ-alumina 

catalysts.  X-ray diffraction (XRD) will be used to confirm the structure of both 

catalysts.  Microprobe analysis will be employed to determine the composition of 

both catalysts.  Scanning transmission electron microscopy (STEM) will be used 

to determine the Pt cluster size in the Pt/γ-alumina catalyst.  Scanning electron 

microscopy (SEM) will be used to determine the size and morphology of the 

catalyst particles.  Brunauer-Emmett-Teller (BET) N2 adsorption and desorption 

will be used to measure the catalyst surface areas.  Carbon monoxide (CO)-

chemisorption will be measured to determine the Pt dispersion. 

3. To select catalysts for catalytic performance evaluation.  Catalyst selection will be 

done based on methanol conversion for Pt/γ-alumina and Pt/NaY catalysts with 

different Pt load levels.  The reaction tests will be conducted at 493 K and 533 K, 

respectively.  
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4. To evaluate catalytic performance and stability of the selected catalysts for 

extended periods of operation time (total continuous reaction time over two 

hundred hours). 

5. To test the selected Pt/NaY catalyst for conversion of both ethanol and glucose in 

liquid phases.   
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SYNTHESIS OF CATALYSTS 

Platinum and other group VIII metals have been shown to successfully reform 

hydrogen from a number of oxygenated hydrocarbons because of the group’s ability to 

cleave the C-C bond.  Research by R.D. Cortright et. al.[1,30,32-34] has indicated that 

γ−Al2O3 was a suitable support to use for these group VIII metals.  However, the 

productivity by the Pt/γ-alumina catalysts was not high enough for practical 

considerations. On the other hand, it has been reported in the literature that transition 

metals loaded in Y-type zeolites exhibit higher catalytic performance for non-oxidative 

conversion of methane to higher hydrocarbons and H2 because of the increased 

reducibility of metal ions in NaY and the metal-zeolite and metal-metal synergistic 

effects on catalytic properties.35  In this study, research will be focused on exploring the 

Pt/NaY catalysts for the liquid phase reforming of carbohydrates to H2. 

Synthesis of Pt/γ-Al2O3 Catalysts 

 The Pt/γ-Al2O3 catalysts were prepared by the following procedure:  

I. γ-Al2O3 nano-particles preparation by sol-gel process;36 

II. Pt/γ-Al2O3 catalyst preparation by incipient wetness impregnation 

followed by thermal treatments and reduction; 

III. Characterization of catalyst particles. 

Synthesis of γ-Al2O3 Nanoparticles 
 The sol-gel method was used for the synthesis of γ-Al2O3 gel/nanopowders.  The 

synthesis procedure is shown in Figure 5. 
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Figure 5. Procedure for preparation of γ-Al2O3 nanopowders. 
 

In a 1-Liter three pronged flask, 900mL of water was added.  A stir bar was 

placed into the flask and the flask placed on a magnetic hot plate.  The water was then 

heated to between 80-90oC while being stirred.  One mole of aluminum isopropoxide 

(98+% Sigma-Aldrich) was weighed and added drop-wise to the water once the desired 

temperature was reached.  After all of the aluminum isopropoxide was added, the 

solution was stirred for one hour.  The solution was then centrifuged four times to clean it, 

and then the recovered gel was re-dispersed in the flask with approximately one liter of 

water.  The resultant suspension was heated to 60oC where 35 milliliters of (1M) HNO3 

was added to form a stable sol.  The sol was refluxed for 16 hours at a temperature of 90-

100oC in the flask with two of the prongs plugged and the third mounted with a reflux 

column.  After reflux was completed, the sol was placed in an oven at 80oC and dried for 
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approximately four days to obtain a dry gel.  The dry gel was then calcined in air in a 

furnace (CM Inc. High Temp Furnace) by the following program: 

(i) Heat up from 50oC to 450oC at a rate of 1oC/min; 

(ii) Hold at 450oC for 3 hours; 

(iii) Cool down from 450oC to 50oC at a rate of 1oC/min. 

The calcined γ-Al2O3 pellets were then ground to 60-80 mesh size and further 

dried in an oven at 120oC for 12 hours. 

Pt-loading by Impregnation 
The platinum was loaded by impregnation using a tetraamine platinum (II) nitrate 

{[Pt(NH3)4] (NO3)2} precursor solution (99%; Sigma-Aldrich). The basic steps for the 

incipient wetness impregnation process are given below in Figure 6: 

 

  

Figure 6. Procedure for incipient wetness impregnation. 
 

First, the amount of water (VH2O) required for completely wetting the amount of 

γ-Al2O3 catalyst to be prepared was determined.  For example, if 4 grams of catalyst were 

to be made, 4 grams of γ-Al2O3 dry powder was weighed and place in a small beaker.  

Water was then added drop-wise until all of the γ-Al2O3 was saturated and the volume of 

water (VH2O) used was recorded.  For a desired weight percentage of Pt load, the amount 
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of {[Pt(NH3)4] (NO3)2} needed was thoroughly mixed with VH2O of water.  The γ-Al2O3 

powder was then impregnated with this precursor solution.  The wet γ-Al2O3 gel was then 

dried at room temperature for 12 hr and stored in a sealed sample bottle before use.  

Calcination 
One gram of catalyst was put into a stainless steel tube (4” long and diameter of 

⅛”).  The tube was then mounted into gas flow system in a furnace.  The catalyst was 

then calcined using the following procedure: 

(i) A mixture of oxygen (10 vol.% O2) and helium (90 vol.% He) was passed through 

the reactor at a total flow rate of 40 mL/min; 

(ii) The furnace was heated from 50oC to 260oC at a rate of 1oC/min; 

(iii) The furnace was held at 260oC for 2 hours; 

(iv) The temperature was then cooled from 260oC to 50oC at a ramp rate of 1oC/min. 

Catalyst Reduction 
The catalyst was reduced in hydrogen using the following procedure: 

(i) Pure hydrogen was passed through the catalyst powders (in SS tube) at a rate of 25 

mL/min; 

(ii) The furnace was heated from 50oC to 260oC at a heating rate of 1oC/min; 

(iii) The furnace was held at 260oC for 2 hours under hydrogen flow; 

(iv) The temperature was cooled from 260oC to 50oC at a ramp rate of 1oC/min. 

Synthesis of Pt/NaY Catalysts 

The Y type zeolite has a high surface area with a uniform pore size of ~0.74 nm 

making it desirable for applications as catalysts and catalyst supports. Transition metal-

loaded NaY zeolite catalysts have been previously demonstrated in our group to be 

highly active to catalyze methane dehydrogenation.25 In this work, NaY zeolite crystals 



29 

were synthesized by hydrothermal crystallization and the platinum was loaded into the 

zeolite pores by ion exchange followed by thermal treatments and H2 reduction process.  

The following procedure was used to fabricate Pt/NaY particulate catalyst. 

(i) Hydrothermal synthesis of NaY particles; 

(ii) Ion exchange to load [Pt(NH3)4]2+; 

(iii) Calcination; 

(iv) Catalyst reduction. 

Zeolite Particle Synthesis 
 The procedure for synthesis of the NaY zeolite particles is shown in Figure 7. 

First, sodium hydroxide (99.998% Sigma-aldrich), sodium aluminate anhydrous (Riedel-

deHäen), and water were mixed together in a 250 milliliter flask.  The mixture was stirred 

vigorously for 30 minutes.  Water glass (~14%NaOH and 27%SiO2 Sigma-aldrich) was 

then added followed by another 12 hr of strong stirring.  The overall molar composition 

of the synthesis gel was Al2O3 : 12.8SiO2 : 17Na2O : 675H2O.37  Once the solution was 

thoroughly mixed, it was heated for 12 hours at 363 K in an autoclave for hydrothermal 

crystallization.  After the hydrothermal treatment, the powders were recovered from the 

autoclave and washed with DI water to a pH of ~7 by centrifuging. 
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Figure 7. Procedure for making NaY zeolite. 
 

Pt loading by Ion Exchange  
 Ion exchange was performed by the procedure outlined in Figure 8.  First, the Pt 

precursor [Pt(NH3)](NO3)2 was dissolved in water and mixed with the NaY zeolite 

powder in a small beaker.  The beaker was then placed into a water bath at 363 K for one 

hour.  The ion-exchanged Y-zeolite was centrifuged and rinsed by DI water until a pH of 

7.5 was obtained. The particles were then dried at 323 K for 12 hours. 

 

  

Figure 8. Procedure for Pt-loading via ion exchange. 
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Ion exchange was conducted for multiple times to increase the amount of 

platinum exchanged.  For the zeolite catalysts made in this work, ion exchange was 

performed one to three times to vary the amount of platinum loaded into the zeolite. 

Calcination 
One gram of catalyst was put into a stainless steel U-tube (3” long on each side of 

the U and ⅛” in diameter).  The tube was then connected to the gas flow system in a 

furnace.  The catalyst was then calcined using the following procedure: 

(i) A mixture of oxygen (10 vol.% O2) and helium (90 vol.% He) was passed through 

the reactor with a total flow rate of 40 mL/min; 

(ii) The furnace was heated from 50oC to 260oC at a heating rate of 1oC/min. 

(iii) The furnace was held at 260oC for 2 hours; 

(iv) The temperature was then cooled from 260oC to 50oC at a ramp rate of 1oC/min. 

Catalyst Reduction 
The catalyst was reduced in a hydrogen flow using the following procedure: 

(i) Pure hydrogen was passed through the catalyst at a rate of 25 mL/min; 

(ii) The furnace was heated from 50oC to 260oC under hydrogen flow at a heating rate 

of 1oC/min. 

(iii) The furnace was held at 260oC for 2 hours; 

(iv) The temperature was cooled from 260oC to 50oC at a ramp rate of 1oC/min. 
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CHARACTERIZATION OF CATALYSTS 

The catalysts were characterized using XRD and microprobe analysis to confirm 

the catalyst structure and chemical composition.  STEM and SEM were used to determine 

Pt cluster size and the size and morphology of the catalyst particles, respectively.  The 

catalyst surface area and Pt dispersion were determined by BET using N2 

sorption/desorption, and CO-chemisorption measurements, respectively. 

XRD Examination 

X-ray diffraction (XRD D/Max KCuα) was used to confirm the phase purity of γ-

Al2O3 and the presence of platinum presence in the Pt/γ-Al2O3. Figure 9 shows the XRD 

patterns of γ-Al2O3, PtO/γ-Al2O3, and Pt/γ-Al2O3 samples.  All three patterns had the 

characteristic peaks of γ-Al2O3.  Neither the PtO nor Pt were distinguishable in the XRD 

patterns likely because of the extremely small size of the PtO or Pt clusters, which were 

evenly distributed over the γ-Al2O3 surface as indicated by the TEM images later.   

 

Figure 9. XRD patterns of γ-Al2O3 and Pt-loaded γ-Al2O3 powders. 
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XRD was also used to confirm the zeolite structure.  The XRD patterns showed 

that zeolite crystals are pure Y-type without appreciable impurity phases.  Again, the 

characteristic peaks of Pt metal were not seen in the pattern of the Pt-loaded NaY (wt%) 

samples because Pt was highly dispersed in the zeolite pores. 

 

                                    

Figure 10. XRD pattern of NaY zeolite and Pt/NaY. 
 

Microprobe Analysis 

Microprobe analysis (Cameca SX100) was conducted to quantitatively determine 

the amount of Pt in the Pt/γ-Al2O3 and Pt/NaY catalysts.  The results for three catalysts 

with different loads are listed in Table 2.  Microprobe analysis also verified that the 

silicon to aluminum atomic (Si/Al) ratio of the synthesized Y-type zeolite was 

approximately 1.5.  
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Table 2.  Results of microprobe analysis for the Pt/γ-Al2O3 and Pt/NaY catalysts. 
 
 

Catalyst Pt wt.% 

3%Pt/γ-Al2O3 2.90 

1%Pt/γ-Al2O3 1.10 

 

γ-Al2O3-supported Pt 

catalysts ½%Pt/γ-Al2O3 0.50 

0.25%Pt/NaY  

(single time ion exchange) 

0.25 

0.4%Pt/NaY 

(two-time ion exchange) 

0.40 

 

Pt-loaded NaY zeolite 

catalysts 

0.5%Pt/NaY 

(three-time ion exchange) 

0.50 

 

Microscopic Examinations  

STEM (EOL 2010F FASTEM) was used to observe the average size and 

dispersion state of Pt particles on γ-Al2O3.  Figure 11a shows that the platinum was 

evenly distributed on the surface of the γ-Al2O3 powders.  Figure 11b shows that the Pt 

particle size was 1~2 nm.  Because of the small cluster sizes, high dispersion state, and 

low load level, the Pt was not shown in the XRD patterns. 
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(a) 
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(b) 

Figure 11a & b. STEM images of Pt/γ-Al2O3 

 

The SEM image of the as synthesized NaY zeolite particles and the TEM image 

of the Pt/NaY catalyst particles are presnted in Figure 12. The average size of the as-

synthesized zeolite particles is around 1 micron according to the SEM observation (Fig. 

12a).  It can be observed from the TEM image (Fig. 12b) that the platinum clusters (with 

an approximate a diameter of 1.2 nm) located in the cages although some zeolite crystals 

might collapse under the field emission during observation.  Energy Dispersive 

Pt Particles 
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Spectroscopy (EDS) was also conducted to verify the amount of Pt in the particles.  It was 

found that the concentration of Pt in the center of the zeolite particles was higher than the 

concentration on the edge of the particles.  In some instances, the concentration of Pt in 

the center of the zeolite particle was twice as much as that on the edge of the zeolite 

particle.  This may be caused by the beam size, which covered part of the void when 

sampling the edge. 

 

 
 

(a) 
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(b) 

Figure 12. (a)SEM image of the as-synthesized NaY zeolite particles and (b) TEM 
image of the Pt/NaY catalyst particles 

 

BET and Chemisorption Testing 

The BET technique (ASAP 2020, Micromeritics) was employed to determine the 

surface area and micropore volume of the Pt/γ-Al2O3 and NaY catalysts using N2 as the 

probe gas.  The results are given in Table 3.  Carbon monoxide (CO)-chemisorption 

(ASAP 2020, Micromeritics) was also performed to determine the Pt dispersion.  The 

metal dispersion values were used to calculate the turnover frequency numbers for the 

catalysts during the catalytic reforming reaction.  It was observed that the Pt dispersion in 
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the Pt/NaY catalyst decreased with the increasing of the load level.  The NaY catalyst 

also had a much higher area than that of the γ-Al2O3 catalyst. It was observed that the Pt 

dispersion of the Pt/NaY catalyst decreases with increasing the Pt loading level. The Pt 

dispersion level of the 3%Pt/γ-Al2O3 was much lower compared to the Pt/NaY catalysts. 

 

Table 3.  Surface areas, micropore volumes, and Pt dispersion of the Pt/γ-Al2O3 and 
Pt/NaY catalysts with different Pt-loading levels. 

 
 

Support NaY γ-Al2O3 

BET area 715.4 m2/g 259.3 m2/g 

Micropore Volume 0.31 cm3/g STP 0.36 cm3/g STP 

 Pt load  

wt% 

CO uptake 

mmol/g Dispersion

Pt load 

wt% 

CO uptake 

μmol/g Dispersion

 0.25 

wt% Pt 8.8 34% 

0.5 wt% 

Pt - - 

 0.4 wt% 

Pt 11.8 29% 

1.1 wt% 

Pt - - 

 0.5 wt% 

Pt 11.8 23% 

2.9 wt% 

Pt 58.6 17% 
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EVALUATION OF THE CATALYSTS FOR LIQUID PHASE 
REFORMING OF METHANOL TO HYDROGEN  

Packed-Bed Reactor System 

A packed-bed reactor system was established, which consisted mainly of three 

parts as shown schematically in Figure 13.  The first part is the flow control unit, which 

includes a syringe pump (LC 500, ISCO) for precise high pressure liquid feed, and a high 

pressure gas system, which provides the sweep gas (N2).  The second part is the reactor 

consisting of a packed-bed column in a furnace and a high-pressure flash tank for 

separating the gaseous products from the reactor outlet stream. The third part is an HP 

5890 (II) gas chromatograph (GC) equipped with a Thermal Conductivity Detector (TCD) 

and a Hayesep GC column for separation.  

During the reaction test, a 1% solution of methanol (MeOH) was stored in the 

syringe pump with a capacity of 500 mL.  A flow rate of 0.8 mL/hr was used so that a 

WHSV value of 0.008 (grams of oxygenated compound per gram of catalyst per hour) 

through the reactor was obtained.  This value was chosen so that the data obtained could 

be compared to the literature results, which were obtained under same operating 

conditions.18  One gram of catalyst was placed into the packed-bed column (dimensions 

given in Calcinations Section) which was mounted in a temperature-programmable 

furnace (Vulcan 3-550).  The catalyst particles were mixed with quartz wool for better 

distribution and packing effects.  

The 1% MeOH solution (feed) was pushed through the packed-bed reactor where 

it reacted and then entered the gas/liquid separator.  The liquid in the flash separator was 

collected for total organic compound (TOC) analysis (Shimadzu TOC-V Carbon 

Analyzer). The N2 sweep gas flowed through the gas/liquid flash tank to carry the gas 
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product for GC analysis.  The N2 gas pressure was kept slightly above the autogenous 

vapor pressure of the 1 wt.% MeOH solution to ensure a liquid phase in the reactor.  A 

back pressure controller (Cole-Parmer CP-32505-42) was used to control the pressure in 

the reactor and regulate the pressure of the stream flowing to the GC.  The back pressure 

controller also controlled the carrier gas flow rate to the GC, which was set to 7 (STP) 

mL/min.  A valve was placed between the furnace and the isobaric flash separator to shut 

of the liquid flow in case of emergency shutdown.  Another valve was place at the bottom 

of the isobaric flash separator for liquid drain at the completion of the experiment.  Safety 

valves were located between the N2 gas cylinder and the isobaric flash separator and 

between the isobaric flash separator and the back pressure controller. 

 

  

Figure 13. Schematic of reaction system. 
 

Operation Procedure for the Reactor System  

The following procedure, as given in Figure 14, was used to activate the catalyst 

and for testing the catalytic performance of the Pt/γ-Alumina and Pt/NaY catalysts. 

G.C. 
Station 

N2 sweep  
Back pressure 
controller  

Pressure 
gauge 

Triple point water 
bath (0oC) 

MeOH solution 
reservior 

Syringe 
pump 

Programmable 
oven Liquid sample 

drain 

Separator 

packed-bed reactor 
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Figure 14. Steps in catalyst preparation and testing of the catalyst. 
 

The catalysts were calcined and reduced according to the procedures previously 

described.  The reactor was then purged with N2 for two hours at a flow rate of 20 

mL/min following the reduction step.  Liquid feed solution was then flowed through the 

reactor to the isobaric flash separator.  When the first drop of liquid reached the isobaric 

flash separator, the valve between the furnace and the isobaric flash separator was closed 

in order to increase the liquid feed pressure.  The system was then slowly pressurized 

with N2 (380 psi for a reaction temperature of 220oC, and 760 psi for a reaction 

temperature of 260oC).  After being pressurized, the valve between the furnace and the 

isobaric flash separator was opened so that the pressure of the reaction system would 

equilibrate.  The gas flow rate to the GC was then set to 7 mL/min and stabilized.  After 

the N2 (to GC) flow rate was stabilized, the syringe pump was set to pump at a flow rate 

of 0.8 mL/hr.  The furnace was then turned on with the following ramping: 

I. Furnace heated at a rate of 3oC/ min from 50oC to 220oC (or 260oC) 

II. The furnace was held at the desired temperature for 24 hrs (reaction time). 

Figure 15 below shows the process for shutting down the reaction system.  
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Figure 15. Steps to shutting down the reaction system. 
 

After the test was finished, the temperature was decreased at a rate of 3oC/ min 

from 220oC (or 260oC) to 50oC.  The valve between the furnace and isobaric flash 

separator was shut.  The pump was then turned on and off based upon the liquid feed 

pressure inside the reactor.  This was done in order to make sure that the pressure was 

higher than that of the autogenious vapor pressure of the feed solution.  The N2 gas that 

pressurized the rest of the system was slowly bled off until atmospheric pressure was 

reached.  The liquid in the isobaric flash separator was then drained and kept in 

refrigeration for future TOC analysis.  Once the furnace reached room temperature, the 

valve between the furnace and isobaric flash separator was opened so that N2 could flow 

through to sweep out the remaining MeOH solution in the system.  The stainless steel 

tubing was then removed from the furnace and the catalyst was removed and saved. 

Results and Discussion 

The initial catalyst evaluations were performed for liquid phase reforming of a 

methanol solution at a temperature of 493 K.  The catalysts evaluated include: 3% Pt/γ-

Al2O3, 1% Pt/γ-Al2O3, 0.5% Pt/γ-Al2O3, 0.5% Pt/NaY, 0.4% Pt/NaY and 0.25%  Pt/NaY. 
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All of the catalytic reactions were stabilized for over 20 hours and the experimental data 

were taken after stabilization.  

The hydrogen production rate was calculated from carrier gas flow rate and 

composition of the gas product stream. The selectivity was calculated by the following 

equation: 

   
produced CH4produced H2

producted H2
2 2nn

n
yselectivit 

+
=H  

Where producted H2n  and producted H2n  are the mole flow rates of H2 and CH4 in the product 

stream measured by the GC. The methanol conversion rate is defined as the fraction or 

percentage of the MeOH in the feed reacted after going through the reactor. 

 The results are presented below in Figure 16 and Figure 17. Figure 16 shows the 

hydrogen production rate as a function of the Pt load for the zeolite and γ-alumina 

supported catalysts and Figure 17 shows the conversion and selectivity of the catalysts 

versus Pt load.   
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Figure 16. Hydrogen production rate as a function of Pt loading.  Solid circles are 
for Pt/γ-Al2O3 catalysts with Pt loads of ½%, 1%, 3 wt%; Solid squares 
are for Pt/NaY catalysts with Pt loads of 0.25%, 0.4% and 0.5%; 
reaction conditions: 493 K, 2.6 Mpa, WHSV=0.008 h-1, with 1 wt% 
methanol solution feed.) 
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Figure 17. MeOH conversion rate and selectivity as functions of Pt load. Reaction 
conditions: same as that described in Figure 16. 

 

For both the Pt/γ-Al2O3 and Pt/NaY catalysts, the H2 productivity increased with 

increasing the Pt load.  The 0.5% Pt/NaY had a slightly higher production rate than that 

of the 3% Pt/ γ-Al2O3.   The selectivity of all of the catalysts approximately are essentially 

the same.  The methanol conversion increased with an increase in the Pt load for both γ-

Al2O3 and NaY supported catalysts due to the increased catalyst surface area.  

The 3% Pt/γ-Al2O3 and 0.5wt% Pt/NaY catalysts, which had the best performance 

in their respective group, were then further tested for an extended time (>120 hours) to 

evaluate their stability.  

The catalyst stability tests for the 3%Pt/γ-Al2O3 and 0.5% Pt/NaY were performed 

at 498 K and 28.5 bar and 538 K and 55.8 bar, respectively. The results are shown in 
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Figure 18.  Each catalyst was tested at the 498 K first for 120 hrs; then the temperature 

was increased to 538 K without interruption of the reaction to continue the test for 

another 120 hrs.  Thus, the actual test time was over 240 hrs.  No catalyst degradation 

was observed for either catalyst in the testing period. The 0.5% Pt/NaY catalyst out-

performed the 3% Pt/ γ-Al2O3 at both temperatures with higher hydrogen productivity. 
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Figure 18. Hydrogen productivity as a function of operation time for liquid phase 
reforming of methanol over the 3% Pt/γ- Al2O3 and 0.5%Pt/NaY 
catalysts at different temperatures and pressures.  Feed conditions: 
WHSV=0.008 h-1 with 1 wt% methanol solution. 

 

Figure 19 below shows the methanol conversion rate and hydrogen selectivity as 

functions of reaction time.  The two catalysts had very similar hydrogen selectivities but 

the 0.5%Pt/NaY had a higher MeOH conversion rate compared to the 3% γ-Al2O3. 
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Figure 19. Stability test with 3% Pt/γ- Al2O3 and 0.5% Pt/NaY catalysts. 
 

(Reaction conditions: 498 K, 2.9 Mpa, WHSV=0.008 h-1, with 1 wt% methanol solution). 

 

The experimental results of liquid phase reforming of methanol over the two 

catalysts, namely 3% Pt/γ-Al2O3 and 0.5% Pt/NaY, are also shown in Table 4 in 

comparison with the literature data. The conversion of methanol over the 3%Pt/ γ-Al2O3 

catalyst at 498 K is lower than that reported in the literature on the same kind of catalysts 

because the γ-Al2O3 support of this work had a much lower surface area than that of the 

literature γ-Al2O3 nanofibers. The Methanol conversion over the 0.5% Pt/NaY catalyst 

increased with increasing the temperature.  

The turnover frequencies (TOF) were calculated from the rates of hydrogen 

production and then normalized by the number of surface chemisorption sites as 

determined from irreversible uptake of CO at 308K (or the dispersion values).  As shown 
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in Table 4, the TOF of 0.5% Pt/NaY catalyst is approximately 6 times higher than that of 

the 3% Pt/γ-Al2O3 catalyst and is also much higher than that of the literature.  

The catalytic performance of the 0.5% Pt/NaY catalyst is better than that of 

3%Pt/γ-Al2O3 methanol reforming under the investigated reaction conditions. The high 

performance of the zeolite supported catalysts may be attributed to the higher dispersion 

of the Pt metal as well as the synergistic effects between the Pt metal clusters and the 

zeolite framework. Moreover, the NaY-supported catalysts use much less Pt metal and 

the NaY is cheaper to produce than the γ-Al2O3 nanopowders and nanofibers. Thus, the 

Pt/NaY catalysts are anticipated to be cost-effective than the traditional Pt/γ-Al2O3 

catalysts.  
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Table 4.  Table comparing our best two catalysts to those of R. Cortright et. al1. 

 
3%Pt/Al2O3 3x-PtY 

 Reference18 
120 h 120 h 120 h 120 h 

T/K 498 538 498 538 498 538 

P/MPa 2.86 5.53 2.81 5.51 2.81 5.51 

C in Liquid, % 6.5 6.4 19.5 4.8 18.6 0.8 

Conversion, % 94 94 78.9 95.5 81.0 98.8 

Gas Product       

H2 (mol,%) 74.6 74.8 74.6 74.5 74.6 74.4 

CO2 (mol,%) 25.0 24.6 24.9 24.9 24.8 24.8 

CH4 (mol,%) 0.4 0.6 0.5 0.6 0.6 0.8 

H2 Selectivity, %[a] 99 99 97.6 97.1 97.1 95.6 

Alk Selectivity, %[b] 1.7 2.7 2.0 2.4 2.4 3.0 

Rate of H2 

Production[c] 

/(mmol.g-1.h-1)  

0.70 0.70 0.57 0.71 0.58 0.74 

Turnover frequency 

/min-1 
0.16 0.16 0.16[d] 0.20[d] 0.82[d] 1.04[d] 

 
[a] Based on H-balance, Selectivity of hydrogen = H2/(H2+4×CH4). [b] Based on C-balance, selectivity of 

alkane = CH4/(CH4+CO2). [c] WHSV=0.008g of methanol per gram of catalyst per hour. [d] Normalized 

by the number of surface metal atoms as determined from irreversible uptake of CO at 308K. 
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TEST OF THE PT/NaY CATALYSTS FOR ETHANOL AND 
GLUCOSE REFORMING 

Ethanol Reforming 

Reforming of ethanol to hydrogen is strategically important because of the 

potential to use ethanol as an intermediate for “hydrogen-from-coal”. Ethanol can also be 

produced by fermenting sugars, a renewable bio-product. However, liquid phase 

reforming of ethanol to hydrogen has not been reported in the literature so far.  Liquid 

phase reforming of ethanol over 0.5% Pt/NaY catalyst was explored in this work.  Table 

3 shows that there is relatively low conversion rate (43.8~45.5%) in the liquid phase 

reforming of ethanol. However, it is encouraging that the selectivity to hydrogen 

remained high (>80%) and the hydrogen production rates from ethanol (0.79 mmol.g-1.h-1 

at 538K, 55.8bar) were even slightly higher that that of methanol (0.74 mmol.g-1.h-1 at 

538K, 55.8bar).  The relatively low conversion of ethanol over the Pt/NaY catalysts was 

probably caused by the slower diffusion of the ethanol molecules in the Pt-loaded zeolite 

pores and more energy required for C-C bond cleavage as compared to the small 

methanol molecules. 
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Table 5.  Experimental data for reforming of ethanol over the 0.5% Pt/NaY catalyst. 
 
T/K 498 518 538 

P/MPa 2.81 3.88 5.53 

Conversion, % 59.6 65.7 68.3 

Gas Product 

H2 (mol,%) 73.9 74.1 74.1 

CO2 (mol,%) 24.6 24.7 24.7 

CH4 (mol,%) 1.2 1.0 1.0 

C2H6 (mol,%) 0.3 0.2 0.2 

H2 Selectivity, % [a] 94.0 95.2 94.8 

Alk Selectivity, % [b] 5.7 4.6 4.6 

Rate of H2 

Production[c] 

/(mmol.g-1.h-1)  

0.62 0.70 0.79 

Turnover 

frequency[d]    / min-

1 

0.88 0.99 1.10 

 
[a] Based on H-balance, Selectivity of hydrogen = H2/(H2+4×CH4+C2H6). [b] Based on C-balance, 

selectivity of alkane = (CH4+C2H6)/(CH4+2×C2H6+CO2). [c] WHSV=0.008g of ethanol per gram of 

catalyst per hour. [d] Normalized by the number of surface metal atoms as determined from irreversible 

uptake of CO at 308K. 
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Glucose Reforming 

Glucose has been successfully reformed to hydrogen over the Pt/γ-Al2O3 catalysts.  

Table 6 gives some results reported in the literature by R.D. Cortright et. al.1 However, it 

was found that the hydrogen selectivity in reforming of glucose was much lower than that 

of in methanol reforming because the hydrogen selectivity in general decreases with a 

decrease in H/C ratio of the carbohydrate molecule.    

Table 6.  Data of glucose reforming from literature.18 
 

Temperature (K) 498 538 

P/MPa 2.86 5.53 

% H2 Selectivity 50 36 

% Alkane Selectivity 14 35 

 
 

Liquid phase reforming of glucose over 0.5% Pt/NaY catalyst was also tested at 

the same reaction conditions as used for the ethanol conversion.  Hydrogen in the product 

steam was undetectable by the gas chromatography during the reaction.  This is most 

likely because the NaY zeolite pores are not accessible to the ringed glucose molecules in 

liquid phase since the Pt catalysts have been demonstrated to active for reforming of 

glucose.1  When glucose dissolves in water, part of the molecular structure changes 

gradually into beta-D-glucose through a chain-D-glucose and ultimately achieving 

dynamic equilibrium (with 36% of alpha, 0.02% of chain and 64% of beta type).38  Such 

ringed-structure molecules in aqueous solution are difficult to enter the zeolite pores 

(diameter of 0.74 nm) due to the steric constraint of the highly polar molecules.39  This 

result also suggests that the Pt metal clusters were encaged into zeolite cavities but not 

deposited on the external surface of the zeolite crystals.  
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CONCLUSION 

In this work, platinum-loaded NaY (Pt/NaY) catalysts were synthesized, 

characterized, and evaluated for liquid phase reforming of carbohydrates to hydrogen. 

The catalytic performance of the Pt/NaY catalysts for conversion of methanol to 

hydrogen was tested in a temperature range of 220 to 265oC and compared to that of the 

traditional γ-Al2O3–supported catalysts (Pt/γ-Al2O3), which were also prepared in this 

study, and the results reported in the literature on Pt/γ-Al2O3 catalysts. The Pt/NaY 

catalysts, although with low Pt loads (~0.5wt.%Pt), were demonstrated to have higher 

catalytic performance, in terms of hydrogen production rate, selectivity, and methanol 

conversion, than the benchmark Pt/γ-Al2O3 catalysts with high Pt loads (3wt%Pt). 

Because of the low cost of the NaY zeolite and the low Pt load, the Pt/NaY is promising 

to be used as a cost-effective catalyst for conversion of biomass-derived carbohydrates to 

hydrogen. Following are the main findings/conclusions obtained from this research: 

(1) Transition metal-loaded zeolites have been demonstrated through the 

Pt/NaY as a model system to be highly active catalysts for liquid phase 

conversion of carbohydrates to hydrogen. The Pt/NaY catalysts exhibit 

higher catalytic performance than the traditional Pt/γ-Al2O3 catalysts 

because of the higher dispersion of Pt in the zeolite structure and the 

metal-zeolite synergistic effects on the catalytic reaction. 

(2) For both the Pt/NaY and Pt/γ-Al2O3 catalysts, increasing the Pt-loading 

level was found to increase the hydrogen production rate in the 

investigated ranges (0.25% - 0.5%Pt for Pt/NaY and 0.5% - 3%Pt for Pt/γ-

Al2O3). This is because of the enlarged catalyst surface area with 
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increasing the Pt load. It was also observed that raising the reaction 

temperature (from 220 to 265oC) enhanced the hydrogen productivity 

because of the overall endothermic nature of the reaction. Although the Pt 

load and the reaction temperature have not been optimized in this study, 

the reaction conditions in the liquid phase reforming are quite mild 

compared to the commonly used high temperature technologies.  

(3) The Pt/NaY requies much less Pt metal then does the Pt/γ-Al2O3 for same 

catalytic performance. For example, the 0.5%Pt/NaY outperformed the 

3.0% Pt/γ-Al2O3 in liquid phase reforming of methanol to hydrogen. 

Taking into account the low cost of zeolite as compared to the cost of  γ-

Al2O3 nano-materials, the zeolite-based catalysts will be of lower cost than 

the Pt/γ-Al2O3 catalysts or other metal oxide nanomateials (e.g. ZrO2, 

TiO2 etc.) supported catalysts. 

(4) The Pt/NaY catalysts were also proven to be active for liquid reforming of 

ethanol but with lower conversion (~46% at 265oC) rate compared to that 

in methanol reforming (~99% at 265oC). The hydrogen production rate 

from ethanol reforming, however, was higher than that from methanol 

reforming. Therefore, because of the readiness for gas (products) and 

liquid (feed) separation, the potential of Pt/NaY catalysts for ethanol 

conversion deserves further investigation. 

(5) The Pt/NaY catalysts were found to be incapable of reforming the glucose 

to hydrogen. Since it has been demonstrated in the literature that the Pt 

catalyst is active for liquid phase reforming of glucose, the incapability of 

Pt/NaY for glucose conversion is likely due to the difficulty for the highly 
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polar ringed glucose to inter the 0.74nm zeolite pores to contact the Pt 

cluster in the zeolite cages. 

(6) The successful demonstration of Pt/NaY catalysts for methanol and 

ethanol liquid phase reforming opens up a new window for developing 

highly effective transition metal-loaded zeolite catalysts for liquid phase 

conversion of biomass derived carbohydrates to hydrogen. 
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