
Work supported in part by US Department of Energy contract DE-AC02-76SF00515

LBNL- 60958 
ST/F-TN-06/15 

July 6, 2006 

 

 

 

FERMI&Elettra Accelerator Technical Optimization Final Report 
M. Cornacchia, P. Craievich, S. Di Mitri, Sincrotrone Trieste, Trieste, Italy 

I. Pogorelov, J. Qiang, M. Venturini, A. Zholents #, LBNL, Berkeley, CA 94720, U.S.A. 
D. Wang, MIT, Cambridge, MA 02139, U.S.A.,  
R. Warnock, SLAC, Stanford, CA 94025, U.S.A

SLAC-TN-07-006



 2

Content  
 
1  Introduction 
 1.1  Overview of design requirements 
 1.2  Underlining physics phenomena 
2  Longitudinal beam dynamics 
 2.1  Longitudinal dynamics without collective effects. 
 2.2  Longitudinal dynamics with collective effects. 
  2.2.1  Acceleration sections 
  2.2.2  Longitudinal wake potentials 
  2.2.3  Coherent synchrotron radiation  
  2.2.4  Reverse tracking 
  2.2.5  Microbunching instability 
   2.2.5.1  Gain function 
   2.2.5.2  Landau damping with the laser heater 
3  Machine design 
 3.1  Laser heater 
 3.2  First bunch compressor  
  3.2.1  Bifurcation in the phase space and means to control it 
 3.3  Second bunch compressor  
 3.4  End of the linac and the spreader  
4. Transverse beam dynamics 
 4.1  Transverse dynamics without collective effects 
  4.1.1  Chromatic aberrations 
   4.1.1.1  Dipoles 
   4.1.1.2  Quadrupoles 
  4.1.2  Geometrical aberrations 
   4.1.2.1  Dipoles 
  4.1.3  Quantum fluctuations (ISR) 
 4.2  Trajectory distorsion 
  4.2.1  Misalignment and field errors 
   4.2.1.1  Dipoles 
   4.2.1.2  Quadrupoles 
  4.2.2  Launching error 
  4.2.3 Trajectory correction 
 4.3  Transverse dynamics with collective effects 
  4.3.1  Transverse wake fields 
   4.3.1.1  Wake function for SOA and SOB structures 
   4.3.1.2  Wake function for C structures 
   4.3.1.3  Wake function for BTW structures 
  4.3.2  Beam break-up instability 
   4.3.2.1  Theoretical model 
    4.3.2.1.1  Effect of an initial lateral displacement 
    4.3.2.1.2  Effect of misaligned BTW accelerating structures 
   4.3.2.2  Control of the BBU induced banana shape 
    4.3.2.2.1 Effect of trajectory jitter on the banana shape 



 3

  4.4  Transversal acceptance and error tolerances 
   4.4.1  Beam size and aperture  
   4.4.2  Misalignment 
   4.4.3  Field quality 
   4.4.4  Optical mismatch at the injection 
5  Tracking studies without errors 
 5.1  Short bunch case 
 5.2  Medium bunch case 
 5.3  Long bunch case 
6.  Effect of errors 
 6.1  Effect of errors on longitudinal dynamics 
  6.1.1  Simulation technique 
  6.1.2  Jitter sensitivities and tolerance budgets 
   6.1.2.1  Medium bunch cases 
   6.1.2.2  Long bunch cases 
  6.1.3  Global jitter studies 
   6.1.3.1  Medium bunch cases 
   6.1.3.2  Long bunch cases 
  6.1.4  Slice jitter analyses  

 6.2  Tracking studies with errors 
Appendix A: 6D parallel tracking code IMPACT 
Appendix B: Method of Vlasov’s equation 
References 



 4

 

1 Introduction 
 

This chapter describes the accelerator physics aspects, the engineering 
considerations and the choice of parameters that led to the accelerator design of the 
FERMI Free-Electron-Laser. The accelerator (also called the “electron beam delivery 
system”) covers the region from the exit of the injector to the entrance of the first FEL 
undulator. The considerations that led to the proposed configuration were made on the 
basis of a study that explored various options and performance limits. This work follows 
previous studies of x-ray FEL facilities (SLAC LCLS [1], DESY XFEL [2], PAL XFEL 
[3], MIT [4], BESSY FEL[5], LBNL LUX [6], Daresbury 4GLS [7]) and integrates many 
of the ideas that were developed there. Several issues specific to harmonic cascade FELs, 
and that had not yet been comprehensively studied, were also encountered and tackled. A 
particularly difficult issue was the need to meet the requirement for high peak current and 
small slice energy spread, as the specification for the ratio of these two parameters (that 
defines the peak brightness of the electron beam) is almost a factor of two higher than 
that of  the LCLS’s SASE FEL. Another challenging aspect was the demand to produce 
an electron beam with as uniform as possible peak current and energy distributions along 
the bunch, a condition that was met by introducing novel beam dynamics techniques. Part 
of the challenge was due to the fact that there were no readily available computational 
tools to carry out reliable calculations, and these had to be developed. Most of the 
information reported in this study is available in the form of scientific publications, and is 
partly reproduced here for the convenience of the reader. 
 

1.1 Overview of design requirements 
 

 FERMI accelerator is schematically shown in Figure (1.1). It consists of four 
linacs, two bunch compressors, a laser heater, and a spreader. The latter directs the 
electron beam into one of two undulator lines (not shown). 
 

 
Figure (1.1) A schematic of the FERMI accelerator. 

 
The laser heater defines the end of the injector and the start of the accelerator. At 

this point the energy of the electron beam is ~100 MeV and the peak current is 60-70 A. 
At the end of acceleration the electron beam energy is approximately 1.2 GeV and the 
electron peak current is 500 A or 800 A, depending on the bunch length needed by the 

BC1 

    

LINAC2 LINAC4 
BC2

E1 ≈ 220 MeV
R56 ≈ - 0.03 m
c.f. = 3.5 

LINAC1 

E2 ≈ 600 MeV
R56 ≈ - 0.02 m
c.f. = 3.0 

E0 ≈ 100 MeV 
I ≈ 60 A (5-10ps) 

E3 ≈ 1200 MeV 
I ≈ 800A (700fs) 
I ≈ 500A (1.4ps)

Laser heater 
LINAC3GUN 

SPREADER
X-band linearizer



 5

FEL processes. The latter envisage three options for the electron bunch length: the short 
bunch option with a bunch length of the order of 200 fs, the medium bunch option with a 
bunch length of the order of 700 fs and the long bunch option with a bunch length of the 
order of 1.4 ps. The electron beam delivery system was designed with sufficient 
flexibility to accommodate these options. Other important electron beam parameters 
include the normalized slice electron beam emittance and the slice energy spread, which 
are 1.5 micron and 150 keV respectively for all three bunch lengths. The list of the design 
parameters is summarized in Table (1.1). A new parameter the “flatness” is also quoted. 
It defines that value of the quadratic component of  the average energy variation along 
the bunch for which  the increase in  bandwidth of the x-ray signal due to this variation 
becomes equal to the Fourier transform limited bandwidth defined by the bunch length.  

 

Table (1.1) Main electron beam parameters 

Table 1 indicates that the operation of the FERMI FEL requires high peak current, low 
emittance and low energy spread. The injector provides the low emittance and energy 
spread, while the accelerator must provide the high peak current. Preservation of the 
beam quality during bunch compression and acceleration is the most challenging task of 
the accelerator optimization study.   
 

1.2 Underlining physics phenomena 
 

When the intense electron bunch propagates down the accelerator, it is subject to 
various collective effects. Among them are the space charge effects and it appears that 
the longitudinal space charge effects (LSC) are more important than transverse as they 
continue to play a visible role in the formation of the microstructures on the electron 
bunch even at high energies. Longitudinal and transverse wake-fields are also extremely 
important. In particular, in the FERMI accelerator, the longitudinal wake- fields are so 
strong that they must be accounted for in the process of setting up the energy chirp for 
bunch compression. It was found that the longitudinal wake- fields are also responsible 
for the nonlinear variation of the medium slice energy along the bunch.  

Transverse wake fields are also important since, if uncorrected, they can damage 
the electron beam quality. Also relevant is the emission of coherent synchrotron radiation 
(CSR) in the bunch compressors and the spreader. For perfectly smooth bunch without 
any internal microstructures, the effect of the CSR is similar to the effect of the 
longitudinal wake-fields, but with the additional threat of emittance dilution. In presence 
of a microbunching structure in the beam, the CSR tends to enhance it, thus giving rise to 

Short Long 
Bunch length, fs (flat part)      200        700           1400 
Peak current, A            800            800           500  
Emittance(slice), µm          <1.5           <1.5         <1.5 
Energy spread(slice), keV       <150          <150         <150  
Flatness, |d2E/dt2|, MeV/ps2           -----            <0.8          <0.2  

Medium 

∆E
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the so-called microbunching instability. In general, the microbunching instability is 
driven by a combination of LSC, bunch compression and CSR and, if unaccounted for, 
can increase the energy spread in the electron beam beyond the tolerance for proper FEL 
operation. 

Other sources of possibly harmful effects are the nonlinear components in the rf 
waveform and the nonlinear components in the time-of-flight characteristics of the bunch 
compressor. Together, they are often responsible for appearance of the high spikes in the 
peak current at the edges of the electron bunch. Such spike at the head of the bunch can 
induce resistive wall wake-fields that will energy modulate the electron bunch during its 
motion through the spreader and undulator. A spike at the tail of the bunch can induce 
energy variation along the bunch due to the CSR in the spreader.  
 
 All of the issues listed above are addressed in this chapter.  
 

2 Longitudinal beam dynamics 
 

One of the project goals is to produce an electron beam with high peak current and 
small energy spread. In order achieve this aim, the electron beam must be manipulated in 
longitudinal phase space. This is normally achieved by using a series of rf accelerating 
sections and magnetic chicanes (henceforth called the “bunch compression system”). It is 
desirable that this process remains linear in order to avoid bifurcation in the longitudinal 
phase space and high peak current spikes at the edges of the electron bunch. A 
distribution as uniform as possible is also efficient, as it provides the maximum peak 
current in the main body of the bunch for a given bunch length. Finding an optimum set 
of parameters is a rather complex and iterative process. Fortunately, for the most of the 
underlining physics phenomena the longitudinal dynamics is independent of the 
transverse dynamics and can be studied separately.  

 

 2.1 Longitudinal dynamics without collective effects. 
 

Although collective effects play an important role in the formation of intense 
electron bunches, it is convenient first to ignore them and preview the dynamics of the 
bunch compression using analytical tools. Figure (2.1) shows a generic idea for bunch 
compression.  
 

 
Figure (2.1) A schematic of the rf bunch compression technique 
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The rf system accelerates the electron beam off-crest and generates a correlated 

energy variation (chirp) along the electron bunch. The momentum compaction, the R56 
and T566 terms in the transport matrix, relate the electron energy and the trajectory path 
length in the chicane in such a way that the higher energy electrons follow shorter paths 
and the lower energy electrons follow longer paths. This correlation between energy and 
path length compresses in length an electron bunch which is accelerated off-crest in the rf 
wave, as shown in Fig.(2.1) with the head at z < 0.  

This scheme was implemented in the FERMI design. It was soon realized that 
another element, the 4-th harmonic cavity called the linearizer in Fig.(1.1), was also 
needed. This element helps linearize the chirp before BC1 [7,8]. The acceleration seen by 
the electrons upstream of BC1 as a function of the distance of the electrons, s , from the 
center of the bunch can be written as: 
 
 ( ) ( ) ( ) ( )44110 4coscoscos φφ ++++= skUskUskUsU ,   (2.1) 
 

where rfk λπ /2=  is the rf wave number and rfλ  is the rf wavelength. 0U  is the 
acceleration amplitude of the two accelerating sections preceding the laser heater (see, 
Fig.(1.1)) where acceleration is on-crest. 1U  is the acceleration amplitude of the four 
accelerating sections placed between the laser heater and BC1, with off-crest acceleration 
at phase 1φ (referred to the crest of the rf wave). 4U and 4φ  are the amplitude and phase of 
the 4-th harmonic x-band cavity. The first, second and third derivatives of ( )zU  taken at 
the bunch center 0=s  can be written: 
 
 ( ) ( ) ( )44110 sin4sin φφ kUkUU s −−=′ =       (2.2a) 

 ( ) ( ) ( )44
2

11
2

0
2

0 cos16cos φφ UkUkUkU s −−−=′′ =     (2.2b) 

 ( ) ( ) ( )44
3

11
3

0 sin64sin φφ UkUkU s +=′′′ =      (2.2c) 
 
The second derivative is zero if 
 

 ( )
( )4

110
4 cos16

cos
φ

φUUU +
−=        (2.3) 

thus eliminating a quadratic energy chirp. At the same time the first derivative becomes 

 ( ) ( ) ( )( ) ( )4110110 tancos
4
1sin φφφ UUkkUU s ++−=′ =     (2.4) 

A comparison of (2.2a) and (2.2b) shows that ( )0=′′′zU  can also be written as: 

 ( ) ( ) ( )( ) ( )4110
3

0
2

0 tancos
4

15 φφUUkUkU ss ++′−=′′′ ==     (2.5) 

This result will be used later.  
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 Defining ( ) ( ) ( )
( )0

0
E

EsE
sE i

i
−

≡∆ , where i indicates i-th electron at location is  with 

the relative energy iδ  before BC1,  we obtain for its energy and coordinate after BC1: 

 
( ) ( ) ( )( ) ( ) ( )

( ) ( ) iiiiiii

iii
i

ii

RshRsERsss

sh
U
ks

UUUsE

δδδ

δδφφφδ

565656

411011

)1(,,
0

tancos
4
1sin,

++=∆+=

+=+



 ++−=∆

(2.6) 

Notice a new notation h in the right hand part of the first equation (2.6). Using (2.6) we 
can calculate the rms bunch length after the BC1: 

 ( ) ( ) 056
2

056
2
0

2
56

22 11 zzz RhRRhss σσσσ δ +≈++=−= ,  (2.7) 

where 0zσ and 0δσ  are the rms bunch length and uncorrelated energy spread before BC1. 
The compression factor is 

 
56

0

1
1
hR

C
z

z

+
≈=

σ
σ         (2.8) 

The uncorrelated energy spread after the compression becomes 0δσC . 
Although, the analysis was carried out for BC1, similar considerations can be drawn 

for a second stage of bunch compression using linac2 and linac3 and BC2. 
 

2.2 Longitudinal dynamics with collective effects. 

 2.2.1 Acceleration sections 
 

The accelerator uses three type of sections. The S0A and S0B sections (yellow 
colored in Fig.(1.1)) follow the electron gun and are used for the initial acceleration and 
the emittance compensation scheme. Seven CERN-type sections (C1-C7, green colored 
in Fig.1) are divided between Linac1 (four sections) and Linac2 (three sections) and are 
used upstream and downstream of BC1. S0A, S0B and the CERN sections are traveling 
wave (TW) structures operating in the 2/3π mode per cells and coupled on axis. Seven 
Elettra-sections (S1-S7, blue colored in Fig.1) make up Linac3 (two sections) and Linac4 
(five sections) and are used upstream and downstream of BC2. They are backward 
traveling wave (BTW) structures operating in the 3/4π mode and magnetically coupled. 
Detailed information for all three types of the accelerating sections is given in Table (2.1)  
 

Table (2.1) Parameters of the accelerating sections 
 

 S0A, S0B sections CERN sections 
(C1-C7) 

ELETTRA sections 
(S1-S7) 

Iris radius [mm] 10.3S / 9.73D (average) (18 – 25) ± 0..010M 5.0S 

Outer radius [mm] 39.1S / 39D (82 – 85) ± 0..010M 39 D 
Cell length [mm] 33.33S 33.321 ± 0..008M 37.5 S 
Gap length [mm] 30.43S 28.321 ± 0..012M  
Number of cells    
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(without input and 
 output cell) 

93D  135D 162 D 

Total length [mm] 3200D 4500D  
2/3π mode [MHz] 2998.05S / 2997.747M   
3/4π mode [MHz]   2997.74M 

Q 14100S / 14100M   15700 S / 11700 M 
R0 [MΩ/m] 68S / 67.1D   97 S / 72 M 
R0/Q [kΩ/m] 4.8S / 4.76D   6.2 S 
 
Filling time [µs] 
τ [Np] 
c/vg 
αinit 

 
0.903M 

0.603   
66.25S / 85 (average) 

0.109  

  
0.757 M 
0.61 M 

38 (constant) M 

P0,input [MW] 18D (input TW)   
E [MV/m] 16.6D 10D  
Total gain [MV} 50 D 45 M 120 M 
 

S Electromagnetic simulation (for S0A, SOB SUPERFISH has been used over 40 cells). 
M Measured [Ref.9] 
D Technical design value or estimated 
 

2.2.2  Longitudinal wake potentials 
 

An electron moving at the speed of light c through the accelerating structures 
excites the fields, called wakefields, that other electrons, moving behind at distance s, 
will experience. The longitudinal wake function w(s) is the voltage loss experienced by 
the test electron, typically given in units [V/C] for a single object (accelerating section in 
our case) or in [V/C/m] per unit length. The wake is zero if the test electron is in front (s 
< 0). For a longitudinal charge distribution zλ , the voltage gain for a test electron from 
the wakes of all electron in front of it is given by the wake potential [10]: 

 ( ) ( ) ( ) sdssswsW
s

z ′′′−−= ∫
∞

λ        (2.9) 

An exact calculation of the wake function for an accelerating section consisting of 
an array of cells is difficult, but it was shown that obtaining the short-range wake 
numerically and fitting it to a simple function, one can obtain a result that is valid over a 
large range of s and over a useful range of parameters [11]: 

 ( ) ( )02
0 /exp ss
a
cZ

Asw −=
π

       (2.10) 

where 0Z =377Ω and A  and 0s  are fitting coefficients. Typically 1≈A  and 0s  is close 
to the value given by the following expression [11]: 

 4.2

6.18.1

0 41.0
L

gas =         (2.11) 
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where Lga ,,  are defined in Figure (2.2). 

 
Figure (2.2). A schematic of the geometry for the SOA, SOB and CERN accelerating 
sections. All dimensions are given in Table 2. 
 

Eq. (2.10) applies to a steady state situation, but it takes an approximate distance 
za σ2/2  from the entrance of the accelerating section before the wake reaches the steady 

state. This is about ½ m for a 200 fs bunch and 5 mm aperture. This estimates agrees with 
the numerical analysis performed in [12].  

 In what follows, the steady state wake functions obtained by fitting numerical 
calculations into (2.10) [Ref.12] will be used. For S0A and S0B acclerating structures one 
obtains: 

 ( ) ( ) 







−=

mpC
Vmmssw 28.1/)(exp380      (2.12) 

For the CERN acclerating structures: 

 ( ) ( ) 







−=

mpC
Vmmssw 38.1/)(exp311      (2.13) 

and for the ELETTRA acclerating structures: 

 ( ) ( ) 







−=

mpC
Vmmssw 3.0/)(exp1345  for 1<s mm   (2.14) 

The wake potential in BTW structures is stronger than in TW structures because of 
the magnetic coupling that demands a smaller iris radius. However, the former produce a 
higher energy gain.  
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Figure (2.3). Longitudinal wake potentials for the accelerating sections used in the 
accelerator. 
 

Using parabolic electron density distribution with 12 ps length at the base and with 
the total charge of 1 nC the wake potential induced by the S0A andS0B sections and linac 
1 (for a total length  of ~ 24) m is shown in Figure (2.4). 

 

 
 

Figure (2.4). The wake potential obtained for 1 nC bunch with the parabolic density 
distribution defined in the text moving through S0A and S0B and linac 1. The black line 
is the actual calculation and the  blue line is the fit with a polynomial up to 3-rd power. 
The artificial vertical offset in the blue line is made to avoid the overlap of the two 
curves.  
 

The result was fit by the 3-rd order polynomial: 

( )

MV/nC5000MV/nC;144MV/nC;2.24MV/nC;38.2
!2!3

3210

01
22

2
33

3

≈≈−≈−≈

+++=

aaaa

askas
ak

s
ak

sW (2.11) 

where the rf wave number k  is introduced for convenience in order to give dimensions of 
wake potential to the coefficients 3210 ,,, aaaa . When ( )QsW , where Q  is the total 
bunch charge, is added to ( )sU  in Eq.(2.1) it modifies all derivatives in (2.2) with 
addition of 1Qka  into (2.2a), 2

2aQk  into (2.2b) and 3
3aQk  into (2.2c). The second 

derivative becomes zero when: 

 
( )
( )4

2110
4 cos16

cos
φ
φ QaUU

U
−+

−=       (2.12) 

with this result, the first derivative can be written as: 

 ( ) ( ) ( )[ ] ( ) 142110110 tancos
4
1sin QkaQaUUkkUU s +−++−=′ = φφφ   (2.13) 

Using (2.13) in (2.6) one can obtain new expression for the energy chirp h . With 
zero second derivative, the cubic energy chirp defined by the third derivative in (2.2c) 
takes the following form: 
 
 ( ) ( ) ( )[ ]34411

3
0 sin64sin QaUUkU s ++=′′′ = φφ      (2.14) 
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 Now consider a numerical example using 100/2π=k mm-1, =Q 1nC and a 
typical accelerator set-up with 4φ =0 and ( ) MV/mm3.30 =′ =sU . Using in (2.13) the value 
of 1a  from (2.11), gives ( )11 sin φU =-76.1 MV. This is to be compared with 

50003 ≈Qa MV in (2.14), when 3a  from (2.11) is used. Thus, the cubic energy chirp is 
totally dominated by a contribution from the longitudinal wake potential. It will be shown 
later that the cubic energy chirp is responsible for appearance of the bifurcation in the 
phase space after the bunch compressor and this phase space distortion in turn leads to 
spikes in the peak current at the edges of the electron bunch. Therefore, it is desirable to 
minimize 3a . One way to achieve this is to use a density distribution other than the 
parabolic one considered so far. For example, a distribution with the linearly ramped 
peak current shown with the red line in Figure (2.5a) gives the wake potential with a 
significantly reduced cubic chirp ≈3a 890 MV/nC (see also the red line in Figure (2.5b).  

 
Figure (2.5). Density distribution with a linear ramped peak current (a) and a 
correspondent wake potential (b). The red line shows a desirable ideal distribution and its 
associated wake potential, while the black line shows the actual distribution obtained in 
simulations with the associated wake potential. 
 

Certainly, the density distribution with sharp edges is unrealistic. The closest 
distribution and wake potential achieved at this stage of the injector studies is shown with 
the black line in Figure (2.5). The part under the red line in Fig.(2.5a) contains 
approximately 40% of the total charge containing under the black line.  
 

2.2.3  Coherent synchrotron radiation  
 

Coherent synchrotron radiation (CSR) in the bending magnets of the two bunch 
compressors plays a major role in the micro-fragmentation of the electron bunch. This 
effect will be considered later. In this paragraph the effect of synchrotron radiation is 
analyzed for a smooth electron density function when the emission of synchrotron 
radiation is coherent, at frequencies bc l/≤ω , where c  is the speed of light and bl  is the 
characteristic length of the scale of the bunch length [13]. This CSR causes variation of 
the electron energy along the electron bunch. In this section the importance of this effect 
is estimated.  
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 Following [14], two segments of the ultra-relativistic bunch, spaced at a distance 
bs l~  (“tail” and “head”) and moving in an arc(AB) as shown in Figure (2.6), are 

considered. The condition that the tail radiation at a point A will overtake the head of the 
bunch at a point B is: 

 ( ) ( ) ( ) RRRABlineABarcs 3

24
12/sin2 θθθ ≈−=−=    (2.15) 

This condition determines two important geometrical parameters (see, Figure (2.6)): 
3/1

3/1 23 





=

R
sθ and ( ) ( ) 3/13/23/22 232/sin22/sin)( RsRABlined === θθ  (2.16) 

 
Figure (2.6). A geometrical diagram for an electron bunch motion in the bending magnet. 

 
The magnitude of the transverse electric field which acts on the head particle can be 

estimated as the field of the charged line produced at the characteristic distance d: 

 
d

QE zλ2
≅⊥          (2.17) 

Because this field was radiated at a point A, its direction at a point B is perpendicular to 
the line(AC). Thus, the head particle experiences the acceleration force: 

 ( ) 3/23/13/1|| 3
22

Rs
eQ

d
eQ

EesF zz λ
θ

λ
θ ==≅ ⊥      (2.18) 

In the case of the long magnet with bending angle: 

 
3/1

24 





≥

R
b

M
l

ϕ         (2.19) 

one can write for a rate of the electron bunch energy loss per unit length z  of the magnet: 

 ( ) ( ) 3/43/2

22
3/2

|| 3
b

z R
eNsFsds

dz
dE

l
−=−= ∫

∞

∞−

λ      (2.20) 

where N  is the number of particles per bunch and a uniform density distribution 
bz N l/=λ  is assumed. The uniform distribution arises in the second bunch compressor 

where CSR is strong. The condition (2.19) ensures that the magnet has a sufficient length 
that the radiation of the tail particles overtakes the head particles before the electron 
bunch leaves the magnet. In practice, the electron bunch moves inside the vacuum 
chamber that acts as a waveguide for the radiation. Not all spectral components of the 
CSR propagate in the waveguide and therefore the actual radiated energy is smaller than 
in a free space environment. For an estimation of the shielding effect of vacuum chamber 
the recipe suggested in [15] is used: 
 ( ) ( )cthcth nnnnEE /2exp/2.4/ 6/5

space freeshielded −≅∆∆ ,         cth nn >   (2.21) 
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Here ( ) 2/3/3/2 ∆= Rnth π  is the threshold harmonic number for a propagating radiation, 
∆  is the total height of the vacuum pipe, cc Rn σ/=  is the characteristic harmonic 
number for a Gaussian longitudinal density distribution with the rms value of cσ . For a 
uniform stepped density distribution 22.3/bc l≅σ , with bl  being the length of the 
distribution. The meaning of cn  is that the spectral component of the radiation with 
harmonic numbers beyond cn  is incoherent. Figure (2.7) shows the calculated effect of 
shielding for vacuum chamber with ∆ =8 mm.  
 

 
Figure (2.7). Suppression of CSR by the vacuum chamber shielding. 

 
Because of shielding, the CSR is suppressed in BC1 (first bunch compressor), 

because the electron bunch length exceeds 2-3 ps (in the medium and long bunch cases) 
and is only important in the 4-th magnet of BC2 (second bunch compressor) where the 
bunch length shrinks below 1 ps (at least in the medium bunch case). This magnet has a 
length of 0.5 m and a bending radius of 9.35 m. Calculation using (2.19) results in an 
average energy loss per electron due to CSR  in free space (i.e without shielding), and for 
a 0.7 ps long electron bunch, of 340 keV. The arc angle of the magnet is approximately 
25% less than that defined by condition (2.19) and, thus, the steady state formula (2.20) 
slightly overestimates the effect.  
 The energy variation along the electron bunch is estimated next and compared to 
the energy variation due to the wake potential. Using the CSR wake function [13], the 
wake potential is: 
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We will use the electron density distribution with the flat top and smooth transitions at 
the edges with characteristic width of 02~ σ  described by erf function. The plot of this 
distribution is shown in Figure (2.8), with the assumption that the length of each 
transition occupies ~10% of the main body.  
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Figure (2.8). The longitudinal density of electrons. 
 

Thus, instead of (2.22) one obtains:  
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The integral (2.23) can be evaluated in analytical functions. The plot of ( ) MCSR LsW  is 
shown in Figure (2.9) for a bend magnet with the length ML =0.5 m and bending radius of 
9.35 m is plotted, assuming µσ 200 ≈ m, i.e. ~10% of the medium bunch length. 

 
Figure (2.9) CSR wake potential for an electron longitudinal density distribution shown 
in Figure (2.8). 

 
One can notice that 3/1/1~/)( ssWCSR  over the entire length of the bunch excluding 

the edges and that the magnitude of the variation from head to tail is of the order of 0.15 
MV. This is to be compared with ~ 3 MV in Fig.(2.4) or ~2.5 MV in Fig.(2.5). Therefore, 
this study concludes that the CSR affects electron bunches weaker than the wake fields. It 
is to be remembered that, so far, the CSR study applies to electron bunches with smooth 
electron density function.  
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 2.2.4 Reverse tracking 
 

One of the problems faced by the accelerator optimization study was how to obtain, at the 
end of the accelerator, a distribution with constant peak current and slice medium energy 
along the electron bunch, referred to in this document as a “flat-flat distribution”. This 
distribution is often at a premium in harmonic cascade FELs. This problem is 
considerably simplified by using the backward tracking technique demonstrated in the 
following paragraphs. 
 The basic premise, justified by analytical and computational studies, is that the 
output bunch configuration is largely pre-determined by the input bunch configuration 
and it must always be possible to find a unique electron density distribution at the 
beginning of the linac that produces a flat-flat distribution at the end of acceleration. If 
the effect of CSR in the bunch compressors on the medium slice energy can be ignored, 
then finding this distribution is relatively straightforward. One just needs to reverse the 
problem, i.e. to start at the end of the linac and move backward towards the beginning of 
accelerator. Eq.(2.24) shows that, for a given zλ  and w  , the electron energy at the end of 
a section of the linac, defined as fδ  (with fs  being the electron coordinate taken with 
respect to the bunch center), can be found by the relationship between the electron energy 

iδ  and the coordinate is  at the beginning of the section: 
 

 ( ) ( ) ( ) ( ) ( ) sdssswskeUss
s

ziiiff ′′′−−+= ∫
∞

λδδ cos    (2.24) 

For a relativistic beam the electron distribution function zλ  does not change during 
acceleration, i.e. if ss ≡ , and, therefore, Eq.(2.24) can be used to define ( )ii sδ  as a 
function of ( )iff ss =δ . Thus, beginning from a desirable particle distribution function at 
the end of the linac section, one can find that distribution function at the beginning of the 
linac section that will produce the desired one at the end. 
 A different situation arises in a bunch compressor when the electron coordinate at 
the end of the bunch compressor ( )ffs δ  is expressed as a function of the electron 
coordinates is  and energy iδ at the beginning of the bunch compressor: 
 
 ( ) ( ) ...,2

56656 iiCSRiiiff zfTRzz δδδδ +++=     (2.25) 
 

56656 , TR  are first and second order time-of-flight parameters and a function CSRf  
describes changes related to the CSR effects. It is convenient fact that, in the FERMI 
accelerator, the effect of CSR on the medium slice energy is small in BC2 and negligible 
in BC1; that is, its overall effect is much smaller than that of the wake fields. Thus, if one 
ignores CSR and assumes that the electron energy is not affected in the magnets of the 
bunch compressor, i.e. if δδ ≡ , then the electron coordinate at the beginning of the 
bunch compressor can be found using the electron coordinate at the end of the bunch 
compressor using Eq.(2.25). 
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 The above considerations justify a concept of reverse tracking demonstrated in 
Figure (2.10) that shows the results of simulations obtained with the LiTrack code [16]. 
Fig.(2.10a) shows the conventional forward particle tracking starting with the particle 
distribution at the end of the injector, while Fig.(2.10b) shows the reverse particle 
tracking starting with the distribution obtained at the end of the forward simulation 
(compare bottom left and top right sections of the plot). The result of this exercise 
confirms the validity of reverse tracking. 

 
Figure (2.10). Plot a) shows forward particle tracking and plot b) shows reverse particle 
tracking. 
 
 In the next step, a desirable flat-flat distribution was set up at the end of the linac. 
Starting with this distribution and tracking it backward, the nearly linear ramped peak 
current of Figure (2.11) was obtained at the start of the linac. Here one can see that the 
magnitude of the peak current practically doubles from the head to the tail of the electron 
bunch. This is approximately the same ramped peak current distribution that was studied 
in paragraph (2.2.2). This result can be explained by the linear wake potential in Fig.(2.7) 
correspondent to the ramped peak current distribution.  
 

 
Figure (2.11). Reverse tracking beginning with flat-flat distribution at the end of the linac 
(start) and moving towards beginning of the linac (end). 
 
Now we consider a condition that allows a conversion of a linear ramped peak current at 
the beginning of the accelerator into the flat distribution at the end of the accelerator. 
First we write formula (2.8) for a compression factor in an equivalent form: 
 

 
b

a

I
I

C =         (2.26) 

where aI  is the peak current after compression and bI  is the peak current before 
compression. In our case we have: 



 18

 
 sIII bbb ′+= 0  and  0aa II = =Const   (2.27) 
 
Using (2.27) in (2.26) we obtain: 
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Thus a compression that decreases from the head to the tail of the electron bunch with 
linear dependence on s  produces a required transformation of the linear ramped peak 
current into the flat distribution. One can obtain this compression by adding a small 
quadratic component to the linear energy chirp before the bunch compressor which will 
lead to a modification of h in (2.8):  
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where 0h  is defined by the linear energy chirp and h′  is defined by the quadratic energy 
chirp. Comparing Eq.(2.29) and Eq.(2.28) we find for h′ : 
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This result can be easily generalized. For example, a distribution with the maximum peak 
current at the head of the bunch gradually reducing towards the tail can sometimes be 
beneficial for HC FEL, i.e. we may need sIII aaa ′−= 0 . This distribution can be obtained 
with a slight modification to the quadratic energy chirp: 2

00056 // abaab IIIIIRh ′+′=′ . 

 2.2.5 Microbunching instability 
 
So far we considered collective effects with a typical scale of the order of the electron 
bunch length. We demonstrated that at this scale we can ignore CSR. We can also ignore 
longitudinal space charge effects (LSC) because they are weak in the relativistic electron 
bunch with a smooth density distribution. But at a scale much smaller than the bunch 
length both these effects gain significance. At this scale shielding is not important and 
any microstructures within the bunch will cause CSR as in a free space. Same 
microstructures will induce LSC forces which over the time will produce energy 
modulation of electrons within the electron bunch. Together, the LSC [17,18] and the 
CSR [19,20,21] give rise to so-called microbunching instability studied before for LCLS 
[22,23] and DESY XFEL. This is a rather fundamental instability that takes its roots in a 
shot noise of electrons. Shot noise is responsible for initial microbunching of electrons. 
The microbunching induces LSC forces and they produce energy modulation of 
electrons. Then, energy modulation is transformed into spatial modulation with increased 
magnitude of microbunching when electron bunch propagates magnets of bunch 
compressor. At the same time increased microbunching gives rise to increased intensity 
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of CSR and it results in even more energy modulation and more microbunching and so 
on. The entire machine acts as gigantic amplifier of the initial noise in a direct similarity 
with the process of self amplified spontaneous emission in FELs. What one gets at the 
end is the electron beam with significant fragmentation in the longitudinal phase space. 
 Simulation of the microbunching instability with particle tracking codes requires a 
large number of macro-particles. For example, the microbunching amplitude due to shot 
noise in the electron beam with the peak current bI  within the bandwidth λ∆  can be 
estimated: 

 
λ∆

=
bI

ceb 2          (2.31) 

For bI =75 A  and λ∆ =10 µm this formula gives  b= 3.57x10-4. Typically, the 
microbunching due to granularity of the distribution of macro-particles is much larger. 
For example, we calculate for a 6-picosecond long electron bunch (FWHM) with 106 
macroparticles:  
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=

−

N
cb 2106 12

 = 1.90x10-2  (at λ∆ =10 µm),    (2.32) 

which is approximately 50 times larger than the real shot noise. At the same time, a 
practical limit for a number of macro-particles that one can use in the code Elegant [24] 
running on PC is about 2x106, which is still too small number and all the input noise is, 
thus, just an artificial numerical noise.  
 In order to get around of this problem we decided to develop another code 
IMPACT [25, see also Appendix A] that is capable of running at least 2x107 macro-
particles on NERSC, the LBNLs multi processor computer cluster. We also pursued a 
completely different approach, namely a technique that follows the evolution of the 
distribution function using Vlasov’s kinetic equation [26, see also Appendix B]. We call 
it Vlasov’s solver. Ideally this technique is absolutely free from the computational noise, 
although some noise can be introduced there due to the final size of the grid where initial 
distribution function is defined. However, in practice, this noise can be easily kept below 
sensitivity level. Lastly, as a third option we used the linear theory [22] previously 
applied to LCLS project [23] to estimate the gain in the microbunching and in the energy 
spread caused by microbunching. 
 At the time of writing, three techniques mentioned above did not converge and the 
work is still in progress in attempt to identify a source of differences. In this paragraph 
we mainly describe results obtained with linear theory. Although it became apparent that 
a true result will likely be different because of the anticipation that linear model should 
fail at the high frequency end of the noise spectra, we want to present a simple 
transparent result which gives a correct assessment of the magnitude of the effect. 
 

 2.2.5.1 Gain function 
 
We calculate the spectral dependence of the gain of the microbunching instability for the 
following set of machine and electron bunch parameters: uncorrelated energy spread 

Eσ =2 keV, compression factor in BC1 = 4, electron beam initial energy = 100 MeV, 
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electron beam energy at BC1 = 220 MeV, linac length (from 100 MeV to 220 MeV) = 
30m, electron peak current after BC1 = 350 A. The result is shown in Figure (2.12). 
Then, we moved bunch compressor to 130 MeV (on a recommendation from Z. Huang) 
and used 7 m long linac and repeated gain calculations. Figure (2.13) shows the gain for 
this case. Both plots have on the horizontal axis the wavelength of the electron density 
modulation at the beginning of the accelerator. The reason why there is smaller gain of 
the microbunching instability when BC1 is at 130 MeV is due to the fact that slippage 
effect in the chicane magnets is proportional to the product 056 / ER Eσ , where Eσ  is the 
rms energy spread and 0E  is the equilibrium beam energy. Obviously, for a given 
compression, this product is almost two times larger for 0E =130 MeV, than for 0E =220 
MeV and instability is more “washed out” or “Landau damped” by the electron beam 
energy spread for a chicane at 130 MeV.  
 

 
Figure (2.11). Spectral gain function of the microbunching instability calculated after 
BC1 located after 220 MeV linac. 

 
Figure (2.12). Spectral gain function of the microbunching instability calculated after 
BC1 located after 130 MeV linac. 
 
We present this result in order to demonstrate a potential for a reduction of the gain in the 
microbunching instability. But we decided not to pursue it since by placing BC1 at 130 
MeV we restrict the flexibility in adjustment of the energy chirp before BC1. This could 
impact flexibility of the accelerator in operation with various beam configurations not 
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foreseen at the moment. Thus, in what follows we show only results obtained for BC1 
located at 220 MeV. 
 In the next step we calculate the spectral dependence of the gain of 
microbunching instability at the end of the linac using compression factor in the BC2 = 
2.5, electron beam energy at BC2 = 600 MeV, linac length (from 220 MeV to 600 MeV) 
= 50 m, electron peak current after BC2 = 900 A and linac length after BC2 including 
spreader area = 70 m (see, Figure (2.13)).  
 

 
Figure (2.13) Spectral gain function of the microbunching instability at the end of the 
linac . 

 
 
 The above analysis shows that the most of the gain in microbunching instability 
occurs after BC2, i.e. after transformation of the energy modulation into the spatial 
modulation that takes place in BC2. It is possible to avoid that if we use only BC1 for all 
our needs for bunch compression. There are also additional advantages that we can gain 
from totally removing BC2. First, we would need to increase R56 in BC1 (assuming that 
the energy chirp before BC1 remains unchanged). Second, a relative energy spread is 
significantly larger at BC1 than at BC2. Both these factors would contribute to increased 
“Landau damping” and suppression of the instability, which can be rather significant. 
Although, this is a very attractive option, we currently do not pursue it because 
difficulties in obtaining flat-flat distribution at the end of the linac due to strong 
longitudinal wake fields in linac 3 and linac 4. However, we do not think that all means 
were explored. One possibility is to use a special electron density distribution at the 
beginning of the accelerator such as to balance the effect of the wake fields. To find this 
distribution, one could possibly use a technique of the reverse tracking discussed in 
paragraph (2.2.4).  
 Finally we calculate slice energy spread in the electron bunch after the second 
bunch compressor assuming that the energy spread induced by microbunching instability 
will eventually become incoherent energy spread. We assumed initial shot noise with a 
constant spectra power and calculate initial bunching according to the formula 
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Here we used a substitution 2/ λλν ∆=∆ c . This gives us a large number Eσ = 4.3 MeV 
and in the next section we discuss how to get much smaller energy spread. 
 

 2.2.5.2 Landau damping with the laser heater 
 
The gain of the microbunching instability is very sensitive to the uncorrelated energy 
spread in the electron beam. Typically, even a modest increase in the uncorrelated energy 
spread weakens the instability because of the “Landau damping” effect. Thus, “laser 
heater” was proposed in [17, 23] in order to have an efficient control over the 
uncorrelated energy spread with the ability to increase it manifolds beyond original small 
level. An actual description of the laser heater is given in the other report. Here we 
simply assume that the laser heater gives some additional energy spread which we add in 
quadrature to the existing uncorrelated energy spread at the beginning of the accelerator. 
In order to demonstrate the effect of the laser heater we calculated spectral gain function 
for a few different setting of the laser heater and plot them in Figure (2.14). It is seen here 
that the larger the energy spread added by the laser heater the more efficient is 
suppression of the gain at high frequency end of the spectra. We also calculated the 
uncorrelated energy spread at the end of the linac as a function of the energy spread 
added by the laser heater for a case of the medium bunch with the following beam and 
accelerator parameters: 
 

e-beam energy at the beginning of the linac:  100 MeV 
uncorrelated energy spread in the beam at the beginning of the linac:  2 keV 
distance from the beginning of the linac to the first bunch compressor (BC1):  30 m 
e-beam energy at BC1:  230 MeV 
R56 of the BC1:  -0.026 m 
compression factor in the BC1:  4 
e-beam peak current after BC1:  350 A 
distance between BC1 and second bunch compressor (BC2):  50 m 
e-beam energy at BC2:  620 MeV  
R56 of the BC2:  -0.016 m 
compression factor in the BC2:  2.5 
e-beam peak current after BC2:  900 A 
 

and for a case of the long bunch with only changes of in the parameters listed below: 
compression factor in the BC1:  2 
e-beam peak current after BC1:  180 A 
R56 of the BC2:  -0.033 m 
compression factor in the BC2:  2.7 
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e-beam peak current after BC2:  500 A 
 
The results of both calculations are plotted in Figures (2.15) and (2.16).  
 

 
 

Figure (2.14) Spectral gain function of the microbunching instability at the end of the 
linac for various settings of the laser heater indicated above the plots. 
 

 
Figure (2.15). Medium bunch case. Uncorrelated slice energy spread after the second 
bunch compressor as a function of the energy spread added by the laser heater.  
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Figure (2.16). Long bunch case. Uncorrelated slice energy spread after the second bunch 
compressor as a function of the energy spread added by the laser heater.  
 
Similar calculations performed with Vlasov’s solver using initial electron beam with 
Gaussian energy distribution give somewhat different result shown in Figure (2.17) for 
the medium bunch case. In this calculation the evolution of the distribution function was 
traced beginning from 19 MeV electron beam energy and to the end of the second bunch 
compressor at 600 MeV electron beam energy. It was assumed the the electron density at 
the start corresponds to the peak current of 95 A with density fluctuations giving by the 
shot noise. Three different seeds generating the initial shot noise were used (except for 
the point at 11 keV, which was the average over two seeds). The error bars span the range 
of the results. Where the error bars are not visible the date range appeared to be smaller 
than the square box used in the plot. The solid line shows the expected energy spread in 
the absence of any collective effects assuming compression factor of 10. 
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Figure (2.17). Medium bunch case. Uncorrelated slice energy spread as a function of the 
energy spread added by the laser heater calculated with Vlasov’s solver. Solid line shows 
the expected energy spread in the absence of any collective effects assuming compression 
factor of 10 
 

3. Machine design 
 

In this paragraph we describe the lattice of the entire machine section by section and 
explain the logistics of this design. Figure (3.1) show Twiss functions of the entire 
accelerator, where we also indicate the locations of all major sections.  
 

 
Figure (3.1) Twiss functions of the accelerator. 

 

3.1 Laser heater 
 
The accelerator begins with the laser heater. Laser heater lattice is also used to provide 
matching of the Twiss functions of the accelerator to the Twiss functions of the injector. 
The plot of the Twiss functions in this area is shown in Figure (3.2). Here we begin with 

== yx ββ 10 m, where xβ  is the horizontal beta-function and yβ  is the vertical beta 
function. These beta-functions correspond to the matching condition in the short and 
medium bunch cases. However, laser heater lattice had been designed to be flexible in 
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order to accommodate variations in the input beta-functions in the range of 3 – 40 m. For 
example, the lattice == yx ββ 19 m is used to satisfy matching condition with the 
injector in a long bunch case. This lattice is actually shown in Fig.(3.1). In this chapter 
we do not provide the details regarding the laser heater because it will be done in a 
separate chapter and only mark a 2.6 m long drift where it is going to be located.  
 Besides being a tool for a control of the microbunching instability, laser heater is 
also an excellent diagnostic instrument. Therefore, we add a FODO channel after the 
laser heater for electron beam size measurements at various phases of betatron 
oscillations and plan to use it for emittance diagnostics. We are going to employ there 
removable screens in the locations indicated on the plot in Fig.(3.2). The betatron phase 
advances between first and second screen, second and third screen and third and fourth 
screen are 24º, 79º, 24º in the horizontal plane and 72º, 23º, 57º in the vertical plane. 
 

 
 

Figure (3.2) Twiss functions of the laser heater and adjacent diagnostic section. 
 
 

3.2 First bunch compressor  
 
A schematic of the bunch compressor is shown in Figure (3.3). It consists of a chicane 
built from four rectangular bending magnets. Due to the symmetry, this bunch 
compressor is a perfect achromat and ideally there must be no leakage of the dispersion 
function after the last bend. Nevertheless, it can happen due to the errors and trim 
quadrupoles (shown in Fig.(3.3) between first and second bends and third and fourth 
bends) are added for a fine tuning of the dispersion function. Dispersion is at its 
maximum in the middle of the chicane and, therefore, this is a convenient place for a 
collimator and energy monitor. Since the electron bunch typically has a significant 
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energy chirp while it propagates the chicane, the collimator can be used to trim electrons 
in the head and tail of the electron bunch that could help to reduce peak current spikes at 
the bunch edges.  

 
 

Figure (3.3) A schematic of the bunch compressor. 
 

An important consideration for a design of the bunch compressor is the CSR. The CSR 
plays a role in the microbunching instability discussed in the paragraph (2.2.5) and also 
responsible for emittance excitation. Both these processes can be moderated with the 
appropriate design of the compressor lattice.  
 Although transverse microbunching radiative effects [27,28] excite emittance 
directly, an indirect emittance excitation via longitudinal-to-transverse coupling typically 
dominates them. This coupling is characterized by the function: 
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where xx βα ,  are horizontal Twiss functions and xx DD ′,  are horizontal dispersion 
function and its derivative. (Here we assume a chicane in the horizontal plane.) Using H , 
we write for emittance contribution due to CSR: 
 
 ( )2/ EEHx δδε ≈         (3.2) 
where EE /δ  is the spread of the energy losses caused by CSR, which is proportional to 
the value defined in (2.20). It is obvious from (3.2) that the lattice with small H  gives 
less emittance excitation. Since strongest CSR is expected in the 4-th bending magnet of 
the chicane where the electron bunch is the shortest, we pursue the lattice design with 
reduced H  in this magnet. It is seen from the reduction of the xβ  in the plot of Twiss 
function shown in Figure (3.4). 
 Now we would like to give the argument why we may not want to get the smallest 
possible H . While moving through chicane bend magnets, the electrons with different 
amplitudes of the betatron oscillations follow different paths with path lengths described 
by the following equation: 
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Here 00 , xx ′  are the electron coordinate and angle at the beginning of the chicane and 
( ) ( )zSzC ,  are cos-like and sin-like trajectory functions. It can be shown [26] that the rms 
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value of lδ  taken over the electrons in the any given slice of the electron bunch is related 
to the electron beam emittance through the function H , i.e.: 
 xrms Hεδ ≈l ,        (3.4) 
where xε  is the rms value of the electron beam horizontal emittance. Thus, the lattice 
with large H  spreads slice electrons more apart than the lattice with small H  and 
“washes out” the microbunching more effectively. In fact, without accounting for this 
effect, the gain of the microbunching instability would be significantly overestimated. 
This effect is very similar to the effect of the “Landau damping” due to the energy 
spread.  
 Because of the last argument, we designed BC1 lattice such as the magnitude of 
H  in the last bend of the chicane can vary at least within a factor of four. It will give us 
some flexibility to maneuver between such tasks as containing the emittance excitation 
due to CSR that benefits from smaller H  and containing energy spread growth due to the 
microbunching instability that benefits from larger H . 
 

 
Figure (3.4). Twiss functions of the first bunch compressor and adjacent linac1. 

 
Four quadrupole magnets after the chicane are used for matching of Twiss functions into 
downstream Linac 2. Between these magnets we reserved a space for a deflecting cavity 
to be used for emittance measurements and a space for temporal dump to be used during 
commissioning.  
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3.2.1 Bifurcation in the phase space and means to control it 
 
 The first and second order time-of-flight parameters 56656 , TR  of the four bend 
magnet chicane shown in Fig.(3.3) can be calculated using the following expressions 
[29]: 

 56566
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where θ  is the bending angle, BL  is the length of the magnet and L  is the distance 
between first and second bend magnets. We note that the bifurcation in the phase space, 
whose example is shown in Figure (3.5), depends on the second order time-of-flight 
parameter 566T  and on the cubic energy chirp defined by (2.14). But controlling the cubic 
chirp seems to be the only possible way to control the bifurcation since according to (3.5) 
the value of 566T  is totally defined by 56R .  
 

 
 

Figure (3.5). Electron distribution in the longitudinal phase space: a) before bunch 
compressor, b) after the bunch compressor. Cubic component in the energy chirp and 
second order time-of-flight parameter in the compressor are responsible for bifurcation in 
the phase space. This bifurcation gives rise to the spikes in the peak current at the edges 
of the electron bunch. 
 
In the following plots we give the example how the variations in the cubic chirp in the 
initial electron density distribution affects the bifurcation of the electron distribution in 
the phase space after the bunch compressor. Figure (3.6a) shows the longitudinal phase 
space and the peak current at the beginning of the accelerator and Figure (3.6b) shows the 
same plots after the electron bunch compression. Here we see a strong bifurcation in the 
longitudinal phase space and the spikes in the peak current reaching 6 kA. The value of 
the cubic energy chirp in the beginning distribution is -0.008 MeV/mm3. Then we 
repeated the same calculations keeping all the accelerator parameters fixed and changed 
only the sign and value of the cubic energy chirp in the initial distribution using -0.088 
MeV/mm3. The result is shown in Figure (3.7). The initial distribution in Fig.(3.7a) looks 
very similar to the initial distribution in Fig.(3.6a), but the output distribution is 
dramatically different. The spikes in the peak current at the bunch edges are now barely 
visible. We had similar experience in other cases. Every time we artificially made the 
cubic chirp in the initial distribution with the negative sign, we were able to get rid of 
huge spikes in the peak current in the output distribution.  
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Figure (3.6). Longitudinal phase space and the peak current at the beginning of the 
accelerator a) and after electron bunch compression b). Cubic energy chirp in the initial 
distribution is -0.008 MeV/mm3 
 

 

 
 

Figure (3.7) Longitudinal phase space and the peak current at the beginning of the 
accelerator a) and after electron bunch compression b). Cubic energy chirp in the initial 
distribution is -0.02 MeV/mm3 
 
We would like to point out that the distribution in Fig.(3.6b) is “flat” in the energy and in 
the peak current, while the distribution in Fig.(3.7b) is neither “flat” in the energy nor it is 
“flat” in the peak current. By using cubic energy chirp as a knob we were able to get 
either flat distributions or the distribution without spikes rather repeatedly, but not both 
features at the same time. Simply having just one knob is not enough. In the paragraph 
(2.2.2) we showed that one can change the cubic energy chirp by moving the phase of the 
x-band harmonic cavity off-crest and/or by modifying initial peak current distribution and 
the longitudinal wake potential that depends on it. The former seems to be difficult in 
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practice as the high voltage x-band cavity would be needed, but the latter looks possibly 
realistic and must be studied in more details. At least the distribution with the ramped 
peak current discussed in paragraph (2.2.2) gives good results.  

3.3 Second bunch compressor  
 
A schematic of the second bunch compressor is exactly the same as the one for the fist 
bunch compressor shown in Figure (3.3). Twiss functions for this compressor are shown 
in Figure (3.8). Similar to the BC1, the lattice of this compressor is designed such as to 
reduce H  in the fourth bending magnet of the chicane. But, we also designed BC2 lattice 
such as the magnitude of H  in the last bend of the chicane can vary at least within a 
factor of four. There is no any specific physics related to BC2 that we had not already 
addressed in a discussion that we had for BC1. 
 

 
Figure (3.8) Twiss functions of the first bunch compressor and adjacent Linac 3. 

 

3.4 End of the linac and the spreader  
 

Twiss functions of this part of the machine are shown in Figure (3.9) The FODO channel 
after the Linac 4 is designed to provide approximately 135º in the betatron phase advance 
in both planes for emttance measurements using the removable screens marked as solid 
circles on the plot. Downstream from the FODO channel we marked a possible 
convenient place for a deflecting cavity to be used for slice emittance measurement and 
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for slice energy spread measurements at high dispersion points in the spreader. We 
actually designed two variants of the spreader: one with angular separation of two FELs 
and one with parallel separation of two FELs. A schematic of both variants is shown in 
Figure (3.10).  
 The important task for the lattice design of the spreader is to preserve the electron 
beam emittance while the electron bunch propagates the spreader. Basically, all 
 

 
Figure (3.9) Twiss functions of the accelerator part beginning from the Linac 4 and 
ending by the entrance of the FEL. 

 

 
Figure (3.10) A schematic of the spreader: a) the spreader with angular separation and b) 
the spreader with parallel separation. 

 
what is necessary is to contain the effect of CSR on the emittance. Here it is done by two 
means: i) by using the lattice with small H  function in the magnets and ii) by employing 
a scheme of self emittance compensation that we are going to explain now. 
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 Let Eδ be the relative energy loss due to CSR for an electron in the first bend 
magnet of the scheme shown in Fig.(3.10b). Then the kick to the electron trajectory due 
to this energy loss at the end of the first magnet can be written as: 
 ExDx δδ ′=′          (3.6) 
where xD′  is the derivative of the dispersion function at the exit of the magnet. Since we 
use I−  transport between the magnets, then at the entrance of the second magnet this 
kick changes the sign and also the derivative of the dispersion function changes the sign. 
Here we also assume that electrons within the bunch are frozen while moving through the 
spreader and, therefore, the CSR causes the same amount of the energy loss in the second 
magnet as in the first magnet ( as well as in the third and fourth magnets). Thus, we 
obtain at the exit of the second magnet for the kick of the electron trajectory: 
 ExExEx DDDx δδδδ ′−=′−′−=′ 2 ,      (3.7) 
where the first term in the middle part of the formula is due to the kick in the first bend 
and the second term is due to the kick in the second bend. After another I−  transport 
and another kick due to the CSR in the third magnet we get: 
 ExExEx DDDx δδδδ ′−=′−′=′ 2       (3.8) 
Here again the first term in the middle part of the formula is due to two upstream kicks 
and the second term is due to the kick in the third bend. We note that the bending angle in 
the third and the fourth magnets is opposite to the bending angle in the third and the 
fourth magnets and, thus, xD′  after the third magnet has the opposite sign to xD′  after the 
first magnet. After another I−  transport and another kick, we obtain: 
 0≡′−′=′ ExEx DDx δδδ ,       (3.9) 
where the first term in the middle part shows the accumulative kick from three magnets. 
We see here, that at the end, the electron emerges with zero kick, and therefore, there 
must be no emittance excitation. In practice, however, the electron bunch is not 
completely frozen and there is a slight re-arrangement of electrons within the electron 
bunch. Certainly, this compromises a scheme, but not much. In all circumstances, the 
above described scheme is probably the best what one can do in order to contain the 
emittance excitation.  
 Similar analysis repeated for an angular spreader shows that the angle of the 
trajectory acquired in the central magnet should be twice as larger than the one in either 
of the side magnets.  
 Although both spreader schemes work in principle, our current preference is with 
the parallel spreader and this spreader lattice is shown in Fig.(3.9). We note that the 
spreader as it is shown in Fig.(3.9) has a small non-zero 56R =2.4 mm. However, it is easy 
to modify using quadrupoles Q1 and Q2 shown in the Fig.(3.9). These quadrupoles are 
separated by a unit transfer matrix and located near to the positive and negative peaks of 
the dispersion function. Thus, one can simultaneously change their gradients and produce 
a dispersion bump localized between the quadrupoles. By controlling this bump, one 
would be able to regulate the 56R  of the spreader making it to be exactly zero or any 
other reasonable value. In fact, we propose to keep it slightly positive in some cases in 
order to disperse the electrons in the spikes of the peak current at the edges of the 
electron bunch. Figure (3.11) illustrates the idea. Figure (3.11a) shows the original 
distribution, without energy variation in the main part and significant energy variation of 
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the opposite sign in the tails. Figure (3.11b) shows what happens when we increase 56R  
from 2.8 mm to 7 mm. We disperse the electrons in the back spike more strongly and 
produce the anticipated reduction in the peak current.  
 

 
Figure (3.11). Illustration for the effect of the variation of the 56R  in the spreader: a) 

56R =2.8 mm, b) 56R =7 mm.  
 

4. Transverse beam dynamics 
 

The main issue of the study of the transverse beam dynamics is the preservation of a 
small normalized emittance along the Linac. The emittance may be so degraded by single 
particle dynamics effects as by collective effects. If we exclude the contribution from 
Coherent Synchrotron radiation (CSR), already discussed in Section 2.2.3, we may 
summarize the sources of emittance blow up as in Figure 4.1. 
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Figure 4.1 Sources of transverse emittance blow up for an electron beam traveling into a 
linac (CSR is ignored). 
In this Chapter we discuss the sources of emittance blow up in the Fermi Linac, its 
analytical estimations and the simulation results. We anticipate that the Beam Break-Up 
(BBU) instability has been recognized as the main source of emittance dilution; related 
methods for the emittance preservation are also discussed. Special care has been taken in 
the treatment of the chromatic aberrations because of the large energy spread which 
occurs for the magnetic compression of the bunch length. 
 
 
4.1 Transverse dynamics without collective effects 

 
In this Section the emittance excitation due to the single particle dynamics effects is 
discussed. Contributions from the aberrations are evaluated and the effect of quantum 
fluctuations in the dispersive regions is estimated. 

 
 

4.1.1 Chromatic aberrations 
 

Emittance growth due to the chromatic aberration is the consequence of the chromatic 
dependence of the betatron phase advance, which leads to the emittance dilution by 
chromatic filamentation. 

 
 

4.1.1.1 Dipoles 
 

A quadrupolar and sextupolar field component in a dipole with horizontal dispersion ηx 
and horizontal beta function βx will dilute the horizontal emittance through the generation 
of first and second order horizontal dispersion, respectively. Tolerances for the 
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quadrupolar (b1), the sextupolar (b2) component at a radius R from the magnetic axis 
w.r.t. the main field component (b0) are given by [30]: 

 
 

     (4.1) 
 
 

 
    (4.2) 

 
 

If we calculate the multipolar component at half gap R = 20 mm, then an emittance 
growth of less than 1% is guaranteed by (stronger constraint over all dipoles): |b1/b0| < 
0.6×10-4 at BC1 and |b1/b0| < 1.5×10-4 at BC2 as for the quadrupolar component; |b2/b0| < 
1.2×10-4 at BC1 and |b2/b0| < 10×10-4 at BC2 as for the sextupolar component (all results 
are relative to the maximum bending angle admitted, see Section X). Because of the very 
small energy spread at the Spreader (σδ < 0.1%), tolerances about the multipolar 
components in those dipoles are more relaxed. 

 
4.1.1.2 Quadrupoles 

 
The chromatic aberration in a quadrupole is a 2nd order effect in particle coordinate; it 
depends on the integrated quadrupole strength (kl), on the β-function at the quadrupole 
and on the relative energy spread of the particle (σδ): 

 
        (4.3) 

 
The more critical point of the lattice causing chromatic aberration is expected to be in 
proximity of the first bunch compressor (BC1), where the RMS correlated energy spread 
may reach a maximum value of about 3%. (4.3) has been evaluated and summed over all 
the Linac sections, giving a total contribution to the emittance blow up of less than 6%. 
Particle tracking (see, Figure 4.2) confirms the negligible emittance dilution. Tracking 
has been performed using the Elegant code [24], in which the quadrupoles have been 
treated as single-matrix elements including up to 3rd order terms. 
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Figure 4.2 Evolution of the RMS relative energy spread (left) and of the normalized 
transverse emittance (right) along the Fermi Linac. The maximum value for the energy 
spread is in correspondence of BC1. The emittance includes the chromatic contribution, 
as shown by the large values it reaches in the dispersive regions of the lattice (BC1, BC2 
and Spreader); nevertheless, it is preserved as the dispersion returns to the zero level (its 
first incremental step is an artificial effect implemented in the Elegant code for start-to-
end simulation purposes). 

 
 

4.1.2 Geometrical aberrations 
 

Geometrical aberrations describe the dependence of the focusing strength felt by a 
particle on its transverse position at 2nd order. In absence of sextupoles in the Linac, the 
systematic sextupolar component of the dipole field has been recognized as the main 
source of geometrical aberration; any non-systematic octupolar component of the 
quadrupole field is assumed to be much less effective. 

 
 

4.1.2.1 Dipoles 
 

The emittance excitation by geometrical aberration can be estimated in the following 
way: 

 
     (4.4) 

 
The sextupolar component is here defined like the ratio between the higher order field 
component (n=3) and the main dipolar component at an arbitrary distance from the 
magnetic axis. If we assume a half gap of 20 mm for the dipole magnet, a maximum 
sextupolar component of 4×10-4 at 20 mm leads to an emittance excitation of less than 
1%. 

 
 

4.1.3 Quantum fluctuations (ISR) 
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High energy electrons passing through a curved beam transport system emit Incoherent 
Synchrotron Radiation (ISR) [31, 32, 33] and suffer from quantum excitation which is 
not compensated by damping (since there is no acceleration); in such case, the transverse 
emittance increases linearly with time [31]: 

 
   

  (4.5) 
 
 

where I5 is the fifth synchrotron integral and H(s) is the “curly-H” function depending on 
the horizontal dispersion ηx(s) and on the Twiss functions: 

 
     (4.6) 

 
The emittance blow up is calculated from (4.5) integrating over the curved path; for a 
symmetric chicane of identical rectangular magnets we obtain [31]: 

 
 

    (4.7) 
 
 
 

(4.5) shows a strong energy dependence of the emittance blow up and therefore the effect 
becomes only significant for very high beam energies; thus, the largest effect is expected 
to be in BC2 at 600 MeV and in the Spreader at 1.2 GeV. The evaluation of (4.7) for 
BC1, BC2 and the simulation result for the Spreader are summarized in Table 4.1. Notice 
that (4.4) and (4.7) are valid for a phase space ellipse perturbed by the radiation which is 
still matched to the Twiss ellipse of the transport line; this means that we are assuming 
∆εx/εx << 1.  
Results in Table 4.1 demonstrate that the horizontal emittance excitation due to quantum 
fluctuations in the magnetic chicanes and in the Spreader is negligible. This also shows 
that a manipulation of the “curly-H” function in such regions in order to reduce the 
emittance blow up is not necessary. 

 
 
 

Table 4.1 Over-estimated emittance blow up due to the ISR emitted in the dipoles of 
BC1, of BC2 and of the Spreader (calculated for the maximum bending angles admitted 
and for an unperturbed normalized emittance of 1.5 µm). 

 
 ∆εx [µm] ∆εx/εx [%] 
BC1 1.4×10-8 4×10-4 
BC2 1.7×10-6 0.1 
SPREADER < 2×10-6 < 0.3 
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4.2 Trajectory distortion 
 
Alignment and field errors cause trajectory distortion (coherent motion of electrons) and 
emittance blow up (incoherent motion of electrons). The latter has a direct impact on the 
final beam quality, the former becomes an issue if complementing to the collective effect 
induced by the transverse wake fields (see, Section 4.3). In this Section the emittance 
dilution and the trajectory correction scheme are discussed. Results from the trajectory 
correction will be used in the next Section 4.3 for the treatment of the Beam Break-Up 
(BBU) instability. 
Misalignment studies have been performed under the assumption of independent 
mechanical supports for each of the magnetic elements and accelerating structures. 
Ground motion and vibrations have been assumed to be much smaller than the static 
errors applied to the lattice. 
 
 
4.2.1 Misalignment and field errors 
 
Errors in the magnets field and in the elements alignment may lead to a trajectory 
distortion which has to be corrected by mean of a properly arranged scheme of steerers 
and Beam Position Monitors (BPMs). Such errors are also sources of mismatch between 
the beam phase space ellipse and the Twiss ellipse of the transport line. The chromatic 
dependence of the betatron phase advance may determine the chromatic filamentation of 
the phase space and it is responsible for the consequent emittance dilution. In the 
following, some criterions for the estimation of tolerances on the magnets field quality 
and their alignment are presented. 
 
 
4.2.1.1 Dipoles 
 
A roll angle φb of the dipoles in may generate a residual vertical dispersion which in turn 
leads to a vertical emittance dilution. Tolerance for the dipole roll angle is given by [30]: 
 
       
     (4.8) 
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A dipole field error induces emittance blow up through dispersive effect according to 
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where NM is the number of magnets affected by the error
rms
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dipole field error of 5×10-5 contributes to an emittance blow up of less than 1%. 
  
 
4.2.1.2 Quadrupoles 
 
A roll angle φq,1 of a quadrupole in a dispersion free region induces geometrical coupling. 
The tolerance for the quadrupole roll angle is given by [30]: 
 

     
    (4.10) 

 

If we want %1
0

≤
∆

y

y

ε
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, we get the relaxed constraint of φq,1 ≤ 20 mrad (RMS value) for an 

average focusing length f = 1/kl = 5 m and average betas of 20 m. 
In presence of dispersion the skew field component leads to a residual vertical dispersion 
and therefore to the vertical emittance dilution. In this case, the tolerance for the 
quadrupole roll angle becomes [30]: 

 
    (4.11) 

 

The condition %1
0

≤
∆

y

y

ε
ε

 is satisfied by φq,2 ≤ 10 mrad (RMS value) for an uncorrected 

horizontal dispersion of 1 cm and an RMS relative energy spread of 3% (conservative 
values). 
A lateral misalignment of the quadrupole also generates residual dispersion in both planes 
and to avoid a relevant emittance growth the transverse alignment of the magnet has to be 
[30]: 

     
    (4.12) 

 
 

If we want again %1
0

≤
∆
ε

ε , we obtain the important constraint ∆x, ∆y ≤ 110 µm (RMS 

value) for a conservative value of the energy spread σδ = 3%. 
Finally, field errors in both the normal and skew component of the quadrupole gradient 
generate emittance dilution according to [34]: 

     
   (4.13) 

 
where α = kφq,1 and NM is the number of quadrupoles in the line. An RMS gradient error 
σk = 0.1% and an RMS roll angle φq,1 = 300 µm guarantee an emittance blow up of the 
order of 0.1%. 
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4.2.2 Launching error 
 
An optical mismatch of the beam phase space ellipse incoming from the Injector with the 
Twiss ellipse defined by the Linac optics may cause emittance blow up through 
chromatic filamentation. In the pessimistic ipothesis of complete filamentation, a β-
mismatch and a η-mismatch at the beginning lead to, respectively: 
 
      
     (4.14) 
 
 
 

     (4.15) 
 
 
A β-mismatch of 5% may cause an emittance blow up of 13%, while a residual 
dispersion m3105~ −⋅=η with divergence 4105'~ −⋅=η may generate a blow up until 15%. 
At the injection into the Linac, the residual chromatic beam size should not exceed the 

geometrical one; hence in general it has to be 10~
0,

0, ≈<<
δ

β
σ

ση cm. 

In the simulations, the beam incoming from the Injector already includes an optical 
mismatch of few percents in the projected Twiss functions; moreover, their distribution in 
the beam slices is not uniform due to the effect of the space charge dynamics at low 
energy.  
The beam centroid is assumed to be affected by a transverse offset which defines the 
launching error for the beam traveling into the Linac. A lateral displacement of 100 µm 
and an angular divergence of 100 µrad have been applied to the x and y plane. Actually, 
these errors do not match with the phase space described by a given normalized emittance 
of about 1 mm mrad and β-functions of 19 m at their waist; thus, such initial conditions 
over-estimate the realistic launching error and make the simulations a conservative 
scenario. 
 
4.2.3 Trajectory correction 
 
A satisfactory trajectory correction can be obtained in the 120 m long Fermi Linac by 
using 40 pairs of correctors and 40 BPMs, active on both the transverse planes. Each drift 
between two consecutive accelerating structures includes one BPM and one steerer, 
separated by a quadrupole magnet. This scheme allows for providing two different 
methods of correction:  
 

(i) one-to-one trajectory correction, that is each steerer corrects the beam 
position at the BPM located at the end of the downstream accelerating 
structure;  
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(ii) global trajectory correction that is all the steerers and all the BPMs are 
involved in the minimization of the divergence and of the position of the 
beam centroid along the whole Linac.  

 
In the optical matching sections (i.e., at the conjunction of the Injector with the Linac and 
of the Linac with the Undulators Line, in the proximity of BC1 and of BC2) the distance 
between two consecutive steerers (active on the same plane) should not extend for more 
than 5 meters (over which an angular kick error of 0.1 mrad may cause a beam deflection 
of 500 µm).  
The order of magnitude of the angular kicks provided by the field and alignment errors 
have been estimated; they result being much smaller than the average kick which should  
be provided by the steerers for the trajectory correction: 

 
 
 
 

 
(4.16) 

 
 
 

 
In the simulations, BPMs have been misaligned assuming a lateral displacement Gaussian 
distributed with a standard deviation of 150 µm and cutoff at 3-σ. BPMs resolution has 
been supposed to be affected by reading noise Gaussian distributed with a standard 
deviation of 30 µm and a cutoff at 2-σ (thus, the uncertainty in the BPM readout is 
between 0 and 60 µm). This set up forces the trajectory correction to an average kick per 
steerer of 1.5 mrad. Figure 4.3 shows that the RMS off axis-trajectory is within 700 µm 
peak-to-peak in both planes. 
Notice that particle tracking has been performed simulating a realistic operation of the 
machine: the beam centroid is read by the code only at the BPMs locations and the BBU 
instability has been included in the trajectory correction (see, Section 4.3.2) since it 
modifies the transverse distribution of the particles position and finally the computation 
of the centroid position at the BPMs. Figure 4.3 shows an ensemble of trajectories, 
including field errors, elements misalignment and trajectory correction; it is based on the 
pessimistic tolerance errors budget reported in Tables 4.2, 4.3 and 4.4. 
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Figure 4.3 Ensemble of 120 trajectories along the Fermi Linac after correction (Elegant 
result). It includes field errors and elements misalignment reported in the pessimistic 
tolerance errors budget in Tables 4.2, 4.3 and 4.4. The large excursion in the chicanes is 
shown w.r.t the straight path. 
 

Table 4.2 Elements misalignment (RMS values). 
 ∆x, ∆y [µm] ∆z [µm] ∆θ [µrad] 

Dipole - - 300 
Quadrupole 150 200 300 
BPM (30 µm RMS resolut.) 150 200 - 
Acc. Structure 300 - - 

 
 

Table 4.3 Field quality (RMS values). 
 Main field component  

[%] 
Dipole ∆B/B = 0.01 
Quadrupole ∆K1/K1 = 0.1 

 
 

Table 4.4 Launching error 
 Nominal Set Jitter [p-t-p] 
|∆x|, |∆y|      100 µm < 100 µm 
|∆x’|, |∆y’|   100 µrad - 

 
 
 
4.3 Transverse dynamics with collective effects 

 
This Section treats the transverse wake function characterizing the three types of 
accelerating structure which constitute the Fermi Linac [12, 35]. The short-range 
transverse wake field excited by the electron beam passing off-axis in the structures has 
been computed in a semi-analytical way (Section 4.3.1) and then used for the Elegant 
particle tracking. The effect of the wake field on the electron bunch itself has been 
estimated analytically and compared with simulations (Section 4.3.2). The angular kick 
provided to the beam produces a transverse deviation of the bunch tail w.r.t the head (the 
so-called “banana” shape); the bunch tail continues performing transverse coherent 
oscillations as the beam travels along the Linac. The resulting Beam Break-Up (BBU) 
instability has been recognized as the main source of emittance dilution in the Linac. For 
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this reason, possible solutions for the compensation of the induced banana shape have 
been considered; local and non-local methods of trajectory correction have been chosen 
and simulated with success. 

 
 

4.3.1 Transverse wake fields 
 

The knowledge of the short-range wakefields in the accelerating sections is needed to 
predict the beam quality in term of single bunch energy spread and emittance. S0A and 
S0B and CERN sections [12, 35] are traveling wave (TW) structures which work with 
2/3π mode and cells on axis coupled. Figure 4.4 shows a schematic geometry of the TW 
accelerating structure. The Elettra sections [12,  35] are backward traveling wave (BTW) 
structures coupled magnetically which work with 3/4π mode. Figure 4.5 shows a 
schematic view of the BTW accelerating structures. The cells in the BTW structures are 
magnetically coupled, thus demanding a small iris radius compared to the custom 
traveling wave structures; this cause stronger longitudinal and transverse wakefields than 
in the TW structures. For the parameters and basic dimensions of all the accelerating 
structures we send to Table 2.1 in Section 2.2.1. 
 

 

 
 

Figure 4.4 Schematic geometry of the TW accelerating structure (S0A, S0B and CERN 
sections). 

 

 
 

Figure 4.5 Schematic view of the BTW accelerating section geometry (S1-S7). 
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As suggested in Refs. [36, 37], an analytical approximation of the wake function for the TW 
structure (S0A, S0B and CERN sections) may be used for the transverse case: 
 

    
   (4.17) 

 
 
with: 

  
      (4.18) 

 
 
where a is the iris radius, g is the cell gap, L is the cell period and Z0 is the resistance of free 
space. This analytical model has been calculated for geometrical parameters in the region: 
 

 
   (4.19) 

 
 
 
4.3.1.1 Wake function for SOA and SOB structures 
 
With the geometrical parameters in Table 2.1, Section 2.2.1 we obtain for the transverse 
wake function up to 5 mm (s in meters): 
 

 
  (4.20) 

 
 
 
We can observe that in this case the geometrical parameters are not in the validity range: 
a/L=0.292 and g/L=0.91. For this reason it has been decided to check the models for the 
description of the wake functions with numerical simulations. 
 
 
4.3.1.2 Wake function for C structures 
 
As in the previous case, using the parameters in Table 2.1, Section 2.2.1 we obtain for the 
transverse wake function up to 5 mm (s in meters): 
 

 
 (4.21) 

 
 
In this case the parameters a/L=0.323 is not in the validity range; thus the model has been 
checked by numerical simulations. 
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4.3.1.3 Wake function for BTW structures 
 
For this kind of accelerating structure we have studied the short-range longitudinal and 
transverse wake potentials using a time domain code and the results are reported in Ref. 36]. 
From the fit of the numerical wake potentials we have obtained analytical expressions 
approximating the longitudinal and transverse wake functions. As for the analytical model, 
we have chosen a combination of periodic and one-cell structure solutions. The transverse 
wake function up to 2 mm is (s in meters): 
 

 
(4.22) 

 
 
 
Figure 4.6 shows the transverse wake functions for all the accelerating structures involved in 
the Fermi Linac. We can see that S0A, S0B and CERN sections are characterized by 
relatively weak wake fields compared with the S-sections, where the wake fields are largely 
more effective. 
 

 
Figure 4.6 Transverse wake functions for the accelerating structures in the FERMI linac. 

 
 
4.3.2 Beam break-up instability 
 
Beam Break-Up instability (BBU) has been recognized as the main source of emittance 
dilution in the Fermi Linac. An electron beam traveling off-axis in an accelerating 
structure excites the short-range transverse wake field which in turn gives a kick 
distributed along the bunch length. The bunch tail starts oscillating w.r.t. to the head axis, 
so forming in the t-x and t-y plane the so-called “banana” shape. Lasting of such 
oscillations along the Linac and their amplification may cause the beam break up that is 
the total conversion of the bunch time duration into the transverse dimension. Thus, the 
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projected geometric emittance results largely increased and the time structure of the beam 
is lost.  
The relevant wake fields in the S1-S7 Linac sections (see, Figure 4.6, Section 4.2) make 
this part of the layout particularly sensitive to the BBU instability. Possible solutions 
have been considered, referring to the operation of well-known linear colliders. So far, 
the most used techniques in the suppression of the BBU instability are: 
 

o High Order Mode (HOM) dampers for long-range wake fields [38, 39]; 
o Balakin Novohatsky Smirnov (BNS) damping [40, 41, 42, 43]; 
o Local trajectory bumps [44]. 

 
The HOM dampers are not useful for the treatment of the short-range wake fields 
effective in the Fermi Linac.  
The BNS damping foresees an energy-position correlation in the longitudinal phase space 
with a sign opposite to that provided by the dynamics of compression (see, Section 2). 
Even if some of the S1-S7 accelerating structures could be set off-crest (∆φ > 0) in order 
to create such a correlation, the constraints from the FEL process on the final properties 
of the beam like the average energy and mostly the linear energy chirp and the small 
energy spread make the BNS energy balance unfeasible for the present Fermi Linac. The 
BNS damping option would imply the addition of accelerating structures to the present 
layout.  
The option of local trajectory bumps is feasible in the present Fermi Linac. This method 
consists in an empirical search of a “golden” trajectory which makes the kicks provided 
from the wake fields to the bunch compensating each other. In this way the final induced 
banana shape can be cancelled. The goal of this technique is the reduction of the head-tail 
deviation within the nominal RMS beam size.  
 
 
4.3.2.1 Theoretical model 
 
In this section we present an analytical study based on a continuous model which 
describes the transverse motion of a single bunch in presence of transverse wake fields; it 
is contained in Ref. [45] and presented here for reader convenience. Such a study allows 
predicting the emittance growth under the combined influence of the short-range 
transverse wakefields, injection offset, initial emittance and misaligned accelerating 
sections. We also report a comparison between analytical and numerical (tracking code) 
results. 
The main parameters for the last part of the Fermi Linac, called L4 [46], are listed in 
Table 4.5. The effects of the wake fields relative to two bunch lengths with uniform 
current distribution are compared, that is 200 µm full width (FW) for the Short bunch and 
500 µm full width (FW) for the Medium bunch (see, Section 1). 
 

Table 4.5 Nominal parameters for L4. 
Total initial energy γ(0) 1174 
Total final energy γ(1) 2348 
L4 total length L 30.375 
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Peak current Imax 800 
Short bunch FW length lb 200 
Medium bunch FW length lb 500 

m 
A 

µm 
µm 

 
 
As indicated in Refs. [47, 48], in a continuous approximation the transverse motion of the 
relativistic beam in a misaligned accelerator under the influence of the short-range 
transverse wake fields can be modeled by: 
 

(4.23) 
 
where γ(σ) is the energy parameter along the linac; σ = s/L is the distance from entrance 
of the linac normalized to L; ζ = z/lb is the normalized coordinate measured after the 
arrival of the head of the beam at location σ; F(ζ) = I(ζ)/Imax is the instantaneous current 
divided by the maximum current of the uniform current distribution; κ = k/L is the 
focusing wave number k normalized to L; wn(ζ) is the normalized transverse wake 
function; dc(σ) is the lateral displacement of the accelerating sections as a function of 
location along the linac; ε(σ) = (εr γ(0) / γ(σ)) is the dimensionless “coupling strength” 
between the beam and the transverse wakes; εr for the short-range wakes is defined by: 
       

    (4.24) 
 

 
where IA ≅ 17000A, ε0 is the dielectric constant of the vacuum and W0 is the wake 
amplitude. Refs. [48,49] give the general solution of the equation of motion (4.23) for an 
accelerated beam: 
 

 
 
 

    (4.25) 
 
 
where: 

    
 (4.26) 

 
is a new variable for the longitudinal beam location along the linac.  
In (4.25) x0 and x0’ are the lateral displacement and the angular divergence, respectively, 
of the bunch at the entrance of the linac; they are time independent; ψ(σ) = γ(σ)/γ(0) with 
γ(σ) = 1 + Gσ and G the acceleration gradient; δc = ψ1/4dc; in(κr; ς) and jn(κr; ς) are 
defined in ref. [48] in terms of Bessel functions and contain only powers and circular 
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functions; in(κr; ς)*δc is the convolution of in and δc. With the assumption x0 and x0’ time 
independent, it is fn(ζ) = gn(ζ) = hn(ζ) and they are defined by the recursion relations in 
Ref [48]. An analytical expression approximating the transverse wake function for BTW 
sections has been obtained in Section 4.3.1 in units of V/C/m2; notice that it depends on 
the total bunch length lb. Table 4.6 reports the values for the Short and the Medium bunch 
cases, together with the dimensionless parameter εr. 
 
Table 4.6 Coupling strength εr in (4.24) as function of the parameters of the Short and 
Medium bunches and their related wake potential amplitudes. 

 
lb W0 ζ1 εr 

[µm] [V/C/m2]   
200 
500 

1.048⋅1016 

1.713⋅1016 
0.600 
0.240 

8.620 
35.241 

 
Figure 4.7 shows on the left the normalized wake functions for the Short and Medium 
bunch cases together with their linear approximation. On the right, the functions fn(ζ), 
gn(ζ),and hn(ζ) up to n=2 (terms of higher order are negligible and the sum in (4.25) 
converges very fast). Using linear wakes instead of wake functions, the relative errors in 
the general solution (4.25) is about 20%. 
 

  
Figure 4.7: left, comparison between wake functions (Medium bunch: black line, Short 
bunch: blue line) and their linear approximation w(ζ) = ζ (red dashed line); right, 
functions fn(ζ), gn(ζ), and hn(ζ) up to the 2nd order for the Medium and Short bunches. 
 
4.3.2.1.1 Effect of an initial lateral displacement 
 
If we consider the effects of an initial lateral offset of the beam in an aligned accelerator, 
we may assume for the general solution (4.25) x0’ = 0 and dc(σ) = 0. Figure 4.8 shows the 
emittance growth as a function of position along the linac for the Short (a) and the 
Medium (b) bunch case. We have used two focusing wave numbers which cover 
approximately the range of the optics in L4. We can see that between the Short and the 
Medium case there is a factor 10 in the emittance growth. 
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Figure 4.8: Normalized emittance growth along L4 in the Short (a) and Medium (b) 
bunch case. 
 
In order to confirm the analytical results, they have been compared to the results from the 
Elegant tracking code. Figure 4.9 shows the lateral displacement (a) and the angular 
divergence (b) as a function of the position inside the bunch at L4 end for an initial offset 
of 200 µm. We can observe an excellent agreement between the analytical and the 
numerical results. 
 
We have repeated the comparison for different initial offsets and the results are listed in 
Table 4.7. The comparisons have been performed even for the Medium bunch case, 
confirming once more the good agreement (not shown here). There are two discrepancies 
between the tracking and the analytical solution: (i) in Elegant we have foreseen a 
normalized focusing strength that does not change with the linac energy, while the 
analytical case foresees a focusing strength that decreases with the linac energy, i.e. k(σ) 
= kr/√ψ(σ). For this reason we need small corrections on the focusing strength in the 
analytical model w.r.t. the tracking; (ii) we have found slight discrepancies in the centroid 
offset at the linac end, even if it has not influence on the calculation of the normalized 
projected emittance. 

(a) (b) 



 51

  
Figure 4.9: Comparison between analytical (blue circles) and tracking (red line) results 
for the lateral displacement (a) and angular divergence (b) at the L4 end due to an initial 
offset of 200 µm in the Short bunch case. 
 
Table 4.7 Comparison between analytical solution and ELEGANT tracking with FW 
bunch length of 200 µm and different initial offset X0. 

 ELEGANT Analytical 
X0 εn,rms εn,rms 

[µm] [µrad] [µrad] 
50 
100 
150 
200 
250 
300 
500 

0.08 ⋅ 10-2 

0.33 ⋅ 10-2 

0.75 ⋅ 10-2 

1.32 ⋅ 10-2 

2.07 ⋅ 10-2 

2.97 ⋅ 10-2 

8.24 ⋅ 10-2 

0.08 ⋅ 10-2 

0.34 ⋅ 10-2 

0.76 ⋅ 10-2 

1.34 ⋅ 10-2 

2.10 ⋅ 10-2 

3.02 ⋅ 10-2 

8.40 ⋅ 10-2 
 

 
4.3.2.1.2 Effect of misaligned BTW accelerating structures 
 
Here we want to consider the effects of the misaligned BTW accelerating structures with 
null lateral offset and null angular divergence of the beam at the entrance of the linac. We 
assume in the general solution (4.25) x0 = 0 and x0’ = 0. The specific case where the 
accelerating sections are all misaligned by the same amount dc is here considered. Figure 
4.10 shows the normalized lateral displacements as a function of position inside the 
bunch at linac end for the Short and the Medium bunch case. We can see that the 
displacement of the bunch tail at linac end increases about by a factor 5 from the Short to 
the Medium bunch. Table 4.8 lists the normalized emittance growth for different 
misalignments dc of the BTW accelerating sections, for both the bunch length considered. 
In the Short bunch case the emittance growth is limited, while for the Medium bunch the 

(a) (b) 
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emittance growth becomes important if the misalignment of the cavities is more than 100 
µm.  
 

 
Figure 4.10: Normalized lateral displacements as a function of the position inside the 
bunch at the L4 end in the Short (red line) and Medium (blue line) bunch case. 
 
 
Table 4.8 Normalized emittance growth for different misalignments of the BTW 
accelerating sections dc. 
 

 Short bunch Medium bunch 
dc εn,rms εn,rms 

[µm] [µrad] [µrad] 
50 
100 
150 
200 
250 
300 
500 

0.10 ⋅ 10-2 

0.38 ⋅ 10-2 

0.86 ⋅ 10-2 

1.53 ⋅ 10-2 

2.39 ⋅ 10-2 

3.44 ⋅ 10-2 

9.55 ⋅ 10-2 

0.10 
0.40 
0.90 
1.60 
2.49 
3.59 
10.67 

 
 
4.3.2.2 Control of the BBU induced banana shape 
 
The ensemble of trajectories including field errors, elements misalignment and trajectory 
correction plotted in Figure 4.3, Section 4.2.3 is here considered. The tracking is based on 
the pessimistic tolerance errors budget reported in Tables 4.2, 4.3 and 4.4, Section 4.2.3. 
The corresponding typical banana shapes induced by the BBU instability have been 
plotted at the Linac end in Figure 4.11. The banana shape is the representation of the 
transverse particle coordinate vs. the bunch duration; it is analytically described by the 
general solution (4.25).  
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We associate at each banana a parameter defined by the transverse deviation of the bunch 
tail w.r.t. the head in units of (unperturbed) RMS beam size; it is called Ratio in Figure 
4.11. It shows that the banana shape obtained after a simple trajectory correction in the 
Fermi Linac, hence without any particular approach to preserve the emittance, is about 
6.5 times (RMS value) the RMS beam size over 600 fs bunch duration; its maximum 
excursion is 2 mm with respect the bunch head. This numbers would compromise the 
FEL process [50].  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 Banana shapes in the horizontal (top) and vertical (bottom) plane at the Linac 
end. Each curve in the left plots corresponds to one of the 120 trajectories shown in 
Figure 4.3, Section 4.2.3. On the right, the distribution of the amplitude of the banana 
shape, for each plane. The parameter Ratio_StDev is defined as the RMS transverse 
deviation of the bunch tail w.r.t. the head in unit of (unperturbed) RMS beam size. 
 
For this reason a local bump has been applied at the beginning of the Linac region where 
the transverse wake fields are strongest. Figure 4.12 shows that the change of sign of the 
horizontal trajectory after the bump in the following structures allows for compensating 
the emittance dilution and for reducing the final banana shape to the level of 1-σ. This 
means that a particular trajectory has been found so that all the kicks distributed along the 
Linac compensate each other.  
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Figure 4.12 Evidence of BBU instability in the horizontal plane, before the local 
trajectory bump (top plots) and after the bump (bottom plots). From left to right: electron 
bunch trajectory, evolution of the normalized transverse emittance along the Linac and 
banana shape in the horizontal plane at the Linac end. Before the bump, the horizontal 
emittance exploits as the bunch enters the S1 accelerating structure (top centre); the final 
banana shape covers 600 µm in the transverse plane (top right). After the bump, the 
horizontal trajectory (in green) changes its sign (bottom left) allowing for the emittance 
preservation until the Linac end (bottom centre); here, the banana shape is reduced to the 
level of 1-σ (bottom right). 
 
 
 
 
 
4.3.2.2.1 Effect of trajectory jitter on the banana shape 
 
Unfortunately, local methods of correction have the disadvantage to be dependent on the 
particular conditions of operation at their specific location; in this case, jitters may be a 
source of error of the local correction. For this reason, a study of the trajectory jitter – 
generated by a jitter in the beam launching error – has been performed and jitter in the 
banana shape computed. Figure 4.13 demonstrates that a properly corrected banana shape 
is not dramatically affected from this jitter, since it remains below the 1-σ level. 
However, a non-local correction performed using many bpms and steerers distributed 
along the Linac results to be equally efficient and allows for reducing the maximum 
strength required by the steerers for the emittance preservation. 
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Figure 4.13 Effect of the launching error jitter on the banana shape at the end of the 
Linac. Initially, the BBU instability is completely suppressed in the horizontal plane 
(RatioX < 0.1) and only partially in the vertical plane (RatioY = 2.3) (not shown here). 
After adding the jitter, the trajectory bump is perturbed. The banana shape that was 
completely compensated still remains below the 1-σ level (RatioX_StDev = 0.4, left 
plot), while the banana shape only partially compensated is now excited and degrades the 
transverse emittance (RatioY_StDev = 4.5, right plot). 
 
 
4.4 Transversal acceptance and error tolerances 
 
4.4.1 Beam size and aperture  
 
The optics in the Fermi Linac from the Injector end to the Spreader end is shown in 
Figure 4.14. Horizontal dispersion in the two chicanes corresponds to the bending angles 
for the compression of the Medium bunch. Table 4.9 shows that, regarding the beam size, 
the chromatic contribution to the emittance is the only important difference between the 
different machine setups and it is always much bigger than the geometrical one. 
 
 
Table 4.9 Chromatic and geometrical contributions to the horizontal emittance in the 
dispersive regions of the Fermi Linac. A parallel Spreader has been considered here (see, 
Section 3.4) 
 

Location Beam Size SHORT MEDIUM LONG 
ηxσδ  [mm] 3.1 5.7 4.0 BC1 
σβ        [mm] 0.20 
ηxσδ  [mm] 0.7 1.9 2.6 BC2 
σβ        [mm] 0.150 
ηxσδ  [mm] 0.130 SPREADER 
σβ        [mm]  0.050  
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Figure 4.14 Fermi Linac optics from the Injector end (beam average energy is 95 MeV) 
to the Spreader end (beam average energy is 1180 MeV). Horizontal dispersion in the 
two magnetic chicanes is here determined by the compression parameters for the Medium 
bunch. 
 
 
We now consider the geometrical ( βε g ) and the chromatic (ηxσδ) contributions to the 
beam size and we define uoa the off-axis displacement of the bunch centroid (as it results 
after the trajectory correction); then, the “beam stay clear” condition will be defined by: 
 

    (4.27) 
 

It includes a margin of error of 20% and defines to the half width of the vacuum chamber 
accommodating the beam along the Linac. An RMS geometrical emittance is here 
considered and a Gaussian transverse distribution of the particles coordinate is assumed. 
Figures 4.15 and 4.16 show respectively the behaviour along the Linac of the RMS 
geometrical emittances and of the RMS correlated energy spread (Medium bunch case). 
The incremental step of the emittances in the first part of the Linac is a trick implemented 
in the Elegant code to over-estimate their final value. Basing on results shown in Figure 
4.14, 4.15 and 4.16, we can see that in dispersion free regions, h.bsc (4.27) assumes its 
maximum value in the horizontal plane at the beginning of the Linac:  
 

h.bsc = 3.1 mm (max. value in dispersion free regions)                (4.28) 
 
We are considering an RMS normalized emittance εn = 1.5 µm and uoa = 1 mm. Because 
of the symmetry of optics in the two planes and of the round beam injected into the 
Linac, the same upper limit is still valid for the vertical plane. 
 

( )oaxg ubsch ++⋅= 2)(32.1. δσηβε
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Figure 4.15 Behaviour of the RMS geometrical emittances along the Fermi Linac for the 
Medium bunch case. Chromatic contribution to the emittance is included, as shown by 
the fast growth in the dispersive regions of the chicanes. 

 
 

 
Figure 4.16 Behaviour of the correlated RMS energy spread along the Fermi Linac for 
the Medium bunch case. 
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Special care has to be taken as for the horizontal motion in the chicanes. For the detailed 
evaluation of the width of the vacuum chamber in such regions we send to Section X. 
Briefly, we report here some results based on the consideration of two options: a fixed 
and large vacuum chamber and a smaller movable one. As for BC1, the maximum 
transverse displacement of the bunch centroid w.r.t the straight path is within the range 
0.165 m < ηx < 0.255 m. The total width of the vacuum chamber shall be: 

 
fix_width = 13.0 cm for the fixed option, 

(4.29) 
mov_width = 4.5 cm for the movable one. 

 
As for BC2, the maximum transverse displacement of the bunch centroid w.r.t the 
straight path is within the range 0.156 m < ηx < 0.240 m. The total width of the vacuum 
chamber shall be: 

fix_width = 10.5 cm for the fixed option, 
(4.30) 

mov_width = 2.4 cm for the movable one. 
 
Referring to Table 4.7 and looking at Figure 4.14, we can calculate h.bsc for the Spreader 
in presence and in absence of dispersion, respectively: 
 

h.bsc = 1.7 mm (max. value in dispersive regions) 
(4.31) 

h.bsc = 1.5 mm (max. value in dispersion free regions) 
4.4.2 Misalignment 
 
Analytical calculations and simulations predict in agreement some tolerances on the 
alignment of the magnetic elements and of the accelerating structures in order to avoid 
emittance blow up (see, Section 4.2); they are summarized in Table 4.10.  Such 
tolerances are not sufficient to avoid the BBU instability; nevertheless, it has been 
demonstrated (see, Section 4.3) that the instability can be counteracted by mean of a 
proper management of the trajectory correction. In general, suppression of BBU is made 
easier end more efficient as the misalignment of the elements in the lattice is reduced. 
Simulations suggest that the suppression of BBU without trajectory bumps should require 
beam based alignment technique in the Linac. 
Tolerances on the launching error at the beginning of the Linac are given below; they 
include the contribution from the jitter in the bunch centroid position and divergence: 
 

|∆x|, |∆y| < 100 µm    
(4.32) 

|∆x’|, |∆y’| < 100 µrad    
 
 
Table 4.10 Tolerances for elements misalignment, RMS values. They are consistent with 
BPMs resolution of 30 µm RMS and with maximum correction strength of 2 mrad 
provided by the steerers. 
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 ∆x, ∆y   ∆z   ∆φRoll 
 [µm] [µm] [mrad] 

DIPOLE - - 0.8 
QUADRUPOLE 100 150 1.0 
BPM 100 150 - 
ACC. STRUCT. 300 (100) - - 

 
 
 
4.4.3 Field quality 
 
Results from Section 4.2 are here summarized in Table 4.11-14 in form of tolerances for 
the magnetic field quality, in order to reduce the emittance blow up due to filamentation 
below the 1% level. Multipolar components [51] for the dipole magnets are evaluated at a 
radius R = 20 mm; bn,0 is the main field component according to the index of the magnet 
(n=0 for dipole, n=1 for quadrupole, etc…).  

 
 

Table 4.11 Tolerances for the main field component of dipoles and quadrupoles magnet.  
 

 |∆bn/ bn,0| 
DIPOLE BC1 1 × 10-5 
DIPOLE BC2 1 × 10-5 
DIPOLE SPREADER 1 × 10-5 
QUADRUPOLE 1 × 10-4 

 
 
 

Table 4.12 Field quality tolerances in BC1, RMS values. θb=0.085 rad, σδ=2.8%, γ=450. 
 

 B11 B12 B13 B14 
βx  [m] 30 20 15 10 
ηx  [m] ≤ 0.02 0.25 0.25 ≤ 0.02 
|b1/ bn,0|  [%] 0.06 0.006 0.007 0.11 
|b2/ bn,0|  [%] 1.5 0.012 0.014 2.8 
|b4/ bn,0|  [%] 100 0.05 0.06 100 

 
 
 
 

Table 4.13 Field quality tolerances in BC2, RMS values. θb=0.080 rad, σδ=1.0%, γ=1174. 
 

 B21 B22 B23 B24 
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βx  [m] 17 14 11 10 
ηx  [m] ≤ 0.02 0.22 0.22 ≤ 0.02 
|b1/ bn,0|  [%] 0.15 0.015 0.018 0.20 
|b2/ bn,0|  [%] 10.6 0.10 0.11 14.1 
|b4/ bn,0|  [%] 100 0.5 0.5 100 

 
 
 

Table 4.14 Field quality tolerances in the Spreader (option of four dipoles for parallel 
undulators lines), RMS values. θb=0.055 rad, σδ=0.1%, γ=2348. 
 

 BS1, BS3 BS2, BS4 
βx  [m] 3 2 
ηx  [m] 0.1 ≤ 0.01 
|b1/ bn,0|  [%] 0.8 9.1 
|b2/ bn,0|  [%] 100 100 
|b4/ bn,0|  [%] 100 100 

 
 

Tolerances for the multipolar field components for BC1 are a factor (2.5)n stronger than 
those for LCLS because of the larger energy spread foreseen for Fermi (σδ=2.8%); 
tolerances for dipoles in BC2 are comparable to those for LCLS, instead. Field quality for 
dipoles in the Spreader is much more relaxed than in the BCs. In all cases the tolerances 
result to be pretty relaxed, they have been set to 100%.  
 
 
4.4.4 Optical mismatch at the injection 
 
Analytical calculations in Section 4.2 and preliminary results from jitter studies in time-
dependent simulations suggest some tolerances on the optical mismatch of the electron 
beam phase space with the Twiss ellipse at the beginning of the Linac. They are listed 
below, in order to avoid an emittance dilution larger than 10% (pessimistic scenario): 

 
      

                    and  (4.33) 
 

 
 
 
 

5. Tracking studies without errors 
 

For particle tracking through the accelerator we used three codes: LiTrack [16], Elegant 
[23] and IMPACT [24] (see also Attachment B). Typically, the initial plan for a 
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formation of the electron bunch at the end of the accelerator was made analytically and 
then was tested and re-optimized with LiTrack. As was mentioned before, the transverse 
particle motion at this stage of the accelerator design was not important. Then, the 
LiTrack simulations were followed with simulations performed using Elegant and 
recently with IMPACT using completed machine lattice. The output longitudinal 
distribution produced by all three codes (as well as the evolution of this distribution along 
the accelerator) always agreed rather accurately (see, Figure (5.1)). This confirms our 
original estimation that CSR and LSC wake potentials contribute only weakly to the 
formation of the electron bunch on a large scale comparable to the bunch length. We note 
that LiTrack simulation does not include CSR and LSC. Occasionally, minor tweaking of 
the RF settings in Elegant was required to compensate for small differences caused by the 
CSR wakes which, actually, were overestimated in simulations because the effect of the 
shielding existing on a large scale was not included there.  
 

 
Figure (5.1) The plot of the longitudinal phase space for the medium bunch case with 
ramped peak current in the injector: a) tracking with LiTrack using initial rms energy 
spread of 2 keV, b ) tracking with Elegant (green) and IMPACT (red) using initial rms 
energy spread of 10 keV 
 
In all tracking studies with Elegant and IMPACT we used the output of the injector 
simulations. However, we artificially scaled the average emittance to approximately 1.5 
mm-mrad in anticipation that a true emittance will likely be worse than produced in the 
injector simulations. In most cases the initial distribution had variations of the slice 
emittance along the electron bunch and we preserved these variations in the emittance 
scalling. Finally, we did not model the laser heater and simply assumed that it creates the 
uncorrelated Gaussian distribution of electron energies. In this case we assumed that this 
distribution dominates the original distribution from the injector and use the same slice 
energy distribution over the entire bunch (excluding edges).  
 Performing simulation with Elegant we switched off LSC effect because of the 
problem with the numerical noise described before. We considered including LSC into 
simulations with IMPACT, but at the time of writing this part of the IMPACT is still in 
the testing mode. Typically we repopulated particle distribution produced in the injector 
up to 2M macro particles for simulations with Elegant and up to 20M macro particles for 
simulations with IMPACT. This re-populating preserved all global characteristics of the 
original distribution. 
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5.1 Short bunch case 
 
Short bunch case was primarily designed for a beginning of the machine commissioning 
with a relatively small bunch charge. The list of the electron beam parameters for this 
case is given in Table (5.1). All settings for RF voltages and phases for all four linac 
phases and for values of 56R  in the two bunch compressors are given in the Table (5.4) 
which is a joint table for three bunch configurations.  
 
Table (5.1). Electron beam parameters for a short bunch case. 

 
Bunch charge 
Beam energy 
Peak current (beam core) 
Bunch duration (full width, beam core)
Slice energy spread (rms, beam core) 
Slice emittance (rms, beam core) 
Laser heater (energy spread rms) 
Compression factor in BC1  
Compression factor in BC2  

0.33 
1.2 
800 
200 
150 
1.5 
8 

3.0 
3.5 

nC 
GeV 
A 
fs 
keV 
µm 
keV 

 
The electron distribution in the longitudinal phase space and a histogram of the peak 
current at the end of the accelerator are shown in Figure (5.1) and (5.2). 
 

 
Figure (5.1) Density plot showing the distribution of the electron relative energy spread 
versus time for a short bunch case. 
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Figure 8: A histogram of the electron beam peak current. 

 

5.2 Medium bunch case 
 
The electron beam parameters for a medium bunch case are given in the Table (5.2). 
Except for the bunch charge and the bunch length they are very similar to the parameters 
in the short bunch case. We also add to the table a new parameter flatness which we use 
to characterize the quadratic energy chirp in the electron distribution at the end of the 
accelerator. Two numbers in the table correspond to the two variants of the medium 
bunch case discussed below. 
 
Table (5.2). Electron beam parameters for a medium bunch case. 
 
Bunch charge 
Beam energy 
Peak current (beam core) 
Bunch duration (full width, beam core)
Slice energy spread (rms, beam core) 
Slice emittance (rms, beam core) 
Laser heater (energy spread rms) 
Compression factor in BC1  
Compression factor in BC2 
Flatness  
 

0.8 
1.2 
800 
700 
150 
1.5 
9 

~4.0 
2.5 

10/0.2 

nC 
GeV 
A 
fs 
keV 
µm 
keV 
 
 
MeV/ps2 

 
Figures (5.3) and (5.4) show the electron distribution in the longitudinal phase space and 
a histogram of the peak current for two variants M2_GPT_08_8_10_10nov05 and 
M6_GPT_08_17_14may19 obtained with Elegant. All detail regarding these 
configurations are given in the Table (5.4). The first variant was prepared using the 
standard parabolic peak current distribution in the injector and the second variant was 
prepared using the ramped peak current distribution in the injector. Figure (5.5) show the 
plot of the slice emittance at the beginning of the accelerator and at the end of the 
accelerator for M6_GPT_08_17_14may19. According to this plot, there is no growth of 
slice emittance during acceleration and compression. It was observed not only in this 
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case, but in all other case including long bunch cases. The variation of the slice emittance 
seen in Figure (5.5) is due to the ramped peak current in the injector. We note that the 
smallest emittance is at the head of the electron bunch. This can have a useful implication 
because head electrons radiate in the final stage of the harmonic cascade FEL with 
toughest requirement to the electron beam emittance.  
 

 
Figure (5.3) Variant M2_GPT_08_8_10_10nov05. Density plot showing the distribution 
of the electron relative energy spread versus time and histogram of the peak current. 
 

 
 
Figure (5.4) Variant M6_GPT_08_17_14may19. Density plot showing the distribution of 
the electron relative energy spread versus time and the histogram of the peak current. 
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Figure (5.5) Slice emittance at the beginning (a) and at the end of the accelerator (b) for 
the variant M6_GPT_08_17_14may19. 
 

5.3 Long bunch case 
 
The electron beam parameters for a long bunch case are given in the Table (5.3) where 
two numbers for flatness correspond to the two variants discussed below. 
 
Table (5.3). Electron beam parameters for a long bunch case. 
 
Bunch charge 
Beam energy 
Peak current (beam core) 
Bunch duration (full width, beam core)
Slice energy spread (rms, beam core) 
Slice emittance (rms, beam core) 
Laser heater (energy spread rms) 
Compression factor in BC1  
Compression factor in BC2 
Flatness  
 

1.0 
1.2 
500 
1400 
150 
1.5 
12 

~2.0 
~3.0 
3/0.2 

nC 
GeV 
A 
fs 
keV 
µm 
keV 
 
 
MeV/ps2 

 
Figures (5.6) and (5.7) show the electron distribution in the longitudinal phase space and 
a histogram of the peak current for two variants L2_Astra2_1_12_16_24jan06 
and L5_... obtained with Elegant. All detail regarding these configurations are given in 
the Table (5.4). The first variant was prepared using the standard parabolic peak current 
distribution in the injector and the second variant was prepared using the ramped peak 
current distribution in the injector. Figure (5.8) show the plot of the slice emittance at the 
end of the accelerator for L6_Astra2_1_12_16_9june06. 
 

 
 
Figure (5.6) Variant L2_Astra2_1_12_16_24jan06. Density plot showing the distribution 
of the electron relative energy spread versus time and histogram of the peak current. 
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Figure (5.7) Variant L6_Astra2_1_12_16_9june06. Density plot showing the distribution 
of the electron relative energy spread versus time and the histogram of the peak current. 
 
 

 
Figure (5.8) Slice emittance for a variant L2_Astra2_1_12_16_24jan06  (a) and for a 
variant  L6_Astra2_1_12_16_9june06  (b). 
 
 
Table (5.4). Basic linac and compressor parameters. 
 

Configuration 
Short 

standard 
Medium 
standard 

Medium 
ramped 

Long 
standard 

Long 
ramped 

Output file name 

S3_GPT
4_043_8
_15_7oc

t05 

M2_GPT_
08_8_10_1

0nov05  

M6_GPT_
08_17_14

may19  

L2_Astra2_
1_12_16_24

jan06    

L6_Astra2
_1_12_16
_9june06  

  

Injector file name 

GPT200
kp_4_5p
s330pC_
4 

GPT200kp_
9ps800pC_

S0B_2 

Medium_ra
mp_n7wak

es 

Astra200kp_
10ps1nC_2_

wakes 

Astra200kp
_10ps1000

pC_5 
Charge, nC 0.33 0.8 0.8 1 1
Linac-1: voltage (MV) 47x4 47x4 47x4 47x4 47x4
Linac-1: phase (deg)  55.6 54 54 46.25 65
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X-band: voltage (MV) 19.1 17 18 19.1 -18
X-band: phase (deg) -90 -88 -90 225 90
Linac-2: voltage (MV) 47x3 47x3 47x3 47x3 47x3
Linac-2: phase (deg)  90 70 70 85 72
Linac-3: voltage (MV) 120x2 120x2 120x2 120x2 120x2
Linac-3: phase (deg)  90 70 70 75 72
Linac-4: voltage (MV) 120x5 120x5 120x5 120x5 120x5
Linac-4: phase (deg) 90 70 109 72 109
BC1: R56 (m) -0.0285 -0.026 -0.028 -0.026 -0.028
BC2: R56 (m) 0 -0.0162 -0.016 -0.0395 -0.034

 
 
 
6.  Effect of errors 
 

This paragraph addresses jitter studies in the various configurations of the 
FERMI@ELETTRA linac, such as medium and long bunch cases. In fact, FEL 
operations foresee stringent requirements for the stability of the linac output parameters: 
electron bunch arrival time, relative peak current and relative mean energy. In order to 
understand the sensitivity of these parameters to jitters of various error sources along the 
linac an elaborate study using tracking codes has been performed. In paragraph 6.1 we 
describe effect of errors on longitudinal dynamics and as a result we created a tolerance 
budget to be used as guidance in the design of the linac upgrade. Furthermore we report 
slice jitter analyses on flatness of the longitudinal phase space that is another critical 
parameter in FEL process. 
In paragraph 6.2 we present tracking studies with errors using Elegant code to generate 
input files for FEL simulations… 
The tolerance budget has been also adopted as a collection of rms values for input 
parameters to perform global jitter analysis by means of Elegant code [24]. In this way 
the results between LiTrack and Elegant  are compared. 
 
 
6.1  Effect of errors on longitudinal dynamics 
 

For sensitivities studies we have used LiTrack code [16]. It is a macro-particle 
fast tracking program that follows longitudinal position and relative energy deviation of 
the particles. LiTrack handles linac acceleration and bunch compression. Acceleration is 
applied as a sinusoidal variation and bend systems are described simply by their 1st, 2nd, 
and 3rd order path length vs. energy coefficients (R56, T566, and U5666) and the nominal 
energy. Wakefields of accelerating structures are included by convolving a point charge 
wake with the evolving temporal distribution. Figure (6.1) shows the 
FERMI@ELETTRA layout which is mainly composed by four Linacs, from Linac 1 to 
Linac 4, and two bunch compressors (BC1 and BC2). Layout also foresees a X-band 
cavity as linearizer for longitudinal phase space and a laser heater to suppress 
microbunching instability (see section 2). 
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FEL operations presume different options for the electron bunch length which foresee 
different configurations for parameters in the FERMI@ELETTRA. Here we present 
studies for medium (M) and long (L) bunch length. In addition, each option foresees a 
different particle distribution out of photo-injector: with parabolic (M2 and L2) and 
ramped (M6 and L4) peak currents. In Table (6.1) we collect nominal compression, R56 
terms in bunch compressions (BC), and acceleration parameters, amplitude and phase of 
accelerating sections in linacs, used in longitudinal tracking simulations and sensitivity 
studies.  
 

 
Figure (6.1) Layout of the FERMI@ELETTRA linac used in sensitivity studies with 
LiTrack. 
 
Table (6.1) Nominal parameters, compression (BC1 and BC2) and acceleration, for 
different configurations of the FERMI@ELETTRA linac: medium bunch cases M2 and 
M6 and long bunch cases L2 and L4. Bunch charge is 800 pC and 1 nC respectively for 
long and medium bunch case. In parenthesis values of R56 used in Elegant. Phase 
reference is 0 deg for “on crest”. 

Parameters Sy. M2 M6 L2 L4 Unit 
Laser heater σdE/E 8·10-5 1.5·10-4· 1.2·10-4 1.2·10-4  
L1 RF voltage V1 188 188 188 188 MeV 
L1 RF phase φ1 -36 -36 -39 -25 S-band deg 
LX RF voltage Vx 17 18 14 18 MeV 
LX RF phase φx 182 180 135 180 X-band deg 
L2 RF voltage V2 141 141 141 141 MeV 
L2 RF phase φ2 -20 -20 -5 -18 S-band deg 
L3 RF voltage V3 240 240 240 240 MeV 
L3 RF phase φ3 -20 -20 -15 -18 S-band deg 
L4 RF voltage V4 600 600 600 600 MeV 
L4 RF phase φ4 -20 19 0 5 S-band deg 
BC1 R56_1 -2.67 

(-2.60) 
-2.87 

(-2.80) 
-2.77 

(-2.60) 
-2.95 

(-2.80) 
cm 
cm 

BC2 R56_2 -1.65 
(-1.62) 

-1.67 
(-1.60) 

-3.70 -3.40 cm 
cm 

 
 
6.1.1  Simulation technique 
  
 In this part we describe the simulation technique used for sensitivity studies. In 
the case of small jitter errors we can consider the dependence between input random 
variable X and output parameters Y as: 
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abXcXXfY ++== 2)(        (6.1) 
 
where X is random variable normally distributed with density of probability px(x) and 
mean zero. 
The statistical parameters on Y are: 
 

∫
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The probability distribution is: 
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and xi roots of y = f(x). With these conditions the statistical parameters on Y are: 
 

acY X += 2σˆ          (6.6) 
 

22422 2 XXY bc σσσ +=         (6.7) 
 
For a desiderated RMS tolerance σY the RMS jitter tolerance on parameter X is: 
 
• if c≠0 
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• if c=0 (Y linearly depends on X) 
 
 222

XY b σσ =          (6.9) 
 
 
6.1.2 Jitter sensitivities and tolerance budget 

  
In this section we report the results on the beam jitter sensitivities, which have 

been used to form a tolerance budget. In paragraph 6.1.2.1 and in particular for medium 
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bunch case M2 we describe the method used to form the tolerance budgets. For other 
cases M6, L2 and L4 we only report the sensitivity and tolerance tables. 
6.1.2.1 Medium bunch cases 

 
Table (6.2) lists sensitivities for RF phase, RF voltage and chicane bend power supplies 
for the different systems along the two stage compressor linac. Each sensitivities, 
independently, causes a 10% peak current increase, 0.1% relative mean energy increase 
and 150fsec final timing increase. In general the sensitivities are approximately linear 
apart when a linac is operated on crest or in particular cases as in the relative peak current 
∆I/I versus  gun timing ∆t0 indicated in figure (6.2) (upper center). In table (6.2) the 
parabolic dependence is indicated in bold text.  
 
Table (6.2) Individual RMS sensitivities psen for medium bunch case M2. Each cause 
∆I/I0=+10% peak current change or ∆E/E0=+0.1% final relative energy change or ∆t = 
150fsec final timing change. Parabolic dependence in bold text. 
Parameters Sy. Unit ∆I/I0=+10% ∆E/E0=+0.1% ∆t=+150fsec
L1 RF phase φ1 S-band deg -0.26 -0.65 -0.19 
LX RF phase φx X-band deg 0.92 -3.99 10.70 
L2 RF phase φ2 S-band deg -4.09 1.92 -1.89 
L3 RF phase φ3 S-band deg -2.39 1.13 -1.11 
L4 RF phase φ4 S-band deg >10 0.32 >10 
L1 RF voltage ∆V1/V1 % -10.09 -0.53 0.25 
LXRF voltage ∆Vx/Vx % 8.61 5.62 2.28 
L2 RF voltage ∆V2/V2 % -7.47 1.30 -1.20 
L3 RF voltage ∆V3/V3 % -4.34 0.76 -0.71 
L4 RF voltage ∆V4/V4 % >20 0.20 >20 
Gun timing ∆t0 psec 3.16 0.47 -2.52 
Initial charge ∆Q/Q % -13.98 -14.50 18.25 
BC1 chicane ∆B1/B1 % -1.07 -0.25 -0.22 
BC2 chicane ∆B2/B2 % -2.01 -0.57 -0.27 

 
In addition figure (6.2) plots rms final relative mean energy ∆E/E and rms final timing 
jitter ∆tf versus gun timing jitters ∆t0 (upper plots) and relative charge variations ∆Q/Q at 
the injector (lower plots).  Upper left plot in figure (6.2) indicates that a 2.5 psec gun 
timing jitters causes a 150 fsec final timing jitter while upper right plot in figure (6.2) 
indicates that a 0.47 psec gun timing causes a 0.1% relative electron beam energy jitter in 
the undulator. Another critical part, from sensitivity point of view, is linac 1 which 
sensitivities are reported in figure (6.3). 
The sensitivities reported in table (6.2) are used to generate a tolerance budget based on 
summing random, uncorrelated effects [1]: 
 

 1
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1

2
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


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p
p

        (6.10) 
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The sensitivities psen in table (6.2) are weighting values for the summation in (6.10). If the 
tolerance are chosen such that, ptol < psen for all i, a budget is formed. Table (6.3) lists 
three possible tolerance budgets. If the first budget (fourth column in table (6.3)) is used, 
the relative peak current fluctuations at the linac end will be held to <10% rms. 
Analogous considerations can be done for fifth and sixth columns in table (6.3). If the 
smaller tolerance from each column is applied (bold text), all three performance 
requirements (|∆I/I|<10%, |∆E/E|<0.1% and |∆tf|<150fsec) will simultaneously be met. 
We can see from table (6.3) that the relative mean energy jitter is the leading output 
parameter to fix the tolerance on photo-injector and linacs. Furthermore we want to point 
out that between voltage and phase of the accelerating section and photo-injector 
parameters there is a give-and-take, that is photo-injector parameters could be looser if 
voltage would be  tighter and vice versa. 
 
 

 
Figure (6.2) Rms final relative mean energy ∆E/E, relative peak current ∆I/I and final 
timing jitter ∆tf as a function of gun timing jitter ∆t0 (upper plots) and relative initial 
bunch charge variations ∆Q/Q (lower plots). 
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Figure (6.3) Rms final relative mean energy ∆E/E, relative peak current ∆I/I and final 
timing jitter ∆tf as a function of RF phase (upper plots) and RF amplitude (lower plots) in 
LINAC 1. 
 
 
 
Table (6.3) Medium bunch case (M2) tolerance budget (ptol) for <0.1% RMS final 
relative mean energy, < 10% RMS peak current jitter or < 150fsec final timing jitter. The 
tighter tolerance is in BOLD text and all criteria are satisfied if the tighter tolerance is 
applied. 
Parameters Sy. Unit |∆I/I0|=10% |∆E/E0|=0.1% |∆t|=150fsec 
L1 RF phase φ1 S-band deg 0.15 0.15 0.10 
LX RF phase φx X-band deg 0.50 0.60 0.70 
L2 RF phase φ2 S-band deg 0.50 0.20 0.40 
L3 RF phase φ3 S-band deg 0.20 0.15 0.20 
L4 RF phase φ4 S-band deg 0.70 0.10 1.00 
L1 RF volt. ∆V1/V1 % 0.70 0.15 0.15 
LXRF volt. ∆Vx/Vx % 0.60 1.00 0.50 
L2 RF volt. ∆V2/V2 % 0.50 0.15 0.20 
L3 RF volt. ∆V3/V3 % 0.30 0.10 0.15 
L4 RF volt. ∆V4/V4 % 1.40 0.08 1.00 
Gun timing ∆t0 psec 0.35 0.30 0.50 
Initial charge ∆Q/Q % 5.00 4.00 5.00 
BC1 chicane ∆B1/B1 % 0.07 0.02 0.02 
BC2 chicane ∆B2/B2 % 0.14 0.04 0.02 
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Table (6.4) collects the sensitivities for medium bunch case M6 with ramped 
current distribution out of photo-injector. The sensitivities of the relative peak current and 
final timing are approximately the same as case M2. The final relative mean energy 
become more sensible, up to factor 2, to phase and amplitude of the linac 1, linac 2 and 
linac 3. This fact likely depends on different current distribution out of photo-injector 
because the phase and amplitude in linacs of case M6 are the same as linacs of case M2. 
In addition we point out that in this case the final timing becomes more sensible to timing 
jitters out of photo-injector. In fact a 1.66 psec gun timing jitter causes a 150 fsec final 
timing jitter. 
In the same manner as case M2 these sensitivities are used to form a tolerance budget and 
results are reported in table (6.5). Obviously seen the different sensitivities of the 
parameters with respect to final relative mean energy jitter between case M2 and M6 the 
tolerance budget for case M6 becomes more stringent to satisfy the requirement on final 
energy. In particular we point out that the tolerance on relative amplitude in linac 4 
should be in the order of magnitude of 5·10-4 and an initial timing jitter out of photo-
injector of 250 fsec. 
 
 
 
Table (6.4) Individual RMS sensitivities psen for medium bunch case M6. Each cause 
∆I/I0=+10% peak current change or ∆E/E0=+0.1% final relative energy change or ∆t = 
150fsec final timing change. Parabolic dependence in bold text. 
Parameters Sy. Unit ∆I/I0=+10% ∆E/E0=+0.1% ∆t=+150fsec
L1 RF phase φ1 S-band deg -0.26 0.27 -0.18 
LX RF phase φx X-band deg 0.85 -3.35 9.81 
L2 RF phase φ2 S-band deg -4.24 0.96 -1.87 
L3 RF phase φ3 S-band deg -2.48 0.56 -1.10 
L4 RF phase φ4 S-band deg >10 -0.33 >10 
L1 RF voltage ∆V1/V1 % 13.42 0.48 -0.24 
LXRF voltage ∆Vx/Vx % 11.05 -3.85 2.06 
L2 RF voltage ∆V2/V2 % -7.91 0.63 -1.19 
L3 RF voltage ∆V3/V3 % -4.60 0.37 -0.70 
L4 RF voltage ∆V4/V4 % >20 0.20 >20 
Gun timing ∆t0 psec 3.31 0.42 -1.66 
Initial charge ∆Q/Q % -35.73 -8.31 18.67 
BC1 chicane ∆B1/B1 % -1.56 1.59 -0.20 
BC2 chicane ∆B2/B2 % -2.22 0.52 -0.27 

 
 
6.1.2.2 Long bunch cases 
 
Table (6.6) and table (6.8) collect sensitivities, respectively, for case L2 and L4. Case L4 
is with ramped current distribution out of photo-injector. As in previous paragraph these 
sensitivities have been used to form tolerance budgets for case L2 and L4 reported, 
respectively, in table (6.70 and table (6.9).  
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Table (6.5) Medium bunch case M6 tolerance budget (ptol) for <0.1% RMS final relative 
mean energy, <10% RMS peak current jitter or <150fsec final timing jitter. The tighter 
tolerance is in BOLD text and all criteria are satisfied if the tighter tolerance is applied. 
Parameters Sy. Unit |∆I/I0|=10% |∆E/E0|=0.1% |∆t|=150fsec 
L1 RF phase φ1 S-band deg 0.20 0.10 0.10 
LX RF phase φx X-band deg 0.50 0.30 0.70 
L2 RF phase φ2 S-band deg 0.50 0.10 0.40 
L3 RF phase φ3 S-band deg 0.20 0.10 0.20 
L4 RF phase φ4 S-band deg 0.70 0.10 1.00 
L1 RF volt. ∆V1/V1 % 1.00 0.10 0.15 
LXRF volt. ∆Vx/Vx % 0.80 0.50 0.50 
L2 RF volt. ∆V2/V2 % 0.80 0.10 0.20 
L3 RF volt. ∆V3/V3 % 0.50 0.10 0.15 
L4 RF volt. ∆V4/V4 % 1.50 0.05 1.00 
Gun timing ∆t0 psec 0.35 0.25 0.35 
Initial charge ∆Q/Q % 5.00 3.00 4.00 
BC1 chicane ∆B1/B1 % 0.15 0.10 0.02 
BC2 chicane ∆B2/B2 % 0.25 0.03 0.02 

 
 
 
Table (6.6) Individual RMS sensitivities psen for long bunch case L2. Each cause 
∆I/I0=+10% peak current change or ∆E/E0=+0.1% final relative energy change or ∆t = 
150fsec final timing change. In Linac 4 is operated on crest and a phase variation can 
only decrease the final energy. Parabolic dependence in bold text. 
Parameters Sy. Unit ∆I/I0=+10% ∆E/E0=+0.1% ∆t=+150fsec
L1 RF phase φ1 S-band deg -0.71 0.81 -0.15 
LX RF phase φx X-band deg 2.93 -5.57 1.73 
L2 RF phase φ2 S-band deg -3.36 3.58 -3.11 
L3 RF phase φ3 S-band deg -1.77 0.94 -0.67 
L4 RF phase φ4 S-band deg >10 3.03 >10 
L1 RF voltage ∆V1/V1 % 1.53 2.21 -0.21 
LXRF voltage ∆Vx/Vx % -4.76 25.77 3.31 
L2 RF voltage ∆V2/V2 % -7.66 0.82 -0.52 
L3 RF voltage ∆V3/V3 % -6.63 0.50 -0.31 
L4 RF voltage ∆V4/V4 % >20 0.20 >20 
Gun timing ∆t0 psec -1.17 0.51 2.94 
Initial charge ∆Q/Q % >40 10.56 10.16 
BC1 chicane ∆B1/B1 % 1.72 -0.85 -0.23 
BC2 chicane ∆B2/B2 % -2.58 2.22 -0.12 
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From tables (6.7) and (6.9) we can see that the relative mean energy jitter and final timing 
jitter are the leading output parameter to fix the tolerance on photo-injector and linacs in 
both cases. The principal different between tolerance budgets in case L2 and L4 is in 
initial bunch charge variations and relative voltage of the X-band. In fact tolerance 
budget for case L2 satisfies requirement on final timing jitter if fluctuations of relative 
amplitude of X-band and initial bunch variations are, respectively, held less than 0.30 % 
rms and 3% rms in the summation 6.10. These values are needed because in the case L2 
final timing jitter is more sensible to phase of linac 1 than in the case L4. The sensitivity 
is 1.6 times more stringent in case L2 than in case L4. How seen in previous medium 
case tolerances on initial charge variations and timing jitter out of photo-injector could 
become looser if, in general, tolerances on parameters of the linacs, such as phase and 
amplitude of linac 1, will be tighter. 
 
 
 
Table (6.7) Long bunch case L2 tolerance budget (ptol) for <0.1% RMS final relative 
mean energy, <10% RMS peak current jitter or <150fsec final timing jitter. The tighter 
tolerance is in BOLD text and all criteria are satisfied if the tighter tolerance is applied. 
Parameters Sy. Unit |∆I/I0|=10% |∆E/E0|=0.1% |∆t|=150fsec 
L1 RF phase φ1 S-band deg 0.30 0.20 0.09 
LX RF phase φx X-band deg 0.70 0.50 0.50 
L2 RF phase φ2 S-band deg 0.50 0.40 0.20 
L3 RF phase φ3 S-band deg 0.25 0.10 0.10 
L4 RF phase φ4 S-band deg 1.50 0.25 0.60 
L1 RF volt. ∆V1/V1 % 0.30 0.25 0.10 
LXRF volt. ∆Vx/Vx % 0.60 1.90 0.30 
L2 RF volt. ∆V2/V2 % 1.00 0.10 0.10 
L3 RF volt. ∆V3/V3 % 0.90 0.10 0.10 
L4 RF volt. ∆V4/V4 % 2.50 0.08 1.20 
Gun timing ∆t0 psec 0.80 0.35 0.40 
Initial charge ∆Q/Q % 10.00 4.00 3.00 
BC1 chicane ∆B1/B1 % 0.15 0.06 0.02 
BC2 chicane ∆B2/B2 % 0.20 0.15 0.01 
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Table (6.8) Individual RMS sensitivities psen for long bunch case L4. Each cause 
∆I/I0=+10% peak current change or ∆E/E0=+0.1% final relative energy change or ∆t = 
150fsec final timing change. Parabolic dependence in bold text. 
Parameters Sy. Unit ∆I/I0=+10% ∆E/E0=+0.1% ∆t=+150fsec
L1 RF phase φ1 S-band deg -0.52 0.87 -0.25 
LX RF phase φx X-band deg 1.30 -4.42 9.79 
L2 RF phase φ2 S-band deg -2.23 1.16 -1.06 
L3 RF phase φ3 S-band deg -1.29 0.68 -0.62 
L4 RF phase φ4 S-band deg >10 -1.36 >10 
L1 RF voltage ∆V1/V1 % 1.32 1.59 -0.21 
LXRF voltage ∆Vx/Vx % -25.15 -13.90 2.04 
L2 RF voltage ∆V2/V2 % -7.25 0.74 -0.60 
L3 RF voltage ∆V3/V3 % -4.21 0.43 -0.35 
L4 RF voltage ∆V4/V4 % >20 0.20 >20 
Gun timing ∆t0 psec 8.70 0.50 -4.44 
Initial charge ∆Q/Q % -20.65 -9.75 11.69 
BC1 chicane ∆B1/B1 % 1.17 -0.64 -0.26 
BC2 chicane ∆B2/B2 % -1.67 0.95 -0.13 

 
 
 
Table (6.9) Long bunch case L4 tolerance budget (ptol) for <0.1% RMS final relative 
mean energy, <10% RMS peak current jitter or <150fsec final timing jitter. The tighter 
tolerance is in BOLD text and all criteria are satisfied if the tighter tolerance is applied. 
Parameters Sy. Unit |∆I/I0|=10% |∆E/E0|=0.1% |∆t|=150fsec 
L1 RF phase φ1 S-band deg 0.30 0.12 0.10 
LX RF phase φx X-band deg 0.70 0.50 0.70 
L2 RF phase φ2 S-band deg 0.50 0.15 0.25 
L3 RF phase φ3 S-band deg 0.25 0.10 0.15 
L4 RF phase φ4 S-band deg 1.50 0.15 1.00 
L1 RF volt. ∆V1/V1 % 0.30 0.15 0.10 
LXRF volt. ∆Vx/Vx % 2.00 0.90 0.60 
L2 RF volt. ∆V2/V2 % 1.60 0.15 0.15 
L3 RF volt. ∆V3/V3 % 0.90 0.10 0.10 
L4 RF volt. ∆V4/V4 % 2.00 0.08 1.20 
Gun timing ∆t0 psec 1.00 0.35 0.60 
Initial charge ∆Q/Q % 6.00 4.00 5.00 
BC1 chicane ∆B1/B1 % 0.08 0.04 0.02 
BC2 chicane ∆B2/B2 % 0.10 0.06 0.02 
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6.1.3 Global jitter studies 
 

Tolerance budget has been adopted as RMS value for input parameters, such as 
phase and voltage in accelerating sections and R56 in chicanes, for Latin Hypercube 
Sampling (LHS). In this way it has been possible to get randomly sets of jitter inputs to 
run LiTrack in several situations of error of the linac. Statistical analysis on global output 
parameters as mean energy, peak current and final timing have confirmed the tolerance 
budget. Further statistical analyses have been done on various number of slice inside the 
bunch with a fixed slice length of 10 fsec. 

Latin Hypercube Sampling (LHS) method is here described as reported in [52]. 
LHS method is a stratified random procedure, provides an efficient way of sampling 
variables from their distributions [53]. The LHS involves sampling ns values from the 
prescribed distribution of each of k variables X1, X2,…Xk. The cumulative distribution 
for each variable is divided into N equiprobable intervals. A value is selected randomly 
from each interval. The N values obtained for each variable are paired randomly with the 
other variables. Unlike simple random sampling, this method ensures a full coverage of 
the range of each variable by maximally stratifying each marginal distribution. 
The LHS can be summarized as: 

• divide the cumulative distribution of each variable into N equiprobable intervals; 
• from each interval select a value randomly, for the ith interval, the sampled 

cumulative probability can be written as [54]: Probi = (1=N)·ru+(i -1)/N where ru 
is uniformly distributed random number ranging from 0 to 1; 

• transform the probability values sampled into the value x using the inverse of the 
distribution function F-1: x = F-1(Prob); 

• the N values obtained for each variable x are paired randomly (equally likely 
combinations) with the ns values of the other variables. 

 
 
6.1.3.1 Medium bunch cases 

 
Figures (6.4) shows statistical results on 400 seeds, that is on 400 different 

configurations of the accelerations, compressions and photo-injector parameters for case 
M2 (upper plots) and M6 (lower plots).  
From figure (6.4) we can see that for case L4 when tolerance budget in table (6.9) is 
applied to global jitter analysis the requirements on relative peak current and timing 
jitters at the linac end are respected better than in the case L2 (in particular on peak 
current). 
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Figure (6.4) Histograms for medium bunch case M2 (upper plots) and M6 (lower plots) 
of the relative peak current ∆I/I0 (left), final relative mean energy ∆E/E0 (center) and final 
timing jitter ∆tf (right). I0 is the nominal peak current and E0 is the nominal mean energy. 
 
 
 
 
 
 
6.1.3.2 Long bunch cases 
 

Figures (6.4) shows statistical results on 400 seeds, that is on 400 different 
configurations of the accelerations, compressions and photo-injector parameters for case 
M2 (upper plots) and M6 (lower plots).  
In long bunch case global jitter analysis shows that when tolerance budget in tables (6.7) 
and (6.9) are, respectively, applied to case L2 and L4 the requirements on output 
parameters at the linac end are respected better in case L2 than in case L4.  
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Figure (6.5) Histograms for long bunch case L2 (upper plots) and L4 (lower plots) of the 
relative peak current ∆I/I0 (left), final relative mean energy ∆E/E0 (center) and final 
timing jitter ∆tf (right). I0 is the nominal peak current and E0 is the nominal mean energy. 
 
 
6.1.4 Slice jitter studies on longitudinal phase space 
 

Another requirement for particle distribution at the linac end is to have a flat 
longitudinal phase space. As previously explained we performed slice jitter studies (400 
seeds for each case) and for each seed the energy variation in the central part of the bunch 
have been described by following function: 
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The flatness of the longitudinal phase space can be defined as the average quadratic 
component in the energy chirp ( 2â ) and rms fluctuation of this number (

2aσ ). 
 
6.1.4.1 Medium bunch cases 
 

Table (6.10) collects statistical parameters of the polynomial coefficients of eq. 
(6.11) that fit the E-t data, E(ti) to Ei, in a least squares sense. M2 and M6 cases are 
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reported and we can see that quadratic energy chirp is 1.8 times less in M6 than in M2 
while relative rms fluctuations are similar in both cases.  
Figure (6.6) shows set of 10 randomly chosen seeds for medium bunch case M2 (a) and 
M6 (b) (left plots) together with relative first derivative of the energy with respect to time 
inside the bunch with quadratic chirp (central plots) and with quadratic chirp removed 
(right plots).  In medium case M2, using a seed laser with a linear frequency chirp will 
allow compensating for a frequency chirp due to a quadratic energy variation in the 
electron beam while in case M6 quadratic chirp has been reduced using a ramped current 
distribution out of photo-injector. 
 
Table (6.10) Statistical parameters of the polynomial coefficients for medium bunch case 
M2 and M6. 

Medium bunch case M2 
 Unit mean rms rms/mean % 
a0 MeV 1138.24 1.183 0.10 
a1 MeV/psec 2.170 2.690 123.96 
a2 MeV/psec2 6.450 2.210 34.26 

Medium bunch case M6 
 Unit mean rms rms/mean % 
a0 MeV 1140.86 1.140 0.10 
a1 MeV/psec 0.0138 1.410 10220.94 
a2 MeV/psec2 3.570 1.030 28.95 

 
 
 
6.1.4.2 Long bunch cases 
 
As in previous medium case Table (6.11) collects statistical parameters of the polynomial 
coefficients of eq. (6.11) that fit the E-t data, E(ti) to Ei, in a least squares sense. L2 and 
L4 cases are reported and we can see that quadratic energy chirp is 2.5 times less in L4 
than in L2 while relative rms fluctuations are different in the two cases, respectively, 
12.5% in L2 and 48.5% in L4.  
Figure (6.7) shows set of 10 randomly chosen seeds for long bunch case L2 (a) and L4 
(b) (left plots) together with relative first derivative of the energy with respect to time 
inside the bunch with quadratic chirp (central plots) and with quadratic chirp removed 
(right plots).  As in the medium case M2, using a seed laser with a linear frequency chirp 
will allow compensating for a frequency chirp due to a quadratic energy variation in the 
electron beam for long case L2. From figure (6.7) we can see that, as in the medium case 
M6 even in the long bunch L4 quadratic chirp has been reduced using a ramped current 
distribution out of photo-injector as we can see from figure (6.7). 
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Figure (6.6)  Set of 10 randomly chosen seeds for medium bunch case M2 (a) and M6 (b) 
(left plots) together with relative first derivative of the energy with respect to time inside 
the bunch with quadratic chirp (central plots) and with quadratic chirp removed (right 
plots). 
 
 
 
Table (6.11) Statistical parameters of the polynomial coefficients for long bunch case L2 
and L4. 

Long bunch case L2 
 Unit mean rms rms/mean % 
a0 MeV 1188.00 1.040 0.09 
a1 MeV/psec -0.356 1.010 -285.01 
a2 MeV/psec2 2.530 0.317 12.50 

Long bunch case L4 
 Unit mean rms rms/mean % 
a0 MeV 1192.62 1.22 0.10 
a1 MeV/psec 0.446 0.828 185.67 
a2 MeV/psec2 1.010 0.492 48.50 

 
 

(a) 

(b) 
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Figure (6.7)  Set of 10 randomly chosen seeds for long bunch case L2 (a) and L4 (b) (left 
plots) together with relative first derivative of the energy with respect to time inside the 
bunch with quadratic chirp (central plots) and with quadratic chirp removed (right plots). 
 
 
 

6.2 Tracking studies with errors 
 
Consistent s2e simulations from the RF gun to the photon beam taking in account errors 
along different parts of the injector, the linac and the undulator were performed . Here are 
presented the preliminary results from Elegant tracking, with errors in the linac and in the 
photo-injector for medium case M2. Two codes were used: GPT [55] for photo-injector 
and Elegant for linac part. 84 different output particle distributions in the 6D phase space 
from GPT were randomly generated and converted to the Elegant input format. The 
particle distribution was tracked under the combinated influences of the linac errors with 
rms values taken from Table 6.5. As a result there are 84 output particle distributions at 
the linac end which were used as inputs in the FEL simulations. Statistical analysis on 84 
different particle distributions obtained from Elegant are in good agreement with LiTrack 
results:  ∆I=I < 9.2% rms, ∆E=E < 0.092% and ∆tf < 93fs.It is interesting to notice that in 
GPT and Elegant runs charge and bunch compression variations were not accounted for. 

(a) 

(b) 
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Figure (6.8) Histograms for medium bunch case M2 of the relative peak current ∆I/I0 
(left), final relative mean energy ∆E/E0 (center) and final timing jitter ∆t (right) obtained 
by means of Elegant simulations. I0 is the nominal peak current and E0 is the nominal 
mean energy. 
 
 

Appendix A: 6D parallel tracking code IMPACT 
 
IMPACT is a suite of parallel particle-in-cell codes, designed for modeling high intensity, 
high brightness beams in rf proton linacs, electron linacs and photoinjectors. It consists of 
two parallel particle-in-cell tracking codes (one is longitudinal position-dependent and 
one is time-dependent), an rf linac lattice design code, an envelope matching and analysis 
code, and a number of pre- and post-processing codes. The present version of IMPACT 
can treat intense beams propagating through drifts, magnetic quadrupoles, magnetic 
soleniods, magnetic dipole, and rf cavities, using map integrator and nonlinear Lorentz 
integrator. It has a novel treatment of rf cavities, in which the gap transfer maps are 
computed during the simulations by reading in rf fields on axis calculated using 
SUPERFISH code. The goal is to avoid time-consuming (and unnecessary) fine-scale 
integration of millions of particles through the highly z-dependent cavity fields. Instead, 
fine-scale integration is used to compute the maps (which involve a small number of 
terms), and the maps are applied to particles (this is analogous to the technique used to 
simulate beam transport through magnets with fringe fields). Recent additions include 
new capabilities for modeling short range longitudinal and transverse wakefields as well 
as 1D CSR wakes. 
 Both parallel particle tracking codes of the IMPACT suite assume a quasi-static 
model of the beam and calculate space-charge effect self-consistently at each time step 
together with the external acceleration and focusing fields. The 3D Poisson equation is 
solved by depositing the charge onto an adaptive 3D Cartesian grid and solving for the 
potential on the grid in the beam frame. The resulting electrostatic fields are Lorentz 
transformed back into the laboratory frame to obtain the space-charge forces of the beam. 
There are six Poisson solvers in the IMPACT code, corresponding to transverse open or 
closed boundary conditions with round or rectangular shape, and longitudinal open or 
periodic boundary conditions. These solvers use either a spectral method for closed 
transverse boundary conditions, or a convolution-based Green function method for open 
transverse boundary conditions. The convolution for the most widely used open boundary 
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condition Poisson solver is calculated using an FFT with doubled computational domain. 
The computing time of this solver scales like NxLog(N), where N is number of grid 
points. The parallel implementation is based on a two-dimensional domain 
decomposition approach for the three-dimensional computational domain. 
 Typical IMPACT simulations at NERSC are run with a few millions to a few 
tens million particles, though smaller and larger runs are possible. 
 

Appendix B: Simulations using a Vlasov solver 
 
Direct numerical solution of the Vlasov equation represents a complementary approach to 
the more prevalent method of simulating beam dynamics by macroparticle traking. In 
particular a Vlasov solver offers the advantage of being immune from the statistical 
fluctuations stemming from using a limited number of macroparticles, which may 
interfere with a correct interpretation of the results when studying the microbunching 
instability. Small scale structures are more easily resolved and the unfolding of 
instabilities more accurately characterized. Moreover, in contrast to semi-analytical 
studies based on the linearized Vlasov equation, numerical solutions of the full equation 
can be used to investigate saturation effects, which may be important. 

It should be pointed out, however, that the Vlasov solver should not be expected 
to substitute the macroparticle simulations as the burden both in terms of developing 
suitable numerical algorithms and usage of computational resources limits the 
dimensionality of phase space that can be explored. At this time only a 2D phase-space 
solver is available while significant more effort will have to be made for an upgrade to 
4D. Moreover, the physics that can be currently investigated with the existing solver is 
limited in practice to short-scale effects of collective forces (microbunching). 
 Studies based on numerical solutions of the Vlasov equation should be seen as 
occupying a middle ground between the semi-analytical analysis based on the linearized 
Vlasov equation and macroparticle simulations. 

Here we briefly discuss the application of the 2D longitudinal phase-space Vlasov 
solver that was recently developed and used to produce the data reported in Figure (2.17). 
The solver implemented as a Fortran code finds numerical solutions of the equation: 
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is the collective force expressed in terms of an impedance per unit length Z(k) and the 
Fourier transform of the longitudinal bunch density (with the sign in (B.2) dependent on 
the definition of Z(k)). The existing code allows to include models of impedance 
describing space charge, coherent synchrotron radiation (CSR), and RF structure wake 
fields. Space charge is modeled [56] in free space and in the approximation that the beam 
can be represented as a charge distribution with circular cross section and uniform 
transverse density. CSR [21] evaluated in free space on the assumption that the bunch 
follows a trajectory with uniform radius of curvature. This excludes transition effects 
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through the entrance and exit of bending magnets. The model of RF structure wake fields 
uses the frequency domain formulation of the wake potentials reported in Sec. 2.2.2. 
However, In the study discussed here the RF structure wake fields were not included. 

The numerical solution of (B.1) is found using a variation of the time-splitting 
method that was already used to study the longitudinal beam dynamics in storage rings 
[57]. A technical complication arising when treating single pass systems and in particular 
bunch compressors is the presence of a large correlation in the beam density in the z-
δ plane. The method implemented in the code goes around this complication by solving 
Eq. (B.1) in a new coordinate system where the correlation is removed. In the new 
coordinates the density function for the beam is represented on a rectangular grid with 
adapting cell sizes to follow the bunch compression in the longitudinal coordinate (and 
the corresponding stretching in canonical momentum). For a detailed description of the 
method we refer to [26]. 

A possible concern regarding the study of a purely longitudinal phase space is the 
seeming neglect of the smearing effect to microbunching caused by a finite transverse 
emittance. While it is true that a complete accurate assessment of the effect of transverse 
emittance should entail the inclusion of the dynamics in the horizontal plane as well, we 
argue that it is possible in 2D to account for this smearing in an approximate but 
meaningful way by introducing an effective low-pass filter in the evaluation of the 
collective force. In particular we contend that (B.2) should be replaced with  
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where 
 22 ''2;2 DDDDHH xxxx βαγεσ ++==⊥      (B.4) 
For a derivation of (B.3) see [57]. Some confidence in the validity of the above model of 
emittance-induced smearing can be obtained from comparison with predictions from 
linear theory [22] in the regime where linear theory applies. Incidentally, such 
comparisons have also been successfully used to provide general validation of the coding. 
In Figure B1 we show the comparison between the gain curves as calculated from linear 
theory [22] (solid line) and the Vlasov solver (red dots) for BC1 in the presence of CSR 
only. The gain plotted is the ratio between the amplitude of a sinusoidal charge-density 
modulation for a given frequency at the exit and entry of the bunch compressor. The 
amplitude is understood to be expressed in units of the peak current (which is different at 
entrance and exit because of compression). The beam is a flattop with gaussian energy 
spread. We assumed a beam with vanishing transverse emittance, 10 KeV rms energy 
spread, and 233 MeV energy. As shown in the picture good agreement was found after an 
appropriate choice of the grid size and integration steps. 

Figure B2 shows the gain curves for a beam that in addition travels through 
approximately 36 m of transport line (including linac 1) before entering the bunch 
compressor. Again, the gain curves are evaluated at the exit of BC1. In this case space-
charge effects are significant and are included in the calculation. The two figures contrast 
the case with vanishing and with εx=1 µm normalized transverse emittance. Notice how 
the transverse emittance smearing effect substantially reduces the gain. Good agreement 
is found with linear theory. In the case with vanishing transverse emittance the Vlasov 
solver simulation is done without the low-pass filter in Eq. (B.3), however, a value 
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εx= εy=1 µm is assumed for the purpose of determining the transverse sizes for space-
charge caclulations. The dependence of the space-charge force on the transverse size of 
the beam is treated slightly different in the two models. In the Vlasov code the local value 
of the transverse rms size (depending on the beta functions) is used so that the “effective” 
beam radius appearing in the impedance model is taken as rb

2= [1.3 (σx
2 + σy

2)]2. The 1.3 
factor is an attempt to tune the model to reflect the fact that the form of the transverse 
charge density of the actual beam is closer to Gaussian than uniform. For the linear 
theory calculation a constant in z transverse size is assumed. The parameter rb for the 
linear theory was adjusted to fit the gain curve against the Vlasov solver calculation. The 
same value, rb =0.27 mm was then used to produce both pictures in Figure B2.  
 

 
 
Figure B1. Gain curve for bunch-compressor BC1 in the presence of CSR (no space 
charge) as determined by linear theory (solid line) and from the numerical solutions of 
the Vlasov equation (red dot). Rms energy spread σΕ=10 ΚeV; E=233 MeV; vanishing 
transverse emittance; peak current I=95 A (before compression); compression factor 3.52. 
 
 

    
 
Figure B2. Gain curves through for L1+BC1 in the presence of  CSR and space charge 
(with space charge excluded in BC1) as determined by linear theory (solid line) and from 
the numerical solutions of the Vlasov equation (blue dots). σΕ=10 ΚeV; smearing effect 
of transverse emittance is included in the left but not in the right picture. 
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Having demonstrated consistency of results from the Vlasov solver with linear theory (at 
least over a portion of the FERMI accelerator) in the regime of small modulation 
amplitude where linear theory applies, we extended the calculation to include the linac 2 
and linac 3 and the second bunch compressor BC2. The goal was to study the effect of 
shot noise in the development of the microbunching instability and determine its impact 
on the uncorrelated rms energy spread on the beam past BC2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B3. Longitudinal phase space at selected locations along the linac-
bunch/compressor complex starting from a noisy flat top bunch with gaussian rms energy 
spread; s=0 corresponds to the start of the laser-heater section. The top left pictures is 
taken at the exit of BC1; top right picture is taken at the entrance of BC2 and the 
remaining two after the BC2 third and fourth dipole. The coordinate q is  the longitudinal 
coordinate in units of 1 mm,  p is the uncorrelated energy in MeV. 
  
The initial beam density is a flattop in charge density and Gaussian in the (uncorrelated) 
energy spread. The shot noise was modeled by perturbing the initial, smooth density 
function in phase space with random noise specified as follow. Having denoted with (q,p) 
the pair of canonical coordinates (q is a normalized longitudinal coordinate, p the energy) 
the density function f = f(qi,pj) is represented on a Cartesian grid with cells of size ∆q and 
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∆p. Indicate with fij
(0) = f (0)(qi,pj) he smooth density; we set the initial density with 

random noise to fij= fij
(0)(1 + ξij) where ξij is a stochastic variable with normal law 

distribution, vanishing average and variance σξ = Nij
-1/2, where Nij = N fij

(0)∆q∆p is the 
number of electrons contained in the ∆q∆p cell of phase space. An example of the beam 
phase space at selected locations along the linac is reported in Figure B3 for a specific 
realization of the initial density with shot noise.  

The calculation indicates that most of the energy modulation induced by space 
charge (the dominant collective effect) takes place between BC1 and BC2. By the time 
the beam reaches the second bunch compressor these fluctuations are sufficiently large to 
cause the instability to reach saturation, as indicated by the two bottom figures. We 
emphasize that in this calculation space charge and CSR are the only collective effects 
present. The overall bunch compression of 10 was distributed between bunch 
compression factors 3.52 and 2.84 in BC1 and BC2 respectively. These factors were 
obtained by suitable adjustment of the beam correlation at the start of linac 1 and by 
inserting an additional zero length cavity before BC2. The latter is necessary to 
compensate for the fact that in this model we lack the additional correlation caused by the 
RF structure wake fields. 

Projection of the 2D phase-space density can then be made to determine the linear 
charge density profile and energy distribution and its variance. We repeated the 
calculation by varying the rms energy spread for the initial density in an attempt to model 
the effect of the laser heater. It should be pointed out however, that while we used a 
Gaussian distribution in (uncorrelated) energy spread the form of the beam distribution 
emerging from the interaction with the laser is somewhat  different – possibly yielding 
different Landau damping for equal rms energy spreads. The results shown in Figure 
(2.17)  clearly indicate an optimum range for the setting of the initial rms energy spread 
at about σE = 15 KeV. 
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