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Abstract 
 
This project is to develop theoretical framework for protein motors based on experimental data. Protein 
motors use chemical and electrochemical energies to perform mechanical work. Protein motors are 
machines of life. They are essential for many biological processes, including cell division, DNA 
transcription, replication, etc. Understanding the working mechanisms of protein motors has both 
scientific and medical/clinical significances, including revealing the physiological origins of certain 
diseases, designing of drugs against pathogens. Experiments with new techniques, especially recent 
advances in single molecule force measurements, have accumulated a large amount of experimental data 
that requires systematic theoretical analysis.  
We worked out a theoretical analysis on protein fluctuations to explain the recent single molecule 
experiment on dynamic disorders, proposed a new mechanism to explain mechanical signal propagation 
through the allosteric effect, a fundamental property of proteins, and examined the dynamic disorder 
effects on protein interaction networks. We also examined various theoretical formulations describing 
mechanical stress propagation in proteins, and derived mathematical formula for various approximate 
methods solving the mathematical equations.    
 

Introduction/Background 

Protein motors are essential for almost every biological process. Studying protein motors has significance 
in both basic science and medical applications (see below for details). The results will be disseminated to 
broader audience through publication and scientific conferences. We will also make the generated 
computer codes freely accessible to the public.    

Biological/medical importance of protein motors 

Protein motors are proteins which can perform mechanical work 1.  They are machines made by nature 
that share some common features with macroscopic manufactured machines, such as the use of repeating 
motor cycles. There are also significant differences. Due to nano-scale sizes, motions of protein motors 
are dominated by thermal fluctuations. Protein motors are driven by either transmembrane ion-motive 
force (a trans-membrane electrical potential and ion concentration gradient) or through release of 
chemical energy (mainly hydrolysis of triphosphates such as ATP and GTP). Almost every biological 
process requires protein motors, including DNA transcription, replication, cell division, muscle 
contraction—even ATP synthesis. 

Not surprisingly, many protein motors play an essential role in some pathologies. For example, HCV 
NS3, a helicase that unwinds DNA for replication, is essential for Hepatitis C virus growth 2, 3. The 
protein FtsK coordinates bacteria proliferation by translocating DNA4. Viruses, such as herpes virus and 
adenovirus, use DNA and RNA packaging motors to pack their genome into preformed protein capsids 5-

8. PilT and PilB are two protein motors used by many Gram-negative bacteria to mediate adhesion of type 
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IV pili to host mammalian cells 9, 10. The motility of many bacteria, including many pathogens, depends 
on a complex of proteins known as the bacteria flagellar motor (BFM). Given this wide variety of 
essential motor protein functions, it is not surprising that many motor proteins are drug targets against 
various diseases. Understanding their functional mechanism provides guidance for developing drugs that 
block or impair the normal functions. Also promising is the engineering of some protein motors to 
perform curing functions. For example, the virus packaging motor may be used for delivery of therapeutic 
genes8. Extensive efforts have been made to develop micron scale machines to perform precise localized 
surgeries. At such small sizes, fluid transportation is dominated by low Reynold number dynamics (i.e., 
motion within a highly viscous medium, like a ball in molasses), and becomes highly inefficient if driven 
by pressure gradient. The bacterial flagellar motor could be used to pump fluids in these devices.  

Recent advances in single-molecule techniques have allowed precise measurements of the mechano-
chemical behaviors of single protein motor in assays. However, in cells more than one motor proteins 
may attach to a vesicle. The mechano-chemical behaviors of the system are not a simple summation of 
single motor behaviors. Much less experimental investigations have been conducted on vesicle transport 
in vivo11-13. Our collaborators at Wake Forest use motion enhanced differential interference contrast 
microscopy to track small vesicles and thus obtain their transporation rates in neurites11. Since 
experiments in vivo is less controlled than those in vitro, theoretical modeling is necessary to analyze the 
data.  

Mathematical modeling of protein motors 

Mathematical modeling serves to integrate and transform quantitative and qualitative experimental 
information into coherent and consistent physical models that yield quantitative, experimentally 
falsifiable predictions. More importantly, modeling can suggest new experiments and new quantities to 
measure.  

Modeling of protein motors can be classified into three general approaches. (i) Molecular dynamics (MD) 
simulations account for the motion of every atom, and sometimes the surrounding water and other 
chemical species, but have serious limitations: the size of a protein motor and the relevant time scale (in 
milliseconds) are usually beyond current computer capacity, and the required atomic structures are not 
available for most motor proteins. (ii) Kinetic (rate-equation type) models represent the transitions 
between a small number of chemical (Markov) states. (iii) Markov-Fokker-Planck (MFP) models lie 
somewhere in between the atomic detail of MD and the phenomenology of kinetic models (4). These 
models describe the geometric motion along a few ‘collective coordinates’ that describe the protein’s 
major conformational movements. Motion is driven by forces derived from a set of potential functions 
assigned to each coordinate, with Markov jumps between the potentials corresponding to chemical 
transitions. MFP models generalize kinetic models by replacing the discrete kinetic states with potential 
functions representing collective spatial coordinates. Given that protein motors are machines, continuum 
MFP models provide more appropriate treatments on the mechanical aspects of protein motors than 
discrete kinetic models do. Therefore, the proposed research will focus on the coarse-grained MFP 
models. We emphasize that MFP models complement MD and kinetic models; each has its proper place 
in understanding a mechanochemical system as complex as a protein motor. 

Our protein motor modeling philosophy coincides with the systems approach receiving great attention 
recently in biology. In particular, each protein motor can be viewed as a miniature system. While each 
experimental technique (including atomistic level simulation) focuses on one or a few aspects of the 
system, coarse-grained modeling serves as the unique role of integrating all the information into a 
coherent, consistent, and global physical model of the system. Consequences and functions of some 
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observations (e.g., mutations of certain amino acid residues) can only be fully appreciated in the context 
of overall motor dynamics.   

Continuum potential description 

Since the discrete rate equation formalism is widely used in describing biochemical reactions, here we 
briefly discuss its relations to more detailed continuum description. 

 

Figure 1 Free energy profile (blue) for a typical 
chemical reaction.  

Ultimately all the molecular interactions can be 
described by continuum potentials. For a typical 
free energy profile shown in Figure 1, the 
system spends most of time wandering inside the 
potential wells,  while transitions between the 
two regions are nearly instantaneous. The 
system can be “coarse-grained” into two discrete 
states (A and B in Figure 1), and transitions can 
be described by the familiar rate equations. 
Calculation of the corresponding rate constants 
from underlying continuum potentials is a major 
research field in chemical physics14. 

However, since rate equation expressions are approximation of continuum dynamics, some details are 
inevitably lost. While its level of details are satisfactory on describing normal enzymatic reactions, rate 
expressions are oversimplified for describing protein motors,  because one wants to know not just the 
initial and final states, but also the transition process as well. For protein motors, the intermediate process 
may not be fast enough to be treated as instantaneous jumps, and this limitation becomes more apparent 
as current single molecule techniques provide details not accessible by bulk measurement techniques.  

Continuum potential descriptions have been receiving increasing recognition by both theoreticians and 
experimentalists in the protein motor community 15-17.  To further illustrate the advantage of this 
approach, an analogy to an internal combustion engine may be helpful. While the engine cycle can be 
divided into states that include intake, compression, combustion, and exhaust, this discrete description 
does not yield a mechanistic understanding of how these states come about. Rather, one wants to know 
the physical design of the engine and how each moving part coordinates with the others. The same is true 
for our understanding of protein motors with the important difference that the dynamics of protein motors 
is not deterministic and requires consideration of thermal fluctuations. 



Research Activities and Results 
My computer plan was not approved until May 10th, 2006. Therefore the research has been 
focused on theoretical analysis and numerical calculations with minimal computational 
requirement. 

Protein fluctuations 

Protein motors function through substrate-binding regulated conformational changes. We used 
Langevin dynamics formulism to describe conformational motions. The Xie group at Harvard use 
single molecule experimental technique showed that protein fluctuations show long-time memory 
effect. It is controversial on how to understand the results. With Dr Ken Kim, I worked out a 
theoretical explanation of their experiment. With two fitting parameters which agree well with 
other independent studies, our theoretical results agree well with the experimental data from the 
Xie group. The paper was published in Phys. Rev. E. 74:061911 (2006), and was selected to 
publish at the APS Virtual Journal of Biological Physics (Vol. 13, Issue 1, 2007). 

Allosteric effect 

Allosteric effect refers to the property that activity (substrate binding, reaction, etc) at one site of 
the protein can affect the behavior of another remote site of the protein. It is a fundamental 
property of many proteins, and is closely related to functioning mechanisms of protein motors. 
The latter depends on ligand binding to affect reactivity at another site. Classical textbook 
mechanisms focus on thermodynamic behaviors of the protein under ligand binding. The above 
work on protein fluctuations inspired me to propose a different mechanism of allosteric 
regulation. The attached manuscript is ready for submission. 

Dynamic disorders and protein interaction network 

One usually assumes that a chemical reaction is described by a rate constant. This is the basic 
framework for describing biochemical reactions and biological networks. The experiments by the 
Xie group showed that an enzymatic reaction rate is actually not a constant. This observation may 
have profound impact on our understanding of dynamics of biological systems. In collaboration 
with several other researchers, I analyzed the effect of dynamic disorders on a small protein 
interaction network, the classical Goldbeter-Koshland model. The attached manuscript is about 
ready for submission. 

Bacterial flagellar motor 

 I instructed an Oxford student (Fan Bai in Richard Berry’s group) to perform studies on the 
flagellar motor. Our original work on the motor is a phenomenological model. In this work we 
added detailed information based on recent experimental studies, and made predictions to 
compare with single molecule data obtained in the Berry group. For the first half year, I helped 
the student to develop computer codes to perform Fokker-Planck and Langevin dynamics 
calculations. Currently I am instructing the student to collect computational results. Some results 
are shown in Figure 2 and Figure 3. A manuscript is in preparation. 
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Figure 2 Our model predicts that the motor is a stepper with a stepsize 2π/26 with 
one stator (left). With two stators the stepsizes depend on relative arrangements of 
the stators (right). The predictions are consistent with single molecule data18. 

  
Figure 3 Dwelling time distributions. 
Theoretical modeling framework 

Meanwhile, I have been working on a manuscript describing the general theoretical modeling 
framework. I derived mathematical formula for various approximation methods. Numerical tests 
of these methods are underway. 

With Dr. Ken Kim, I studies various ways of theoretical expressions to describe mechanical stress 
propagation. Currently we are collaborating with a Virginia Tech group for tensor visualization. 
Application on the clamp/clamp loader system (in collaboration with Dr. Daniel Barsky at LLNL) 
is underway. 

I also co-instructed a Berkeley student (Joshua Adelman in Professor George Oster’s group) to 
develop a general computer code and model DNA packaging motor. The code has been tested to 
work. 
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Summary 

This project received about half-year of support. During this period, we managed to get one paper 
published, and several manuscripts in preparation. 
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A long-time fluctuation correlation function with a power-law form has been observed in recent single-
molecule experiments by the Xie group. By analyzing the dynamics of an elastic network model �ENM� under
white noise, we show that the observed long-time memory kernel can be explained by the discrepancy between
the experimentally measured coordinate �or the coordinate directly coupled to protein function� and the mini-
mum energy path of the system. Consequently, the dynamics of the measured collective coordinate has con-
tributions from degrees of freedoms with a broad distribution of time scales. Our study also implies that the
widely used ENM Hamiltonian should be viewed as a coarse-grained model of a protein over a rugged energy
landscape. Large effective drag coefficients are needed to describe protein dynamics with the ENM’s.

DOI: 10.1103/PhysRevE.74.061911 PACS number�s�: 87.15.He, 87.15.Ya, 87.16.Ac, 82.37.�j

I. INTRODUCTION

Rate processes are ubiquitous in physics, chemistry, and
biology. The development of reaction rate theories is a clas-
sical topic of theoretical physics and chemistry �1�. A basic
physical picture is given in the seminal paper by Kramers �2�
�see Ref. �1� for earlier and subsequent work�. For a dynami-
cal many-body system, a basic premise behind the construc-
tion of many reaction rate theories is the existence of one
special degree of freedom �DOF� called the reaction coordi-
nate �RC�, whereby the trajectory of the species along this
coordinate results in the chemical reaction. Mathematically it
is normally the minimum-energy path �MEP� �or the intrinsic
reaction coordinate� connecting the reactant and the product
along the mass-weighted multidimensional potential energy
surface �see Fig. 1� �3�. One usually assumes a separation of
time scales between the dynamics along the MEP and along
the remaining DOF orthogonal to the MEP. Consequently,
the system dynamics can be well described by a Langevin-
type or generalized Langevin-type dynamics with-short time
memory kernels �4�,

m
d2x

dt2 = −
dU

dx
− �g�

0

t

d�K�t − ��
dx���

d�
+ f�t� , �1�

where m is the reduced mass, x represents the coordinates of
the MEP, U is the potential along MEP, �g is the drag coef-
ficient, K is the memory kernel which usually take the form
of a Dirac � function �for Langevin dynamics� or a fast de-
caying function of �t−�� �e.g., an exponentially decaying
function in the Grote-Hynes treatment �5��, and f is the fluc-
tuation force. The generalized Langevin equation �1� can be
derived formally using the Mori-Zwanzig projection operator
formalism with temporal-spatial coarse graining �4,6,7�. The
basic idea is that a system can be divided into two subspaces
with the dynamics treated explicitly and implicitly, respec-
tively. The projection formalism involves the construction of

an operator which projects the full dynamics of system onto
a subspace spanned by the explicit DOF. The projection for-
malism does not eliminate the implicit DOF, but preserves
their influence or back reaction on the reduced dynamics
through the appearance of a memory term and a stochastic
forcing term. Under the condition that the dynamics of the
explicit and implicit DOF be slow and fast modes, respec-
tively, and that there exist a clear time-scale separation, the
memory term decays quickly.

Proteins are flexible entities. Numerous experimental and
theoretical studies have found that the structural fluctuations
of proteins are strongly correlated with their function �8–12�.
A widely used technique to study protein fluctuations is to
calculate the potential of mean force �PMF� along the RC.
On obtaining the PMF, one assumes that all the DOF or-

*Corresponding author. Electronic address: xing3@llnl.gov

FIG. 1. Schematic illustration of a potential energy surface and
the minimum-energy path �s�. The shown 2D system can be de-
scribed by either a coordinate system with the MEP and the or-
thogonal coordinate q or an x-y coordinate system. A projection
along the MEP may result in a 1D generalized Langevin equation
with short-time memory kernels. However, if the projection coordi-
nate �e.g., x, set by either experiments or functional relevance� de-
viates from the MEP, a long-tail memory kernel may be expected.
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thogonal to the RC adjust to motion along the RC adiabati-
cally. In other words, there is clear time-scale separation be-
tween dynamics along the RC and along the remaining DOF.
Recent single-molecule measurements by the Xie group have
shown a power-law memory kernel for the fluctuations
within proteins of various systems described by a general-
ized Langevin equation �13,14�. The existence of a long-time
memory effect implies the breakdown of the time-scale sepa-
ration assumption, thus initiating several theoretical investi-
gations to clarify the mechanism behind the power-law de-
cay. Granek and Klafter explain the observation by using a
fracton dynamics model �15�. Debnath and co-workers �16�
and Tang and Marcus �17� show that distance fluctuations of
one-dimensional polymers give the observed power-law de-
cay of the memory kernel. Here, we propose a dynamic ver-
sion of the widely used elastic network model which is
simple and yet captures the essential physics. The experi-
mentally measured coordinate �or the coordinate directly
coupled to the protein function� may not coincide with the
minimum-energy path of the system; e.g., consider the pro-
jection is along x in Fig. 1. Then the above-mentioned time-
scale separation condition is not satisfied and a long-time
memory term will be expected.

II. THEORY AND NUMERICAL RESULTS

In the present work, we adopted the widely used elastic
network model �ENM� to analyze the experiment by Min et
al. �14�. The ENM is a coarse-grained model and gives a
reasonable description of protein fluctuations �18–20�. An
ENM represents a protein by a network of elastically coupled
N nodes �usually the C� atom positions�, q= �q1 , . . . ,qN�,
with the following simple interaction form:

V =
1

2
c�

i�j

h�rcut − rij
e ��rij − rij

e �2, �2�

where the superscript e represents the equilibrium structure,
c is a universal spring constant, h is a Heaviside function, rcut
is a cutoff distance, and rij = �qi−q j� and rij

e = �qi
e−q j

e�.
The above potential form can be approximated by ex-

panding to quadratic terms. By diagonalizing the Hessian,
one can transform to normal-mode coordinates with �q�q
−qe=�Q, where � is composed of the eigenvectors of the
Hessian. To study the dynamics, we include the effects of
solvent and coarse-grained degrees of freedom in the ENM
as dissipation terms, so the equations of motion are given by
a set of overdamped Langevin equations �see also �21–23��

− �i�Qi� − �
dQi�

dt
+ f�t� = 0, �3�

where Qi� and �i� are the ��i−1��3+��th normal-mode co-
ordinate and the corresponding eigenvalue. Here, for conve-
nience of discussion, we use two indices to label the normal
mode, with i=1, . . . ,N and �=1, 2, 3. From Eq. �3�, the
coordinate autocorrelation function is given by

CQ
i��t� � 	Qi��t�Qi��0�
 =

kBT

�i�
exp�−

�i�

�
t� , �4�

with kB the Boltzmann constant and T the temperature. The
Laplace transform is

C̃Q
i��s� =

kBT

�i�

1

s + �i�/�
. �5�

To compare with the experimental results of Min et al. �14�,
one needs to calculate the autocorrelation function of the
distance between two ENM nodes, which is approximately
given by

Cr�t� � 	�rij�t� − rij
e ��rij�0� − rij

e �



 � 1

rij
e �2

	�qi
e − q j

e� · ��qi�t� − �q j�t��

��qi
e − q j

e� · ��qi�0� − �q j�0��


= �
k	
�� 1

rij
e �2

�
�

�qi�
e − qj�

e �2��
̄i�,k	�2 + �
̄ j�,k	�2�

�	Qk	�0�Qk	�0�
� 	Qk	�0�Qk	�t�

	Qk	�0�Qk	�0�


= �
k	

pk	

CQ
k	�t�

CQ
k	�0�

. �6�

In the above expression, the matrix 
̄ is the reduced 
 after
the elimination of the zero-frequency modes corresponding
to the three translational degrees of freedom of the center of
mass and three rotations. The normal-mode correlation func-
tions CQ

k	�t� are given by Eq. �4�. Equation �6� reveals that
the distance correlation function, which is given by a linear
combination of the single-exponential decaying normal-
mode correlation functions, may show multiexponential de-
cay. If the generalized Langevin equation �1� with a har-
monic potential is used to model the residue-residue distance
fluctuation, the memory kernel in Laplace space is given by
�14�

K̃�s� =
m�2

�g

C̃r�s�

Cr�0� − sC̃r�s�
, �7�

where C̃r�s� is the Laplace transform of the distance correla-
tion function Cr�t�,

C̃r�s� � �
k	

pk	

C̃Q
k	�s�

CQ
k	�0�

. �8�

Equations �6�–�8� are the central results of this work. They
show that a long-time memory kernel for the distance fluc-
tuation can exist even if all the normal modes are described
by the Langevin dynamics with � memory kernels. The rea-
son is that the distance fluctuation coordinate is not along
any of the normal-mode coordinates and has contributions
from a large number of normal modes �see Fig. 3�b� below�.

We apply the above analysis here to the protein complex
formed between fluorescein �FL� and monoclonal antifluo-
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rescein 4-4-20 �anti-FL� �PDB label 1FLR; see Fig. 2�. The
spring constant c in Eq. �2� is determined by fitting to Cr�0�
and the drag coefficient � by fitting the experimental data of
the distance correlation function �14�. In the calculations,
the temperature is assumed as T=298 K and a cutoff
distance rcut=10 Å used in the literature is adopted �19�,
c=1.4 kcal/ �mol/Å2�, comparable to the value
1.0±0.5 kcal/ �mol Å2� used in the ENM literature �19�, �
=1kBT s /Å2. Figure 3�a� compares the calculated distance
correlation function using Eq. �6� and the experimental data
of Min et al. Given the simple form of the ENM, the agree-
ment is remarkable. At large t, there is larger discrepancy
between the theoretical result and the experimental data in
Fig. 3�a�. This discrepancy implies that contributions from
some low-frequency modes are underestimated with the cur-
rent model.1 Models with different cutoff distances also give
reasonable fittings. Figure 3�b� shows the normalized contri-
bution of each normal mode given by Eq. �6�. While several
low-frequency modes make significant contributions, those
from other modes cannot be neglected due to the large num-
ber of degrees of freedom involved. Figure 3�c� shows the
Laplace transform of the memory kernel calculated by Eq.
�7�, which has approximately a power-law form. Figure 3�c�
also shows that distance correlations between the FL and
several other residues have similar behaviors, which was also

observed in the one-dimensional polymer study of Tang and
Marcus �17�. This implies that the lack of time-scale separa-
tion is a general phenomenon in protein dynamics.

III. DISCUSSION

The phenomenon of dynamic disorder, or rate constant
fluctuations, has been widely studied �24–27�. The experi-

1To focus on the essential physics, we adopted the simplest ver-
sion of the ENM. Improvement of the fitting is expected with some
refined but more complex models discussed in the literature.

FIG. 2. �Color� Structure of the FL–anti-FL protein complex. In
ENM, the protein structure 1FLR of anti-FL is modeled by 437
nodes representing the Ca atoms with an extra node representing the
center of the aromatic ring of Trp37 and the fluorecein is modeled
by nodes locating at the centers of the three aromatic rings. The
distance fluctuation between the center of Trp37 ring and the FL
ring formed by C3-C8 is calculated to compare with the
experiment.

FIG. 3. The distance correlation function between Tryp 37 and
the FL. �a� Comparison of the calculated distance correlation func-
tion with Eq. �6� �solid line� and the experimental data by Min et al.
�14� �circles�. �b� The normalized contribution of each normal mode
given by Eq. �6�. �c� Laplace transform of the memory kernel cal-
culated by Eq. �7�. Here the calculated memory kernels from the
distance correlation functions between the FL and residue 37 as
well as residues 1, 100, 200, 300, and 400 are shown.
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mental observations of the Xie group further demonstrate
dynamic disorder at single-molecule levels. The experiments
reveal that caution should be taken on applying rate theories
to complex biological systems. The legitimacy of the under-
lying assumptions of a rate theory should be reexamined.
The reaction coordinate framework discussed in the Intro-
duction can break down in two respects. First, a reaction
coordinate with slow dynamics may not exist if the system
involves broad and continuous time scales. Second, even if a
slow reaction coordinate �the MEP� can be defined, the co-
ordinate relevant to experimental measurements or to protein
functions may not coincide with the MEP, and this discrep-
ancy may result in the breakdown of the time-scale separa-
tion between the tagged coordinate and the remaining DOF.
Consequently, to describe the system dynamics, a long-time
memory term may be necessary or extra DOF need to be
treated explicitly. These observations may have significant
relevance in any study involving the dynamics of biological
macromolecules. Here we want to mention a similar situation
in protein motor studies. Protein motors use chemical and
electrochemical energies to perform mechanical work and
are essential for many biological processes �28–32�. A pro-
tein motor is described by chemical reaction coordinates and
mechanical motion coordinates which are coupled together,
analogous to the electron-transfer coordinate and the protein
fluctuation coordinate in the FL–anti-FL system. There is
usually no time-scale separation between the different de-
grees of freedom. Min et al. related the observed long-time
memory kernel to the observation that there may be no well-
defined single-valued rate constant for an enzymatic reaction
�33,34�. Studies show that theoretical treatments beyond dis-
crete rate equations are necessary to understand some mecha-
nochemical properties of a protein motor �35–37�. For ex-
ample, a distribution of rate constants is essential to explain
the long-standing puzzle of the motor torque-speed relation-
ship of the bacterial flagellar motor �38,39� �comparing Eq.
�6� of Ref. �39� and Eq. �5� of Ref. �33��. Further studies are
needed to examine the implications of the experimental ob-
servations of Min et al. to the understanding of other biologi-
cal systems.

To fit the experimental data, we used a drag coefficient
�=1kBT s /Å2. This value is orders of magnitude higher than
the typical drag coefficient of a polymer �17�. This discrep-
ancy may call into question the validity of the distance fluc-
tuation models as discussed in the present work and in the
work of Tang and co-workers �17,40�. However, the discrep-
ancy can be reconciled by the fact that the elastic network
model is a coarse-grained model. Many experimental and
theoretical studies �especially in the protein folding commu-
nity� show that a system complex such as a protein possesses
a rugged energy �41,42�. The ruggedness of the energy land-
scape may lead to the conclusion that a normal-mode analy-
sis cannot work since it only characterizes the potential near
one local minimum. On the other hand, the smooth potential
used by an elastic network model should be understood as an
effective potential after averaging out the local rugged fluc-
tuations �43,44�. That explains why the elastic network mod-
els are surprisingly successful on describing large-scale pro-
tein fluctuations �notice that the short-range fluctuations of
the potentials have a marginal effect on the equilibrium prop-

erties such as the B factor at experimental resolutions� �19�.
Consequently, the effective drag coefficients used in a dy-
namic version of the elastic network model are different
from the bare drag coefficients and the difference can be
large. To further illustrate this, we refer to the work of Zwan-
zig �45�. Zwanzig proposed a model describing diffusion in a
rugged potential and derived an expression for the effective
diffusion coefficient. His results show that the ruggedness of
the potential can dramatically reduce the diffusion coefficient
at low temperatures. Zwanzig looked at diffusion on a length
scale much larger than the ruggedness and, in effect, replaced
the original rugged potential with an effective smooth poten-
tial, integrating out the rapid small fluctuations. Carrying this
analogy to our case, the effective drag coefficients used for
an elastic network model should be normal-mode frequency
dependent �see Fig. 4�. For high-frequency modes with a
length scale comparable to the characteristic length scale of
the rugged potential, the values should approach the bare
drag coefficients. For low-frequency modes with a length
scale much larger than the characteristic length scale of the
rugged potential, the drag coefficients reach renormalized
values according to the analysis of Zwanzig. A set of normal-
mode frequency-dependent drag coefficients may help fit the
experimental data. Our current treatment with a single value
of the drag coefficient is oversimplified and requires further
study. Another prediction of the present model is that the
effective drag coefficients and the distance autocorrelation
function are expected to be highly temperature dependent.
The experiment setup by the Xie group may serve as a tool
to detect ruggedness of the protein energy landscape �see
also Ref. �46��.

FIG. 4. Schematic illustration of rugged energy landscapes
�solid lines�. Also shown are renormalized smooth potentials with
high �a� and low �b� frequencies �dashed lines�. The units of dis-
tance and energy are arbitrary and only for illustration purposes.
The existence of potential roughness may have different effects on
the effective diffusion along the potential landscapes in the two
cases.
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Abstract 

Both the concerted MWC (Monod, Wyman, Changeux) and the sequential KNF 

(Koshland, Nemethy, Filmer) models of allosteric effects assume the thermodynamic 

properties of the allosteric enzymes are modified by substrate binding. Here we discussed 

an alternative mechanism that the dynamic properties of an allosteric enzyme being 

regulated by substrate binding. Theoretically it is possible that the reactivity of a protein 

is limited by some internal conformational change step (due to slow effective diffusion 

along rugged potential surfaces). Effactor binding may modify the ruggedness and thus 

the protein dynamics and reactivity. Compared to conventional models, the new 

mechanism has less requirements on the mechanical properties of an allosteric protein to 

propagate mechanical signals over long distances. Thus some signal transduction proteins 

may adopt the new mechanism or a combination with conventional mechanisms. The 

theory predicts that compared to the case with effactor binding, a positive allosteric 

enzyme alone under the new mechanism has: 1) larger temperature dependence; 2) larger 

effect of dynamic disorders; 3) smaller collective and individual dynamic fluctuations; 4) 

no requirement for a well-defined mechanical strain relaying network; 5) no requirement 

for large conformational change upon effactor binding. Opposite predictions of (1)-(3) 

are for negative allosteric proteins. 
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Introduction  

A prominent property of proteins is that their catalytic activities can be regulated. 

Allosteric enzymes have two or more binding sites. Conformational changes due to 

ligand (effactor) binding or reaction on one site can propagate to another distant catalytic 

site and affect its reactivity. The discovery of allosteric regulations “in the 1950s, 

followed by a general description of allostery in the early 1960s, was revolutionary at the 

time”(1). There are two popular models proposed to explain the allosteric effects. The 

concerted MWC model by Monod, Wyman, and Changeux, assumes that an allosteric 

protein can exist in two (or more) conformations with different reactivity, and effactor 

binding modifies the thermal equilibrium distribution of the conformers(2). The 

sequential model described by Koshland, Nemethy, and Filmer is based on the induced-

fit mechanism, and assumes that effactor binding results in (slight) structural change at 

another site and affects the substrate affinity(3). While different in details, both of the 

above models assume that the allosteric mechanism is through modification of the 

equilibrium conformation of the allosteric protein by effactor binding. For later 

discussions, we denote the mechanisms as “thermodynamic regulation”. The above two 

mechanisms and generalizations have been used to explain observed allosteric effects. A 

notable extension is on explanation of the working mechanisms of protein motors. 

Protein motors convert chemical and electrochemical energies into mechanical work. 

Proper function of a protein motor requires elaborate regulation of chemical reaction 

steps and mechanical motion. We previously proposed that the above requirement is 

fulfilled with specific interactions forming potential bumps at various locations along 
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some mechanical (or conformational, see below) coordinates(4). Existence and removal 

of the potential bumps are regulated by substrate binding and dissociation. The 

mechanisms of thermodynamic regulation impose strong requirements on the mechanical 

properties of an allosteric protein. The distance between the two binding sites of an 

allosteric protein can be far. For example, the bacterial chemotaxis receptor has the two 

reaction region separated as far as 15 nm(5). The signal propagation requires a network 

of mechanical signal relaying residues with mechanical properties distinguishing them 

well from the surroundings to minimize thermal dissipation – Notice that distortion of a 

soft donut at one side has negligible effect on another side of the donut. Mechanical 

stresses due to effactor molecule binding irradiate from the binding site, propagate 

through the relaying network, and con-focus on the reaction region at the other side of the 

protein. It is challenging to transmit the mechanical stress faithfully against thermal 

dissipation over a long distance. A possible solution is the attraction shift model proposed 

by Yu and Koshland(6).           

In this work, we will discuss a theoretically possible alternative mechanism of allosteric 

regulation, “dynamic regulation”. Instead of large change of conformation and 

thermodynamic properties such as substrate binding affinity, the protein activity can be 

modulated by modifying protein dynamic properties. This idea is inspired by 

experimental and theoretical studies on dynamic disorders. Dynamic disorders refer to the 

phenomena that the ‘rate constant’ of a process is actually a random function of time (7, 

8). Since the pioneering work of Frauenfelder and coworkers on ligand binding to 

myoglobin(9), extensive experimental and theoretical studies have been performed in this 

subject (see for example ref.(8) for further references). Recently existence of dynamic 
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disorders has been demonstrated directly through single molecule enzymology 

measurements(10-14).  

Theory and numerical results  

The catalytic site of the protein can be described by a few numbers of reduced 

conformational degrees of freedom and the reaction coordinates. Here we use a minimal 

three-state model to represent the catalytic site chemical states: E (empty), R (reactant 

bound), P (product bound). An example used in this work is shown in Figure 1a.    

The system dynamics can be well described by a set of over-damped generalized 

Langevin equations coupled to Markov chemical transitions (15),    

0

( )0 ( ) ( )
ti

i i i
dU dxd M t f t
dx d

τζ τ τ
τ

= − − − +∫ , (1) 

where x represents the conformational coordinate1, Ui is the potential of mean force at a 

given substrate binding state, ζi is the drag coefficient, M is the memory kernel, and f is 

the random fluctuation force. Chemical transitions accompany motions along the 

conformational coordinate with x-dependent transition rates. Effactor binding at a remote 

site can affect the dynamics at the catalytic site by modifying Ui, which is discussed by 

the conventional models of “thermodynamic regulation”, the drag coefficient ζi, and/or 

the memory kernel M. The latter two are for “dynamic regulation”. Our recent theoretical 

analysis showed that the observed slow protein conformational dynamics can be 

                                                 
1 For simplicity, here we consider a one-dimensional case, which may represent, for example, the distance 
between two residues (see 16. Xing, J. & Kim, K. S. (2006) Phys. Rev. E 74, 061911.).  
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explained by the rugged protein potential surfaces(16). For a potential surface with 

random ruggedness, Zwanzig showed that the effective diffusion constant is reduced by 

( )2
0 exp ( / )BD D k Tε= − , where D0 is the bare diffusion constant, and ε is the potential 

roughness parameter(17). The reported values of ε is 2-6 kBT(18, 19). With D0 = 10-6 

cm2/s, D can be reduced to 1 Å2/s with ε ~ 4.8 kBT. Thus internal diffusion can be a rate 

limiting step for enzymatic reactions and can in principle be regulated by allosteric effect 

(see Figure 1).  

In this study we will focus on the case that the memory kernel is short (a δ-function, the 

so-called Langevin dynamics) and show that varying ζi alone can regulate protein activity. 

In this case, the dynamics at steady state can be equally described by a set of coupled 

Fokker-Planck equations, 

( )
2

2

( )
( ) ( ) 0i i i

i i ij j ji i
j iB

D U x
D K x K x

k T x x x
ρ

ρ ρ ρ
≠

∂ ∂∂ ⎛ ⎞− ⋅ − + + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ,(2) 

Where kB is the Boltamann’s constant, T the temperature, Di = kBT/ζi is the diffusion 
constant, Kij is the transition matrix element, and ρi is the probability density to find the 
system at position x and state i. In our numerical calculations, the potentials are chosen as 

harmonic potentials, ( )2
0 0

1 ,  ( , , )
2i i i iV x x V i E R Pκ= − + = . To model transitions 

between different states, we also model the transition state potentials by harmonic 

potentials, ( )2唵 1 ( ) / .
2

c
ij ij ij ijV x x L V= − +  The transition rate from state j to i is given by 

( )0 �( ) exp ( ) ( ) /ij ij j ij Bk x k V x V x k T⎡ ⎤= −⎣ ⎦ . In general the optimal transition location is 

different for different reactions, and some conformational motion is needed during an 
enzymatic cycle. Model parameters are given in Transition parameters 
 R←E P←E E←R P←R E←P R←P
k0 2e2 2e-3 2e2 1.6e3 2e3 1.6e3

†
0V  3 3 3 6 3 6 

L 0.3 0.3 0.3 0.3 0.3 0.3 
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Table 1. 

The Fokker-Planck equations were solved with the algorithm developed by Wang et 

al(20). Figure 2a shows the calculated enzyme turnover rate as a function of the internal 

diffusion constant. While the diffusion constant is not a rate-limiting parameter at high 

values (as compared to the chemical transition rates), at smaller values of D the turnover 

rate depends on the diffusion constant linearly which signatures existence of diffusion-

limited steps. Figure 2b shows the temperature dependence of the turnover rate. With 

high values of D, the exponential 1/T dependence mainly comes from the Arrhenius 

dependence of the transition rates. However with small values of D, the turnover rate 

shows strong non-exponential dependence, since the effective diffusion constant D has a 

Gaussian dependence on 1/T. Therefore the theory predicts strong non-exponential 

temperature dependence of enzyme activity in the absence of the effactor if it is regulated 

by the dynamic mechanism. Figure 2c also shows the waiting time distribution between 

two consecutive turnover cycles. The results are calculated with the formula derived by 

Gopich and Szabo(21). A system with low D values shows non-exponential distribution 

due to dynamic disorders. At high D values, effects of the dynamic disorders diminish 

and the distribution is exponential. Therefore, we predict that an enzyme functioning 

under the dynamic regulation mechanism shows larger dynamic disorders effect. This can 

be directly tested by measuring consecutive single enzyme turnover time distributions 

with and without the effactor, an extension of the work done by the Xie group(13).   



 8

Discussions 

In short, here we propose that protein dynamics can be rate-limited by some internal 

diffusion steps, and effactor binding can change the situation by modifying the effective 

internal diffusion constant. Compared to conventional thermodynamic regulation 

mechanism, the dynamic regulation mechanism has the following advantages. 

First, it is an effective way to regulate the reactivity at a distant region. For an Arrhenius 

process, to increase the reactivity by 1010, the activation barrier needs to be lowered by 

23 kBT. On the other hand, for an internal diffusion limited process, the reaction rate is 

linearly dependent on the effective diffusion constant. The lower bound of the roughness 

parameter adjustment is 4.8 kBT to increase the reactivity by 1010. 

Second, it has less requirement on the mechanical properties of the protein. Figure 3a 

schematically shows the free energy profiles of a protein with and without the effactor     

under the conventional allosteric mechanism. The free energy difference between the two 

curves, ΔU(x), is provided by the effactor binding energy as a function of the 

conformational coordinate. Effective coupling of the two sites requires faithful 

transmission of the mechanical strain due to ligand binding from one site to another one. 

In terms of solid mechanics, the mechanical stress lines should propagate from one site 

and concentrate on another site. A set of mechanical stress relaying network is expected 

to perform the task. These network residues should have mechanical properties 

distinctive from other residues to minimize lost to the surroundings (see Figure 3b). In 

other words, coupling between these relaying residues and others should be minimized. 

By comparison, under a dynamics regulation mechanism, the effect can be highly 
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delocalized. Effactor binding may affect the other site by fine regulating local structures 

far away from that site. By modifying the effective diffusion constant, these local 

modifications may affect the dynamics of collective motions including residues within 

the catalytic site and those far from it. These collective motions affects enzyme reactivity 

by projecting onto the conformational coordinate x, which is directly coupled to the 

chemical reaction coordinate (see Figure 1a and ref. (16)). The effect manifests itself 

through lager root-mean-square deviation as observed in NMR, x-ray crystography, and 

in molecular dynamics simulations. We suggest the dynamics of the collective motions to 

be examined as well.          

 Recently relations between protein dynamic properties and allosteric effects have been 

extensively studied by both experimental and simulation techniques(5, 22-24). It is 

proposed that the entropic changes associated with ligand binding contribute to the 

allosteric effect. This mechanism still falls into the category of the “thermodynamic 

regulation” discussed in this paper, since its effect is to modify the free energy function 

U(x).  The mechanism discussed in this work is different. Some of the experimental 

evidence in supporting of the dynamic entropic effect mechanism, may also be explained 

by the dynamic mechanism discussed in this work. For example, both suggest a 

distribution of protein conformations, and possibility of lacking well-defined mechanical 

strain relaying network. The allosteric mechanism of a given protein likely has 

contribution from both thermodynamic regulation (the conventional conformational 

change mechanism and the newly proposed entropic effect), and dynamic regulation 

proposed in this work (see also Equation (1)).      
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Potential parameters 
 κ x0 V0 
E 1 1 0 
R 0.5 -0.5 -1 
P 0.4 0 -3 
Transition parameters 
 R←E P←E E←R P←R E←P R←P
k0 2e2 2e-3 2e2 1.6e3 2e3 1.6e3

†
0V  3 3 3 6 3 6 

L 0.3 0.3 0.3 0.3 0.3 0.3 
 
 
Table 1 Model parameters. All are in reduced units: for energy kBT = 1 except the temperature 
dependence results in Figure 2. For simplicity, the diffusion constants for the three states take the 
same value.  
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Figure captions 

Figure 1 (a)Three free energy curves represent three distinct catalytic site binding states (E, R, P) 

along some conformational coordinate x. Chemical transitions between the three states are centered 

at some x values. The inlet illustrates that the smooth potentials are actually coarse-grained over 

rugged potential surfaces. Effactor binding at a distant site can modify the roughness of the 

potentials. (b) Physically one source of the potential roughness comes from the tightly packed 

irregular surfaces between two moving parts inside a protein.  

 

Figure 2 (a) Enzyme turnover rate as a function of the effective internal diffusion constant D. (b) 

Temperature dependence of the enzyme turnover rate. D = D0 exp[-(ε/kBT)2], where ε is the 

roughness parameter, and D0 = 103. Solid line: ε = 0. dashed line: ε = 4 kBT. The temperature 

dependence of D0 is neglected in this calculation.  (c) Turnover waiting time distribution with D = 1 

(solid line) and D = 0.001 (dashed line). 

 

Figure 3 schematic illustration of the conventional ‘thermodynamic regulation. (a) The free energy 

profile of the protein as a function of some conformational coordinate with and without the effactor 

binding. Different models (MWC, KNF, etc) differ in some details of the shapes (e.g, single or 

multiple minima). (b) Effective coupling of the two binding sites require a set of residue network to 

transmit mechanical stress between the two sites despite of thermal dissipation. These residues are 

expected to have solid-like properties, and are distinctive from the surrounding residues. 
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Abstract 

Many existing mathematical models describing protein interaction networks involve phenomenological 

(e.g., Michaelis-Menten type) rate equations. In this work we studied the classical example of protein 

switch through covalent modification first studied by Goldbeter and Koshland. We pointed out that the 

switching behavior cannot be derived from their model. The discrepancy is due to misuse of the 

Michaelis-Menten approximation in the original work. We examined some rescuing schemes. We also 

showed that a covalent modification protein switch is robust to the existence of dynamic disorders at 

bulk concentration. However, if the dynamic disorder is quasi-static, large fluctuations of the switch 

response behavior may be observed at low concentrations relevant to many biological functions. This 

source of network dynamics fluctuation is different from the types of fluctuations usually discussed in 

the literature. Fluctuations of the switch behavior can be reduced by increasing the protein conformer 

inter-conversion rate, or by correlating the enzymatic reaction rates in the network.   
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Introduction  

A biological system usually functions by regulating protein activities through protein interaction 

networks (PINs), which demonstrate rich dynamic behaviors. Substantial mathematical modeling has 

been carried out to study these network regulations. Some typical motifs of PINs were summarized in a 

recent review by Tyson et. al(1). Many of the existing mathematical models describe the dynamics of 

the PINs with phenomenological rate equations, like the Michaelis-Menten equations. These 

phenomenological equations imply asymptotic assumptions about the reaction rates and the 

concentration of reactants. However, these assumptions are not always valid. When these assumptions 

are lifted, the unwrapped PIN models defined with simple chemical kinetics may display significantly 

different dynamic behaviors from what their phenomenological counterparts do (Sabouri-Ghomi et. al, 

preprint). Therefore, extra reaction steps are necessary to reproduce the desired dynamic behaviors that 

the phenomenological models yield, such as oscillations and switches. In this work we will focus on a 

classical example of protein switch first studied by Goldbeter and Koshland(2).   

We also studied the effect of dynamic disorders on the switch.  Dynamic disorders refer to the 

phenomena that the ‘rate constant’ of a reaction appears as a random function of time (3, 4). This 

phenomena has attracted extensive experimental and theoretical studies ever since the pioneering work 

by Frauenfelder and coworkers on ligand binding to myoglobin(5). Recently, the existence of dynamic 

disorders has been directly confirmed by single-molecule enzymological measurements(6-8). We refer 

the readers to some review articles and references therein for more information(9-12). Physically, the 

existence of dynamic disorders comes from coupling between the reaction coordinate and other slowly 

fluctuating protein conformational coordinates. Due to ruggedness of protein potential landscapes, the 

time scales of protein conformational fluctuations can be comparable or even slower than the chemical 



 4

reaction time scale(9, 10). Chemical rate theories are usually based on the assumption of time scale 

separation between a slow reaction coordinate dynamics and fast conformational coordinate dynamics. 

This assumption is generally not valid in protein dynamics(13). Consequently, a rate ‘constant’ for an 

enzymatic reaction is actually a function of protein conformations.       

Detailed mechanisms of the sigmoidal switch 

We have chosen to study the sigmoidal switch, one of the most basic motifs of PINs. In their classical 

work, Goldbeter and Koshland considered a covalent modification system, typically composed of 

phosphorylated-dephosphorylated couples: S

A
E EP↓

↑
ZZZXYZZZ . Goldbeter and Koshland assumed that both 

the phosphorylation and dephosphorylation reactions obey Michaelis-Menten dynamics,  
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where Km1 and Km2 are the two Michaelis-Menten constants. In the above expressions, [X] represents 

the concentration of the reactant X. The steady state concentration of the phosphorylated form [EP] as 

a function of the signal concentration [S] is given by the so-called Goldbeter-Koshland function, which 

shows a switch-like behavior called “zero-order ultrasensitivity” in its responses to the varying signal 

level(2), characterized by a sigmoidal signal-response curve (Figure 2a). Such sigmoidal switch also 

plays a role of building blocks in other more complex PINs. For example, it allows phase offset 

between X and R in the negative feedback oscillator example discussed by Tyson et. al.(1). Therefore, 

it is a good starting point to study PINs. 
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In this work, we conducted both numerical and analytical computation on the dynamics of the covalent 

modification system with explicit consideration of the intermediate complexes neglected in the 

Michaelis-Menten treatment. The governing equations are (see case a of Figure 1), 
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with 
  
 [ ] [ ] [ ] [ ] [ ],  [ ] [ ] [ ]t tE ES EP AEP E S ES S+ + + = + =  (3) 

We assume that A, the dephosphatase, is in such great excess that its concentration, [A], remains 

approximately constant throughout time, and is absorbed in k2f for mathematical simplicity. Similar 

assumption is made throughout the paper. Relaxing this assumption does not qualitatively change the 

conclusion of this paper. Unlike the behavior of its phenomenological counterpart, throughout the 

parameter space this model shows no sigmoidal response either to the changes in [S], the free signal 

concentration, or to the changes in [St], the total signal concentration. (see Figure 2b). This observation 

is confirmed by the analytic result that the second derivatives of [EP] with respect to [S] and [St] are 

both identically negative, i.e.  

 
2 2

t2 2[ ] 0, [ ] 0,  for [S], [S ]>0
t

d dEP EP
dS dS

< <  (4) 

We considered a scheme (case a2) with an additional step: E and S firstly form a weakly bound form, 

ES, then convert to the tightly bound form, E*S, which proceeds to the phosphorylation step. The 

desired sigmoidal response curve does not emerge either. Details of the analysis are given in the 

Supporting Text.  
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The above analysis suggests that nonlinear terms of [S] are necessary to generate the sigmoidal 

behavior. We examined one such scheme (case b, Figure 1), inspired by the work of Sabouri-Ghomi et. 

al (preprint). In this case, we have modified the model such that binding an additional S molecule to 

ES, the intermediate compound, facilitates the phosphorylation reaction,  
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 The additional mechanism incurs a nonlinear term of [S] (see Equation 6) and yields the desired 

sigmoidal response (Figure 2). Figure 2b gives concentrations of various enzyme forms as a function 

of [St] in case b. [ES] increases steadily with initial increase of [S], then decreases suddenly.  In other 

words, for low concentrations of [St], a large proportion of the signal molecule is concealed in the 

bound form, ES. Only when [St] reaches a critical value, a large portion of the protein is transformed in 

the form of [EP] via the intermediate [SES]. 

For case b, we also examined the situation that the free signal concentration [S] instead of [St] is 

controlled. In this case our mathematical analysis (see Supporting Text for details) shows that [EP] as a 

function of [S] can only yield mild sigmoidal response. Numerical searching of the parameter space 

confirmed this conclusion. 
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Effects of dynamic disorders 

In this part, we will describe the effect of dynamic disorders on the sigmoidal switch, in particular, on 

the network presented in case b. We adopted a multistate model studied by Kou et. al(14). The model 

assumes N conformations of the enzyme, E1, …, EN. Corresponding N conformations exist for all the 

other states of the enzyme, for example, ES1,…, ESN for ES. Only matching conformations of the 

reactant and the product are admissible in chemical transitions, e.g. EP2 → AEP2, but not EP2 → AEP3. 

Part or all of the chemical transition rates vary with different conformations, so the rates of individual 

enzymes display temporal fluctuation as the enzyme randomly converts to different conformations. 

Dynamic disorders thus appear. Here we assumed that the rates of the disordered chemical transitions 

obey a gamma distribution over all conformations with certain mean and variance (with the 

mathematical expression given in the caption of Figure 3). Interconversions occur between each pair of 

conformers of the same enzyme state, not restricted to the neighboring numbered ones, Xi ↔ Xi+1. For 

simplicity, a uniform rate was used for all the conformer interconversions. 

In Figure 3, we compared the ensemble averaged signal-response curve, [EP] vs [St], with the signal-

response curve of each conformation, [EP]i vs [St]i. Here the ensemble concentration of the signal and 

the response are defined as  

 ( )
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And the signal concentration for a given conformation assumes a scaled form 

( )[ ] [ ] [ ] 2[ ]t i i iS S N ES ES ES= + + i . In the limit of quasi-static protein conformational changes, the 

response curve of a given conformation i is virtually the response relation with existence of only 

conformer i.  
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Figure 3a shows that the ensemble response curve is not significantly affected by the conformer 

conversion rate. Similar results are obtained by imposing dynamic disorders on other enzymatic 

reaction steps. Therefore, the effect of dynamic disorder on the system response is barely noticeable if 

the response curve is measured at bulk. However, large fluctuations in the system response becomes 

significant if the protein concentration [Et] is low (e.g., close to single molecule level). Figure 3b and 

Figure 4a show that variance in k1’ (or k2) results in variance of the sigmoidal transition location up to 

20%. Variance in k1 causes much less fluctuations in the response because k1 is not associated with the 

main reaction pathway in the network. The effect of dynamic disorders is dramatically reduced with 

increasing conformer inter-conversion rate (Figure 3c and Figure 4), or with perfect correlations 

between the disordered reaction rates (associated with k1, k2, and k1’, black dash line in Figure 4). The 

latter observation is because [EP] depends mostly on the ratio of three rate constants k1, k2, and k1’ (see 

the analytic result of case b in Supporting Text).  

As discussed in Introduction, enzymatic reaction rates are in general multi-dimensional functions of 

protein conformations. By using correlated rates as above, we implicitly assume that these rates share 

similar function forms of protein conformational coordinates (Supporting figure 

Figure 5a). Generally speaking, different reactions within a reaction network may have different 

dependence on protein conformational coordinates (Supporting figure 

Figure 5b), and the dynamic disorder will not be offset. The red dashed line in Figure 4 shows that 

large variance exists even when k1’ just has a broader distribution than k1 and k2.     
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Discussions 

This work has two focuses. First we discussed the detailed mechanism of the switch module. We 

showed mathematically that the covalently-modification system studied by Goldbeter and Koshland 

cannot produce the switch-like “zero-order ultrasensitivity” behavior with its original form. Rather, 

some extra steps are needed. We examined one such scheme by allowing enzymatic reaction rates 

affected by formation of complexes like [SES]. Given that the switch module is a basic PIN motif, 

further experimental studies on testing the theoretical results here should be necessary. We want to 

point out that the theoretical analysis presented in this work is based on the assumption that the law of 

mass action is valid. Violation of this assumption may lead to new mechanisms not discussed here. 

Then we discussed the effect of dynamic disorders on the dynamic behaviors of the switch module. 

The ensemble averaged behavior is insensitive to the existence of dynamic disorders. However, 

fluctuations of the module response may be observed with a small number of protein molecules. There 

are several ways of reducing the effect of dynamic disorders (and thus increase robustness of the 

network): increasing the conformer inter-conversion rate, or correlating conformation fluctuation 

within the PIN. These mechanisms may have been adopted along evolution. However, dynamic 

disorders may even play a positive role. Tănase-Nicola et. al showed that noise correlations within a 

biochemical network can reduce the overall noise of the network(15). Existence of dynamic disorder is 

one noise source which can have broad time scales, and could interplay with other sources of noise. 

Computational details 

For the sigmoidal switch model, two optimization methods were used to search the parameter space:  

the downhill simplex optimization method, and simulated annealing. With an initial set of rate constant 

values, both the two algorithms search the parameter space to minimize the function 
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where [RP(Si)] is the calculated RP concentration as a function of the signal strength, and T(S) is the 

desired signal-response curve. In all the calculations T(S) assumes the ‘Goldbeter-Koshland’ function 

form, 
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With existence of dynamic disorders, the enzymatic reaction rates assume a gamma distribution  
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Table 1 Model parameters. 

 k1 k1f k1r '
1 fk  '

1rk  '
1k k2 k2f k2r Et

Case a 5 0.06 20    1 0.06 20 1 

Case b 0.006 400 12 40 670 10 1 4 79 1 
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  Figures 

Figure 1 Several possible detailed unwrapped schemes of the sigmoidal switch studied by Goldbeter and Koshland. 

Case a (upper panel within the shaded box): the switch is composed of an enzyme in phosphorylated and 

dephosphorylated forms, with the transformation regulated by another signal molecule.  Case a2 (lower panel): E 

and S form a loosely bound complex, then a tightly bond one preceding the phosphorylation step. Case b (upper 

panel with extra pathway shown in blue): ES can bind another S molecule, which accelerate the phosphorylation 

reaction. 

Figure 2 (a) Exampling signal-response curves obtained with the schemes discussed in Figure 1. The G-K function is 

the Goldbeter and Koshland result obtained by assuming both the phosphorylation and dephosphorylation steps are 

governed by Michaelis-Menten kinetics.  Parameters of other cases are obtained by fitting the G-K function (see 

Supporting Text for details), and are given in Table 1. (b) Concentrations of various enzyme forms as a function of 

the total signal concentration in case b.  

Figure 3 Response curves of case b in the presence of dynamic disorders of k1’.  For the results shown, '
1k   assumes a 

gamma distribution 1( ) [1/( ( ))] exp( / )a ap k b a k k b−= Γ − with Γ(a) being the gamma function, and a = 4, b = 10/a 

(here 10 is the rate constant value used in the absence of dynamic disorder). The number of conformers is 10, with 

the discretization method discussed in ST. (a) The ensemble averaged response curves with the conformer 

interconversion rate kij = 10-5 (solid line) and kij = 10-1 (dashed line), respectively. (b) Contributions from individual 

conformers with kij = 10-5 (dotted lines). The ensemble averaged result is also shown (solid line). (c) Same as b except 

kij = 10-1.  The quantities σS and σEP are the relative variances shown in Figure 4. 

Figure 4 Upper: relative variance of  [St]i at [EP]i = [EP(S→∞)]/2 as a function of the conformer inter-conversion 

rate. Bottom: relative variance of  [EP(S→∞)]i as a function of the conformer inter-conversion rate. a) k2 has a 

gamma distribution with a2 = 4, b2 = 1/ a2, (thus the average of k2 is 1, the value used in the case without dynamic 

disorder, see Table 1); b) k1’ has a gamma distribution with a1’ = 4, b1’ = 10/a1’; c) k1 has a gamma distribution with 

a1 = 4, b1 = 0.008/a1; d) all the enzymatic reaction rates, k1, k1’, and k2, have gamma distribution with (a1, b1; a1’, b1’; 

a2, b2); e) k1, and k2, have gamma distribution with a1, b1; a2, b2), but k1’ has a gamma distribution with (2, 10/2).   
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Supporting figure 
Figure 5 Schematic illustration that rate changes due to conformational fluctuations may not correlate for two 

substrate binding states. Here x1 and x2 represent two (of the many) protein conformational coordinates. An 

enzymatic reaction rate k is a function of (x1, x2), which is represented by the shaded region. A darker region means 

higher reaction rate. a: If for two binding states, the two functions overlap well, the two rates are correlated, and a 

higher kα corresponds to a higher kβ. Then the effect of dynamic disorders is greatly reduced even for the quasi-

static case. b: In general, the two functions do not overlap well, and large effect of dynamic disorders may be 

observed for the covalent modification switch.    
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Supporting Text 

A.  Impossibility of sigmoidal behaviors in case a and a2 

Case a 

We examine the steady-state solution of Equation (2) and (3) in the main text. First other quantities can 

be expressed by [E],  
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The second derivative of [EP] is monotonic, and approaches zero only at [ ]tS →∞ . Therefore, [EP] as 

a function of [St] is hyperbolic and shows no sigmoidal behavior. 

Next we examine the function dependence of [EP] on [S] (in other words, the concentration of free [S] 

molecules is a control variable experimentally). One can show that the steady state solution of [EP] has 

the form, 
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Again its second derivative over [S] is single-signed on varying [S]. Thus the scheme shown in case a 

cannot have a sigmoidal-shaped [EP] ~ [S] curve. 

Case a2 
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Compared to case a, an additional intermediate step is added. After some tedious bur straightforward 

derivation, one obtains 

( )

2

2 2 21
2

2

''1 1
2 1

2 2

4
2

2 4 2
2

1

m t t t t

m m

B B ACE
A

k
K aS a S abS b AC AE ab

Ak
EP

k k
K K

k k

− + +
=

− + + + + +
=

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠

 

With 

( )

( )

''
''1 2 2 1 1

1 2 1 ''
1 2 1

''
1

'' '' ''1 2 2
1 2 1 1 1 1 1

2 1 1

''
1 1 1

, , ,

1

1 1

r r r
m m m

f f f

m

f t m M r m m t t

r m t

k k k k k
K K K

k k k

A K

k k k
B k S K K k K k K E aS b

k k k

C k K k E

+ +
= = =

= +

⎛ ⎞
= + + + + + − + = +⎜ ⎟

⎝ ⎠

= +

 

However, similar to case a, it can be shown mathematically that the second derivative of [EP] over [S] 

or [St] is single-signed. Therefore, case a2 gives no sigmoidal behavior. 

 

B. case b is not a good candidate for switching behavior in terms of [S] 

In case b, additional pathway with two S molecules bound to E is added.  Here we show that no sharp 

switch behaviors can be obtained if the free S concentration is the control variable.  
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First to facilitate the following discussions (especially to make the discussions with Taylor expansions 

relevant), we define a reduced quantity, s = S/Smax, where Smax is chosen so that at which [EP] is 

already close to the plateau value. The two rate constants are scaled correspondingly, 
' '

1 1 max 1 1 max,f f f fk k S k k S= = . The governing equations are, 

  

 

1 1 2
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'

1 2 2 1
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 (6) 

with  

 [ ] [ ] [ ] [ ] [ ] [ ]tE ES EP AEP SES E+ + + + =  (7) 

Define, 
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Then we have, 
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From Equation  

 

( ) ( ) ( )
( )

( ) ( )

1
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' ' ' ' ' '
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, 

the expression for [EP] vs s is in the form, 

2

2[ ] [ ]
' 't
as bsEP E

a s b s c
+

=
+ +

 

The coefficients are positive, and a/a’<1, b/b’<1. 

( ) ( )
( )

2
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' ' 2
[ ] /[ ] '

' '
t

ab a b s acs bc
EP E

a s b s c

− + +
=

+ +
 

In the limit s→0, 

 ( ) 2( ')[ ] /[ ] ' /t
a b sEP E b c

c
−

≈ +  (9) 

To generate sigmoidal shape, the derivative should be close to 0 for small s. That is, b/c<<1, which 

gives relation  
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1 2

2 1

1,m

m

K k
K k

>>  (10), 

and (a − b’) ~ 0, or 

' ' '
1 1 1 1 12 2 1 2

' ' '
2 2 21 1 11

11 m m m m

m m mf

K k K K Kk k k k
K K Kk k kk

+
<< + + + (11).

 

Here to make it clear, ‘much larger than’ approximately means a factor of 10 or so.  

Now let’s examine the limit s→∞, 
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 (12) 

To have appreciable percentage of the enzyme exists in the form of EP in the limit s→∞, one requires   

( )'2 1 21 / / ~ 1mk k K+ < . That is, the expression has the value on the order of unity or less. 

It is more illuminating to examine [EP] at s = 1 (or [S] = [Smax]), 
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Because of relation (10), to obtain appreciable concentration of EP, one must have, 
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then, 

' ' '
1 1 12 2 2 1 1 2

' ' '
2 2 2 21 1 11

1[ ] [ ]
1 1 1

t

m m m
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EP E
K K Kk k k k k k
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⎛ ⎞+ +

+ + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (14) 

Comparing to Equation (11), one can not satisfy the requirements that [EP] increases slowly with small 

s, and assumes a plateau with an appreciable value (e.g, > 0.1) for large s simultaneously. Therefore we 

reach the conclusion that scheme b is not a good candidate for switching.  While it can show sigmoidal 

behavior, it may not be sharp. 

On the other hand, our numerical calculations show that [EP] as a function of [St] (calculated by 

Equation (6) in the main text) shows sigmoidal (sometimes toggle) switching behavior. 

 
 
 
 




