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Abstract 
The introduction of functional transmembrane proteins into supported bilayer-based 

biomimetic systems presents a significant challenge for biophysics. Among the various 

methods for producing supported bilayers, liposomal fusion offers a versatile method for the 

introduction of membrane proteins into supported bilayers on a variety of substrates. In this 

study, the properties of protein containing unilamellar phosphocholine lipid bilayers on 

nanoporous silica microspheres are investigated. The effects of the silica substrate, pore 

structure, and the substrate curvature on the stability of the membrane and the functionality 

of the membrane protein are determined. Supported bilayers on porous silica microspheres 

show a significant increase in surface area on surfaces with structures in excess of 10 nm as 

well as an overall decrease in stability resulting from increasing pore size and curvature. 

Comparison of the liposomal and detergent-mediated introduction of purified 

bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated 

focusing on the resulting protein function, diffusion, orientation, and incorporation 

efficiency. In both cases, functional proteins are observed; however, the reconstitution 

efficiency and orientation selectivity are significantly enhanced through detergent-mediated 

protein reconstitution. The results of these experiments provide a basis for bulk ionic and 



 4

fluorescent dye-based compartmentalization assays as well as single-molecule optical and 

single-channel electrochemical interrogation of transmembrane proteins in a biomimetic 

platform.  

 



 5

Contents 
I. Introduction..........................................................................................................7 

 

II. Materials and Methods.........................................................................................8 

• Characterization of Nanoporous Silica Microbeads. 

• Solvent-Accessible Surface Area. 

• Hydrophilic Surface Treatment of Nanoporous Silica Beads. 

• Preparation of Small Unilamellar Vesicles (SUVs). 

• Purification of His6-5HT3R from Human Embryonic Kidney (HEK) Cells. 

• Synthesis of Fluorescent Ni-NTA Conjugates. 

• Proteoliposome Preparation. 

• Fluorescence Labeling of bR. 

• Preparation of Nanoporous Microbead Supported Bilayers. 

• Direct 5HT3R Reconstitution into NMsb's. 

• Asymmetric Supported Bilayer Formation. 

• Electrochemical Measurements. 

• Fluorescence Measurements. 

• Patch Clamp. 

 

III. Results………………………………………………………………………….15 

• Scanning Electron Microscopy. 

• Density Measurements. 

• Microbead Surface Area Measurements. 

• Dye Adsorption. 

• Unilamellar Supported Bilayers. 

• Bilayer Stability Measurements. 

• Asymmetric Supported Bilayers. 

• Supported Bilayer Phospholipid Exchange with SUVs. 

• Bilayer Surface Area. 

• Supported Bilayer Detergent Solubilization. 



 6

 
• bR Reconstitution. 

• Functionality and Orientation of bR. 

• 5HT3R Concentration, Orientation, and Function. 

• Patch Clamp. 

 

IV. Discussion………………………………………………………………………25 

V. Conclusion……………………………………………………………………...26 

VI. References………………………………………………………………………27 

 

Figures 
Figure 1      SEM images of silica microspheres………………………………………………...15 
 
Figure 2    Gravimetric C-8 SAM density saturation on microbeads with various diameters…16 
 
Figure 3  Reversible supported bilayer phospholipid exchange with excess SUVs…………19 
 
Figure 4 Relative surface areas of EPC and DPPC (each with 0.5% mol/mol Rhodamine 
                          DHPE) bilayers on 10 μm beads with varying pore structure………………………20 
 
Figure 5 Supported bilayer  detergent saturation for various bead diameters measured as  
                          calcium release……………………………………………………………………...21 
 
Figure 6 FRAP of 10 μm, 10 nm pore NMsb's containing 1:200-1:250 w/w fluorescently   
                          labeled bR/PL……………………………………………………………………….22 
 
Figure 7 Time-dependent fluorescence spectra of SNARF-1-loaded NMsb's……………….23 
 
Figure 8 Functionality assay for NMsb's…………………………………………………….24 
 

 

Tables 
Table 1 EPC Compartmentalization Half-Life of Internal Analytes in Days………..17 

 



 7

Introduction 
The adsorption of proteoliposomes onto a solid substrate and subsequent supported bilayer 

formation was first demonstrated by Brian and McConnell over 20 years ago.1 Since this 

discovery, a great deal of research interest has focused on the development of biomimetic 

supported bilayer systems incorporating various polymeric, ceramic, and functionalized 

substrates2-11 for the introduction of membrane proteins for bio- and chemical sensing, drug 

discovery and delivery, and fundamental biophysical studies in near-native environments. 

Concurrently, advances in silica processing have made it possible to produce microspheres, 

monodispersed in size and surface characteristics,4,12,13 which are now commercially 

available. It has recently been shown that membrane-associated proteins can be incorporated 

into lipid bilayers supported on silica beads.4 In one such example, protein association with 

the membrane was observed to be coincident with macroscopic bead aggregation.14 In 

another report, similar bilayer-coated beads were used to study phosphoinositide-specific 

phospholipase activity using laser trap-based microelectrophoresis.15 Expansion of these 

capabilities through high throughput parallel and multiplex strategies offers great 

possibilities for biosensor technology;16,17 however, functional reconstitution of complex 

transmembrane proteins into this platform has yet to be demonstrated.  

 

Significant advances have been made in the basic understanding of the reversible saturation 

and subsequent solubilization of phospholipid bilayers using various nonionic detergents.18-

26 These results provide a physicochemical basis for the purification and functional 

reconstitution of complex transmembrane proteins into unilamellar vesicles. There are 

hundreds of studies on this subject, but a few noteworthy examples pertinent to this study 

include the proteotypical G-protein coupled receptor, bacteriorhodopsin (bR),27 and a ligand-

gated ion channel responsible for fast signal transduction, the serotonin receptor (5HT3R).28 

The introduction of solid supports, however, introduces many biophysical questions from 

the perspective of both the membrane and the incorporated protein. Among these questions 

are perturbations in membrane fluidity, the conditions for effective detergent solubilization 

and reconstitution, protein-substrate interactions, protein functionality, and controlling 

protein orientation. In general, the electrostatic and van der Waals forces of hydrophilic 

surfaces promote the formation of stable bilayers with lateral fluidity and impermeability to 
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ionic species.4 However, in many supported bilayer systems, questions remain pertaining to 

the steric hindrance of supported bilayer formation resulting from proteins protruding from 

the proteoliposomal surface29 and the inhibition of diffusion and protein function due to 

protein-substrate interactions.30  

 

In an attempt to minimize these issues, silicon oxides have been suggested to be among the 

most consistent surfaces for bilayer formation using liposomal fusion.4,5,31 In these materials, 

several persistent monolayers of water (~10 Å) reside between the bilayer and the surface, 

providing for free diffusion in both membrane leaflets and leaving long range interactions 

intact,32-35 much like a natural biological membrane. The following article reports on the 

long-term stability, detergent solubilization, and protein incorporation in nanoporous 

microsphere supported bilayers (NMsb's) resulting from varying particle diameter and 

surface porosity. This study seeks to identify the optimal surface pore structure for minimal 

protein-substrate interaction and to gain a better understanding of the stability affects 

induced by curvature in rigid spherical supports.  

 

In addition to traditional proteoliposome deposition, a method for introducing detergent-

solubilized membrane proteins into preformed supported bilayers is described. A 

comparison of the two methods based upon the incorporation efficiency, orientation 

specificity, and functionality is also reported. Finally, micromanipulation and patch clamp 

electrochemical measurements were attempted on the NMsb's, and the cumulative results are 

discussed in terms of a comparison to biological cells and the potential use in biosensor 

applications, including receptor-based biodetection and signal amplification.  

 

Materials and Methods 
Characterization of Nanoporous Silica Microbeads. Pore Sizes and Bead Densities. 

Nucleodur and Nucleosil porous silica microspheres were purchased from GFS with the 

following parameters: 10, 20, and 30 μm diameter beads, each with 10 nm pores, and 

additional 10 μm beads with 50 and 100 nm pores. Scanning electron microscopy (SEM) 

images of the beads were taken with a Hitachi S-5200 NanoSEM. Aqueous hemacytometer 

counting of a known mass of each of the different bead types gave the number of the beads, 
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from which the density was calculated by determining the spherical volume per particle. For 

comparison to the hemacytometer result, a check of the density was also measured by a 

water displacement assay for a known mass of beads. The mass per bead was used to 

calculate the spherical surface area of an enveloping membrane. By using known values for 

the headgroup area of a specified phospholipid in its final hydrated bilayer phase,36-38 the 

corresponding quantity of phospholipid necessary for coating the microspheres was 

calculated.  

 

Solvent-Accessible Surface Area. In order to measure the total solvent-accessible surface 

area of a given set of beads, an octyltrichlorosilane (OTS)-based self-assembled monolayer 

(SAM) saturation experiment was performed. Dry beads were weighed and exposed to 10 

mL of a warm (50 ºC) 0.5 M OTS solution in heptane. The beads were agitated gently for 15 

min, centrifuged and washed with 1:1 CHCl3/n-hexane. This process was repeated to vary 

the number of exposures from 0 to 5. After the final exposure cycle, the beads were washed 

a final time in CHCl3 and dried under a nitrogen stream at 40 ºC with agitation for 48 h. The 

SAM-coated beads were then reweighed and dissolved in 10 mL of n-hexadecane. Five 

microliter aliquots of suspensions under stirring were delivered to a hemacytometer cell, and 

bead counting was performed to calculate the new SAM-coated bead mass. Assuming a 

close-packed SAM, the solvent-accessible surface could then be determined. As a check of 

the bead density, total surface area, and pore size and volume, nitrogen absorption 

measurements were performed using a Micromeritics ASAP 2010 physisorption analyzer.  

 

Hydrophilic Surface Treatment of Nanoporous Silica Beads. Beads were weighed and 

washed in a 4% peroxide/4% ammonium hydroxide solution at 80-90 ºC for 10 min. The 

beads were then centrifuged and washed with Nanopure water and resuspended in a 4% 

peroxide/0.4 M HCl solution and heated to 80-90 ºC for 10 min. The beads were then 

centrifuged and washed three times with Nanopure water and suspended in an internal buffer 

solution containing fluorescent or ionic markers used in the following experiments.  

 

Preparation of Small Unilamellar Vesicles (SUVs). Fluorescent and nonfluorescent 

phospholipids were purchased from Molecular Probes and Avanti Polar Lipids, respectively 
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[L-α-phosphatidylcholine (EPC); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC); 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC); 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC); 

dihexadecyldimethylammonium bromide (DHDAB); 2-(4,4-difluoro-5,7-dimethyl-4-bora-

3a,4a-diaza-s-indecene-3-doceanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine  

(β-BODIPY FLC-HPC); Lissamine Rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine, triethylammonium salt (Lissamine Rhodamine DHPE)]. Before use, 

each was dissolved in chloroform and stored at -80 ºC for up to two weeks. For a given 

microsphere sample, a stoichiometric amount of phospholipids was calculated and a 100× 

molar excess of total phospholipid was added in the desired molar fractions to a round-

bottom flask and dried under nitrogen. The resulting phospholipid cake was then further 

dried under vacuum for a minimum of 20 min. The phospholipid cake was then reconstituted 

(>1.5 mg/mL) in buffer solution at 50 ºC containing fluorescent or ionic markers used in the 

following experiments. Once the lipid cake was fully dissolved, the resulting liposome 

suspension was transferred to a Falcon tube and subjected to sonication using a Branson 250 

ultrasonicator (microtip setting = 6, duty cycle = 20%) for 10 min at 4 ºC, at which point the 

turbidity was removed and unilamellar vesicles between 30 and 100 nm were formed.53-54  

 

Purification of His6-5HT3R from Human Embryonic Kidney (HEK) Cells. Purification of 

5HT3R into proteomicelles was adapted from the work of Hovius et al.39 Briefly, following 

selection, adherent HEK 293 cells expressing 5HT3R with C-terminal His tags were grown 

to 90-100% confluence, as described elsewhere.40 The media was then decanted, and the 

cells were washed with 5 mL of 1× phosphate-buffered saline (PBS) buffer. Immediately 

following, the cells were exposed to 10 mL of 1× PBS with 1 mM EDTA for 10 min. The 

cells were then collected and centrifuged for 5 min at 1900 × g, and the buffer was decanted 

twice. The cells were then weighed and flash frozen in liquid nitrogen for storage at -80 ºC. 

All of the following purification steps were performed on ice or at 4 ºC. One gram of cell 

pellet was resuspended in 10 mL of 10 mM HEPES buffer, pH 7.4, containing 1 mM EDTA. 

The cells were then homogenized using an Ultra Turrax 18 at full speed (24 000 rpm). A 25 

μL portion of protease inhibitor cocktail (P8849, Sigma Aldrich) was then added, and the 

pellet was diluted to twice its original volume by adding 10 mL of 1× PBS buffer. The 
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membrane pellet was then isolated by centrifuging in an Allegra 25R centrifuge at 20400 × g 

for 20 min followed by removal of the supernatant. The membrane pellet was then 

resuspended in 4 mL of HEPES buffer, pH 7.4, and vortexed briefly. A 200 μL portion of 50 

mM C12E9 detergent (Fluka) was then added, and the solution was incubated for 1 h with 

gentle agitation. A 150 μL portion of Ni-NTA magnetic agarose beads (Qiagen; 3 mg/mL 

binding capacity) was combined with 1.5 mL of equilibration buffer (10 mM NaPO4, 500 

mM NaCl, 0.4 mM C12E9, 20 mM imidazole). Note: the packaging solvent was removed 

from the Ni-NTA magnetic agarose beads prior to use, and the beads were equilibrated for  

1 h with gentle agitation. After removal of the equilibration buffer, the beads were then 

combined with the detergent-solubilized membrane pellet, 33 μL of 3 M imidazole was 

added, and the suspension was agitated overnight. On the following day, the beads were 

captured and washed five times with equilibration buffer. The receptor was then eluted three 

times with 500 μL of elution buffer (10 mM NaPO4, 500 mM NaCl, 0.4 mM C12E9, 250 

mM imidazole) with agitation for 10 min between cycles. Final purification was performed 

by dialysis following reconstitution into liposomes or preformed supported bilayers. SDS-

PAGE (10-20% gradient Tris-glycine, SYPRO ruby stain) was performed on all purification 

fractions following trichloroacetic acid extraction according to the method of Lemelli.40,41 

Fluorescent bands at 49 and 64 kD were observed in the elution fractions, indicating the 

presence of the glycolsylated and deglycosylated forms of 5HT3R. 

 

Synthesis of Fluorescent Ni-NTA Conjugates. Fluorescent Ni-NTA conjugates were 

synthesized according to the work of Guignet et al.42 Briefly, N-(5-amino-1-

carboxypentyl)iminodiacetic acid (Aldrich) was dissolved in 0.1 M NiCl2. The pH was 

adjusted to 8.0 with NaOH, and the solution was allowed to evaporate overnight yielding 

aquamarine crystals of Ni2+-NTA-lysine. 5(6)-CR 6G SE and 5 equiv of Ni2+-NTA-lysine 

were dissolved in 1:1 acetonitrile and 50 mM NaHCO3, pH 9.0, and incubated with stirring 

for 12 h in the dark at 22 ºC. The product was purified by thin layer chromatography on 

silica gel 60 plates eluting with CHCl3/CH3OH/H2O = 66/25/4 (Rf = 0.21) and extracting 

with acetonitrile/ H2O = 1/1. The product was then filtered and lyophilized for storage at      

-80 ºC until use.  
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Proteoliposome Preparation. bR purple membrane (labeled or unlabeled) was dissolved in 

10 mM HEPES buffer, pH 6.0, containing 10 mM NaCl, 80 μM MgCl2, and 20 μM CaCl2. 

n-Octyl-β-D-glucopyranoside (OG, Aldrich) was added in 6 (45.6 μL, 1 M) aliquots over 1 h 

at 35 ºC to create proteomicelles with a detergent-to-protein ratio of 40:1 (w/w). 

Concurrently, a liposome solution (95% mol/mol EPC, 5% mol/mol DOPE; final 

protein/phospholipid = 1:200-1:250 w/w) was warmed to 35 ºC, and the same detergent 

(OG) was added in 6 aliquots over 1 h to create detergent-saturated liposomes (0.024 M OG) 

with a detergent-to-phospholipid ratio of ~1:2. The bR proteomicelles were then added to 

the detergent-saturated liposomes, incubated at 35 ºC for 1 h, and stored overnight at room 

temperature. The resulting solution was then subjected to dialysis using a 15 kD cutoff 

dialysis cassette (Tube-O-DIALYZER, GBiosciences) submerged in 1 L of the buffer 

solution described above with washed SM2 BioBeads (BioRad) added to the external 

dialysis solution in three additions over 6 h as described previously.43,44 A similar procedure 

was applied for nonaethylene glycol monododecyl ether (C12E9, Fluka)-solubilized His-

tagged 5HT3R purified from HEK cells using a 25 kD cutoff dialysis cassette with 

BioBeads additionally added to the internal dialysis cassette buffer.  

 

Fluorescence Labeling of bR. Fluorescence labeling of bR was adapted from the work of 

Kahya et al.45 Briefly, following proteoliposome reconstitution, bR was exposed to three 

molar equivalents of 5(and 6)-carboxyrhodamine 6G succinimidyl ester (5(6)-CR 6G SE, 

Molecular Probes) in bicarbonate buffer at pH 8.5 for 1 h at 22 ºC followed by 16 h at 4 ºC. 

The resulting fluorescent protein conjugate was then purified to remove unreacted dye by 

dialysis using a 10 kD cutoff dialysis cassette in 1 L of 10 mM HEPES buffer (pH 7.4, with 

10 mM NaCl, 80 μM MgCl2, and 20 μM CaCl2 with washed SM2 BioBeads).  

 

Preparation of Nanoporous Microbead Supported Bilayers. The desired number of beads 

was pipetted with stirring from a stock suspension (10 μm: 1.25 × 108 beads/mL; 20 μm: 

1.56 × 107 beads/mL; 30 μm: 4.63 × 106 beads/mL), and the supernatant was removed. The 

freshly prepared liposome or proteoliposome solution was then added, and the suspension 

was vortexed on the lowest setting for 45 min. The suspension was then allowed to sit 

undisturbed for 5 min. The beads were then centrifuged and washed with the desired 



 13

external buffer to remove phospholipids free in solution. Repeating the washing procedure 

three or more times was found to be sufficient to remove all phospholipids unincorporated 

into the supported bilayer.  

 

Direct 5HT3R Reconstitution into NMsb's. A suspension of NMsb's (10 μm diameter, 10 

nm pores) in 0.5 mL of 10 mM HEPES buffer was warmed to 35 ºC, and 25 mM C12E9 was 

added in 6 (1.5 μL) aliquots with stirring to adjust the detergent-to-phospholipid ratio to 

1:2.2 over 1 h. 5HT3R was freshly purified as described above and combined with the 

detergent-saturated supported bilayers, so that the final detergent-to-phospholipid ratio did 

not exceed 3:2, and the overall detergent concentration was above the critical micelle 

concentration (cmc). The mixture was then further incubated at 35 ºC for 1 h with gentle 

agitation. The resulting bead suspension was then centrifuged and washed, and the 

remaining detergent was removed with SM2 BioBeads and dialysis as described above. For 

electrochemical measurements, the beads were exposed to 10 mM Ca2+ prior to NMsb 

formation, and, likewise, 10 mM Ca2+ was added to 1 L of 10 mM HEPES dialysis buffer. 

Following dialysis, the beads were centrifuged and washed three times with 10 mM HEPES 

buffer.  

 

Asymmetric Supported Bilayer Formation. Samples of the SAM-coated microspheres 

described above were exposed to fluorescently labeled liposomes as well as 0.5% mol/mol 

Rhodamine DHPE and 95.5% mol/mol EPC as chloroform solutions. Liposome deposition 

was performed as described above. SAM exposed beads that had been exposed to 

phospholipids in chloroform were dried under nitrogen and washed with buffer five times.  

 

Electrochemical Measurements. Bilayer stability, detergent solubilization, and protein 

functionality were probed using a calcium-sensitive electrode purchased from 

Microelectrodes, Inc. (MI-600 with MI-409F reference) and interfaced with an Orion 

voltmeter. In each experiment, the electrodes were positioned directly above the bed of 

bilayer-coated beads. Bilayer stability was assayed by loading the beads with 10 mM CaCl2 

followed by the daily recording of the external calcium concentration for 1 h. These 

experiments were carried out for different bilayer compositions, storage temperatures, 
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microsphere diameters, and porosities. The effect of detergent solubilization was probed by 

loading the beads as described above and recording the external calcium concentration 

resulting from exposure to varying detergent concentrations over the course of 1 h. The 

protein functionality of 5HT3R incorporated into NMsb's was assayed by loading the beads 

as described above and observing the change in external calcium concentration after 

exposure with varying concentrations of the 5HT3R agonist serotonin hydrochloride.  

 

Fluorescence Measurements. Supported bilayer unilamellarity, stability, fusion, detergent 

solubilization, and surface area, as well as protein concentration, functionality, diffusion 

constants, and orientation were probed using a combination of techniques including 

fluorescence confocal imaging, UV-vis absorbance, and fluorimetry. Bilayer unilamellarity 

was probed by fluorescence intensity measurements resulting from the formation of NMsb's 

with 5% mol/mol Lissamine Rhodamine DHPE followed by exposure to 0.3 M KI quencher 

for 30 min. Bilayer stability was assayed by loading beads with 0.1 mM Rhodamine 6G 

followed by the daily recording of the absorbance and fluorescence intensities prior to buffer 

exchange. The fusion of SUVs with supported bilayers was assayed by repeatedly exposing 

fluorescent bead supported bilayers to an excess of fluorescent and nonfluorescent SUVs 

followed by UV-vis absorbance and confocal fluorescence imaging. The affect of detergent 

solubilization was assayed by adding 0.5% mol/mol of a fluorescently labeled membrane 

component (membrane and external labels) and measuring the fluorescence intensity of the 

supernatant resulting from exposure and 20 min equilibration to increasing concentrations of 

detergent. The affect of the surface structure (porosity) between the fluid and nonfluid 

bilayers was compared by adding 0.5% mol/mol of a fluorescently labeled membrane 

component and measuring the fluorescence intensity in bead number-matched samples. The 

orientation of bR was probed by fluorescence labeling of the extracellular portion of the 

protein followed by exposure to 0.3 M KI for 30 min. The total quenching efficiency for the 

solvent accessible dye used to label bR was found to be 95% at the concentration described. 

For 5HT3R quantification, a Ni-NTA fluorophore was used to reversibly bind to the C-

terminal His tag for fluorescence emission measurements. Fluorescence recovery after 

photobleaching (FRAP) and confocal Z-scanning were performed using an inverted Nikon 

microscope (objective: Nikon 40×, NA 1.3, Apo) interfaced with a BioRad MRC-600 scan 
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head and 567 nm laser excitation. FRAP was used to assay the diffusion constant of dye 

compartmentalized in coated beads as well as the two-dimensional membrane diffusion of 

fluorescently labeled bR. The protein orientation of 5HT3R was determined by comparing 

the fluorescence intensities of Ni-NTA fluorophore labeled receptors that had been labeled 

before and after reconstitution into NMsb's. Protein function and orientation in bR was 

probed by loading beads with the pH-sensitive fluorophore SNARF-1 (Molecular Probes, 

Inc.), and monitoring the fluorescence spectrum during temperature-controlled exposure to a 

100 W UV-filtered Xenon lamp.  

 

Patch Clamp. Freshly prepared bilayer-coated microspheres were subjected to 

micromanipulation and patch clamp electrochemical analysis using an Axopatch 200B 

amplifier/headstage mounted on a home-built inverted microscope. Seal resistance and 

capacitance was monitored following the application of a 5 mV pulse for a variety of bead 

and tip conditions.  

 

Results 
Scanning Electron Microscopy. Figure 1 shows low (10 000×, 2.0 kV) and high (200 000× 

and 100 000×, 2.0 kV) magnification images of 10 μm diameter silica microspheres with 

different pore structures. The different pore sizes display regular and highly interconnected 

silica nanostructures that are self-consistent in morphology across the different size scales. 

The larger diameter (20 and 30 μm) beads with 10 nm pores show indistinguishable surface 

characteristics from the 10 μm, 10 nm porous beads under high magnification.  

 

Figure 1. SEM images of silica 
microspheres with varying surface 
structure. Left: 10,000× image of a 
10 μm bead with 10 nm pores. 
Right, descending vertically: 
200,000× images of beads with 10 
nm pores and 100,000× images of 
beads with 50 and 100 nm pores.  
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Density Measurements. Hemacytometer counting, water displacement, and nitrogen 

absorption assays were employed to determine the densities of the different bead types. The 

results of these measurements all agree within 5% of each other. Compared to bulk silica, 

the resulting density for the 10 nm porous beads suggests that the beads are ~42% empty 

space independent of the diameter. The beads with the larger pores (10 μm diameter, 50 and 

100 nm pores), however, have higher densities, corresponding to ~20% empty space 

compared to bulk silica.  

 

Microbead Surface Area Measurements. The results of gravimetric analysis and 

hemacytometer counting of bead samples allows for the determination of the SAM mass per 

bead upon exposure to OTS and gives a measure of the solvent-accessible surface area of the 

nanoporous beads. Figure 2 shows the results of density saturation analysis for a close-

packed C-8 SAM. On the basis of recent experimental measurements for the determination 

of the surface area per molecule of a close-packed C-8 SAM on silica (20 Å2),46 the 

calculated microsphere surface areas were shown to be ~4 orders of magnitude higher than 

the surface area of an equivalent nonporous microbead. This value is decreased by ~30% in 

beads with 50 and 100 nm pores. Nitrogen absorption measurements show close agreement 

with the total surface area calculated by SAM saturation in this system. Additionally, SAM 

saturation in these experiments was shown to be dependent on the bead size, with the 10 μm 

beads requiring two exposures of OTS, the 20 μm beads requiring three exposures, and the 

30 μm beads requiring four exposures.  

 
                                                                

 
Figure 2. Gravimetric C-8 SAM 
density saturation on microbeads with 
various diameters, ( ) 10 μm, ( ) 20 
μm, and (•) 30 μm (10 nm pores), 
resulting from increasing numbers of 
OTS exposures. SAM saturation 
density is based on a calculated close-
packed SiC8 density of 1.17 × 10-7 
g/cm2.46  
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Dye Adsorption. The exposure of hydrophilically treated microspheres with Rhodamine 6G 

displayed spectral characteristics unchanged from those of buffer-solubilized dye. Daily 

fluorescence measurements following buffer exchange gave an adsorption half-life of ~4 

days, independent of bead size and porosity. Confocal Z-scanning fluorescence microscopy 

revealed that the total concentration of fluorophore decreases near the center of the bead, 

with this effect being more pronounced in the larger pore size/higher density beads. R6G-

exposed SAM-coated (i.e., hydrophobic) beads displayed a 20 nm blue-shift in the 

absorbance and a 10 nm blue-shift in the fluorescence emission maxima, with similar Z-

scanning cross-sections to unexposed beads.  

 

Unilamellar Supported Bilayers. Fluorescence quenching of supported bilayers doped with 

5% mol/mol Lissamine Rhodamine DHPE showed a 50-56% decrease in fluorescence 

intensity following exposure to 0.3 M KI after 30 min. This result suggests that the 

supported bilayers on this platform are unilamellar by the ratio of quenched external solvent-

accessible fluorophores versus unquenched nonexternal solvent-accessible fluorophores. 

Attempts to generate multilamellar supported bilayers by reexposure of NMsb's to 1-20× 

equiv of fluorescent SUVs were unsuccessful.  

 

Bilayer Stability Measurements. The results of two long-term assays monitoring the release 

of R6G and Ca2+ under various storage conditions and bilayer compositions are summarized 

in Table 1. Several interesting observations are made as a result of this study. First, in each  

  

Table 1. EPC Compartmentalization Half-Life of Internal Analytes in Days 
  microbead size (10 nm pores) pore structure (10 μm beads) 
  10 μm 20 μm 30 μm 10 nm 50 nm 100 nm  
R6Gab  4.2  17.9  24.6  4.2  4.1  4.1  
Ca2+ b  2.1  2.8  4.9  2.1  < 1.0  < 1.0  
Ca2+ c  3.2  4.8    3.2  1.3    
Ca2+ d  3.3  4.9    3.3  1.6    

a R6G adsorption to uncoated silica beads = 4 days.b Stored at 21 ºC.c Stored at 4 ºC.d 5%   
mol/mol DHDAB, stored at 21 ºC.  
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case, the larger bead size corresponded to increased bilayer stability. Second, comparing the 

results from the calcium and dye release assays, a large increase in compartmentalization 

stability for the dye-loaded beads is indicated. This observation is believed to be the result of 

a combination of the strong adsorption of the dye to the bead, the destabilizing membrane 

potential created by loading the bead with Ca2+ ions, and the small size of the calcium ion 

and its large diffusion constant. Finally, lowering the storage temperature to 4 ºC or 

introducing 5% mol/mol of the positively charged lipid component, DHDAB, effectively 

doubled the stability half-lives. The effect of DHDAB is believed to be the result of an 

increase in the membrane-bead electrostatic bonding between the hydroxyl-rich (SiO-) 

negatively charged microsphere surface and the positive charge introduced by DHDAB. 

Repeating this assay with the homogeneous phospholipids DMPC and DOPC produced a 

composition-dependent stability gradient. The stability half-lives were consistent on all 

surfaces and followed the order EPC > DOPC > DMPC. It is interesting to note that the 

order of the stabilities corresponds inversely to the order of the different lipids' gel-to-fluid 

phase transition temperatures (Tm), where Tm(EPC) = -10 ºC < Tm(DOPC) = 18.5 ºC < 

Tm(DMPC) = 22 ºC. Additionally, FRAP was performed on the internal volume of the 

coated beads of various sizes, which were loaded with R6G. Fluorescence recovery times of 

the internal volume of NMsb's indicate that the diffusion constant of dye molecules 

compartmentalized within the beads is identical for different bead sizes, indicating that the 

connectivity of the internal compartments is consistent among these samples.  

 

Asymmetric Supported Bilayers. The formation of asymmetric bilayers was observed using 

confocal fluorescence Z-scanning microscopy. A bright ring of intensity was observed on 

the bead surface in both preparations, with the nonliposomal treatment producing higher 

fluorescence intensities than the bilayers generated by liposomal fusion. In both treatments, 

however, the fluorescence permeated deeper into the bead surface than beads coated with 

symmetrical bilayers. The overall yield of supported asymmetric bilayer formation was 

appreciably higher using nonliposomal methods due to the low suspendibility of SAM-

exposed beads in aqueous media  
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Supported Bilayer Phospholipid Exchange with SUVs. The results of alternately 

reexposing bead supported bilayers to excess fluorescent and nonfluorescent SUVs are 

shown in Figure 3. In this assay, we observe a reversible exchange of phospholipids between 

SUVs and the supported bilayer. The large excess of SUVs used in this assay resulted in the 

bilayers taking on the fluorescent or nonfluorescent characteristic of the SUVs to which the 

bilayer was most recently exposed following several wash cycles. This observation 

demonstrates that SUV interactions with preformed NMsb's promote the exchange of bilayer 

components. This property thus allows for continuous modification of the supported bilayer 

and the possibility of recycling the supported bilayer substrate, for example, in flow cell-

based devices; however, the generation of multilamellar bilayers by reexposing existing 

supported bilayers to SUVs was shown to be unsuccessful in this platform.  

 

                                                    
Figure 3. Reversible supported 
bilayer phospholipid exchange 
with excess SUVs. (red line) SUV 
exposure (1), PC with 0% mol/mol 
Rhodamine DHPE. (blue line) 
SUV exposure (2), PC with 1% 
mol/mol Rhodamine DHPE. 
(green line) SUV exposure (3), PC 
with 0% mol/mol Rhodamine 
DHPE. (black line) SUV exposure 
(4), PC with 1% mol/mol 
Rhodamine DHPE.  

 
Bilayer Surface Area. Integrated fluorescence intensities of bead number-matched samples 

with varying pore sizes and phases are shown in Figure 4. The data are corrected for the 

relative difference in head group surface area between fluid-phase EPC (64 Å)36 and gel-

phase DPPC (46 Å).37 Three notable observations from the data are (1) in both bead samples 

with pores above 10 nm, the surface area of the fluid (EPC) bilayers increases by 2-3×, (2) 

the surface area of gel-phase bilayers increases only slightly with increasing pore size, and 

(3) the surface areas of the gel and fluid bilayers are nearly identical in the smallest pore 

size, indicating a critical dimension for the invagination of fluid bilayers.  
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Figure 4. Relative surface areas of 
( ) EPC and (•) DPPC (each with 
0.5% mol/mol Rhodamine DHPE) 
bilayers on 10 μm beads with 
varying pore structure. Fluorescence 
intensities are corrected for the EPC 
fluid-phase head group area versus 
the DPPC gel-phase head group area. 

 
Supported Bilayer Detergent Solubilization. The results of the detergent-dependent calcium 

release assay are shown in Figure 5. Again we observe a significant curvature effect, with 

the lower curvature (larger bead size) supported bilayers being increasingly resistant to 

detergent disruption. The range of the ratios of detergent to phospholipid necessary for 

supported bilayer detergent saturation was determined to be ~0.16:1 for 10 μm, ~0.26:1 for 

20 μm, and ~0.38:1 for 30 μm diameter microspheres. In a series of complementary 

experiments, fluorescence associated with labeled membrane components was measured as a 

function of increasing detergent concentration. NMsb's were prepared with either 0.5% 

mol/mol of fluorescently labeled membrane components β-BODIPY FLC-HPC, in which the 

fluorophore is conjugated to one of the phospholipid tails, or 0.5% mol/mol Rhodamine 

DHPE, in which the fluorophore is conjugated to the phosphocholine head. In both cases, 

C12E9 detergent-saturated membranes remain associated with the bead scaffold up to 200:1 

detergent/phospholipid (mol/mol, 50× cmc = 0.0001 M) at 35 ºC. In the case of OG, 

supported bilayer dissociation was observed at 75:1 detergent/phospholipid (mol/mol, 2× 

cmc = 0.0236 M) at 35 ºC. Although supported bilayer dissociation was shown to occur at 

high detergent-to-phospholipid ratio, at a detergent/phospholipid concentration of 1.5:1 

(above the cmc), a qualitative change in the bilayer is observed for both detergents. At or 

above these concentrations, beads clump together, requiring vigorous stirring to obtain a 

homogeneous suspension. Above this ratio, the membrane is no longer intact as a supported 

bilayer (as shown by calcium release), but we observe the continued colocalization of 
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fluorescence with the bead by monitoring the UV-vis absorbance of the top solution after 

each 20 min equilibration time. We assert that this transition corresponds to Lichtenberg's18 

mid to late second stage of membrane solubilization, which is dominated by various mixed 

micelle and possibly bicelle structures.47,48 A previous study, investigating the solubilization 

of planar supported bilayers using Triton-X, showed similar reversible solubilization above 

the cmc on a quartz substrate.49  

 

 

Figure 5. Supported bilayer  
detergent saturation for various 
bead diameters measured as 
calcium release: ( ) 10 μm, ( ) 20 
μm, and (•) 30 μm (10 nm pores). 
Calcium release was averaged over 
1 h after exposure to C12E9. The 
calculated cmc in this experiment 
is coincident with 0.08 C12E9/EPC 
mol/mol.  

 
bR Reconstitution. The results of a FRAP assay using fluorescently labeled bR NMsb's (10 

μm diameter, 10 nm pores) produced by proteoliposome adsorption are shown in Figure 6. 

The results of this assay yield a diffusion constant of 0.038 μm2/s for light-adapted bR at 

low concentrations, which is within ~60% of that reported for bR in giant unilamellar 

vesicles (GUVs).50 However, incomplete fluorescence recovery and the overall retention of 

the two-dimensional bleached area indicates the presence of mobile and immobile phases of 

the protein in the supported bilayer, consistent with the observations of Weng et al.5 On the 

basis of the total ratio of the surface area bleached to the total bead surface area, the 

immobile phase is calculated to be ~10% of the incorporated bR. When comparing the 

above observed diffusion constant to the diffusion constant on beads with 50 and 100 nm 

pores, we observe a decrease in the measured effective diffusion constant by a factor of 

greater than 3. We believe this to be the result of the increasing degree of bilayer 

invagination on beads with larger pore size, thus increasing the total bilayer surface area and 
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substrate-protein interaction. This result is supported by bilayer surface area measurements, 

which show that the bilayer surface area is 2-3 times larger in the larger pore size beads.  

 

 

Figure 6. FRAP of 
10 μm, 10 nm pore 
NMsb's containing 
1:200-1:250 w/w 
fluorescently labeled 
bR/PL.  

 
Functionality and Orientation of bR. It has been previously observed that bR inserts 

unidirectionally into preformed detergent-saturated SUVs.27 Similar results were observed 

for bR reconstituted into detergent-saturated SUVs produced in our lab. Fluorescence 

spectra were recorded from beads that were loaded with 50 μM of the pH-sensitive dye, 

5(and 6)-carboxy SNARF-1 before exposure to unlabeled bR proteoliposomes. 

Temperature-controlled (22 ºC) exposure to a 100 W UV-filtered Xenon lamp produced a 

small spectral shift under these conditions. A second measurement, in which 5 mM Gd3+ 

was added to the external solution, is shown in Figure 7.  In this case, a large spectral shift is 

observed, corresponding to ~1.5 pH units, indicating the accumulation of a +90 mV 

membrane potential during illumination. In order to interrogate the orientation selectivity of 

bR in NMsb's incorporated by proteoliposomal deposition, a quenching assay was 

performed on extracellular fluorescence-labeled samples. As supported by the functionality 

assay, proteoliposome-deposited bilayers display 65% fluorescence quenching, indicative of 

70% right-side-out-oriented bR, after correcting for the total quenching efficiency. From 

these observations, we propose the following mechanism of supported bilayer formation via 
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bR proteoliposomal fusion: unidirectionally aligned bR proteoliposomes interact with the 

microbead surface and experience liposome rupture to form at least two transient 

phospholipid structures that eventually adhere to the bead surface, resulting in 70% right-

side-out protein alignment. Inhibition of non-right-side-out proteins in which the C-terminus 

is exposed to Gd3+ results in a net outward H+ current under broad spectrum (500-750 nm) 

irradiation, resulting in the observed shift in the fluorescence spectrum.  

 

Figure 7. Time-dependent fluorescence 
spectra of SNARF-1-loaded NMsb's 
(10 μm diameter, 10 nm pores; 1:200-
1:250 w/w bR/PL) under 488 nm 
excitation following consecutive 5 min 
exposures to a 100 W UV-filtered 
Xenon lamp.  

 
In order to determine the effect of detergent saturation on the orientation selectivity of bR, 

extracellularly labeled bR containing NMsb's were exposed to saturating detergent 

conditions (0.024 M OG; 50:1 OG/PL), and the detergent was subsequently removed by 

either dialysis or repeated washing cycles. Fluorescence quenching after 30 min of exposure 

to KI showed 80% bleaching efficiency, corresponding to ~85% right-side-out orientation in 

both cases. However, in the washed samples, the overall starting fluorescence intensity was 

reduced significantly (~60%), indicating the resolubilization of a significant portion of bR 

resulting from detergent saturation.  

 

5HT3R Concentration, Orientation, and Function. Upon completing detergent removal, 

fluorescence spectra of the 5HT3R-containing NMsb's were taken after exposure to 0.1 mM 

Ni-NTA-5(6)-CR 6G and three washings. These UV-vis spectra were corrected by titration 

with 0.1 mM EDTA and subtracting this baseline after three washes. Using a standard curve 

for Ni-NTA-5(6)-CR 6G, the final 5HT3R concentrations were measured to be ~15 nM for 
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the direct incorporation of 5HT3R and ~200 pM for proteoliposome deposition of 5HT3R. 

These concentrations correspond to a minimum of 7500 receptors per bead and 100 

receptors per bead, respectively, from 1 g of starting HEK cells. This result is expected due 

to the large excess of proteoliposomes necessary to form a complete bilayer over a large 

curved surface. In order to probe the orientation of the receptors, an assay was conducted in 

which receptors were labeled before and after reconstitution, whereas other samples were 

either labeled before or after reconstitution. The results of this assay show a significant 

(74%) selectivity for the right-side-out alignment for proteoliposome deposited membranes 

that had been prepared in solubilizing detergent concentrations (detergent/lipid = 2.3:1, 

above the cmc). This result is believed to primarily be the result of the large steric hindrance 

of liposome fusion from the extracellular portion of 5HT3R. Performing the same assay for 

receptors reconstituted into preformed detergent-saturated supported bilayers resulted in a 

much higher (94%) degree of right-side-out alignment, which is believed to be the result of 

the supported bilayer's adherence to the surface of the bead combined with the large energy 

barrier for crossing the membrane of the large extracellular portion of 5HT3R. Results of the 

5HT-induced calcium release functionality assay are shown in Figure 8. The sharp increase 

in calcium release versus controls from receptor-containing NMsb's when exposed to the 

5HT3R agonist, serotonin hydrochloride, are indicative of the ligand-gated ion channel 

function in this system. 

 

Figure 8. Functionality assay for 
NMsb's (10 μm diameter, 10 nm 
pores) with reconstituted 5HT3R 
under exposure to (black line) 0 
μM, (blue line) 20 μM, and (red 
line) 200 μM serotonin 
hydrochloride.  
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Patch Clamp. Gigaseals were not observed on NMsb's on any of the range of bead sizes or 

pore structures using coated and uncoated (D-lysine, PDMS, OTS SAM) glass apertures 

ranging from 500 nm to 10 μm. However, translocation and micropositioning of NMsb's 

were performed using micropipettes incorporating pressure-controlled micromanipulation. 

This result suggests the importance of cellular flexibility in the formation of gigaseals for 

single-channel and whole-cell patch clamp electrochemical measurements. For these 

applications, less rigid supports such as polymeric hydrogels or multilamellar supported 

bilayers are proposed as a future direction for biomimetic investigation using patch clamp 

electrochemistry.  

 

Discussion 
Several noteworthy observations were made in probing the effects of substrate pore size and 

diameter in phosphocholine supported bilayers. With respect to curvature, the larger 

diameter beads displayed the greatest capacity to maintain compartmentalized fluorescent 

dye and calcium ions and were the most resistant to detergent solubilization. The conclusion 

that high curvature in phosphocholine supported bilayer systems can significantly reduce the 

resulting bilayer stability suggests the potential significance of the intrinsic curvature51 of 

the incorporated bilayer components. Thus, adjusting the lipid component mixture to more 

efficiently match the curvature of a specified supported bilayer system may offer a large 

increase in bilayer stability. When considering pore size, it was observed that, in bilayers 

with pores <2 times the bilayer thickness, fluid bilayers span surface structures much like a 

bilayer in its gel phase. When the pore sizes are much larger than the bilayer thickness, the 

membrane is significantly invaginated into the pore, thus increasing the membrane surface 

area. For various applications, different degrees of invagination may be appropriate; 

however, the fraction of membrane-bound protein exposed to the surface may be 

significantly increased and the overall bilayer stability diminished.  

 

In probing detergent solubilization, exposure of porous bead supported bilayers to increasing 

detergent concentrations showed reversible detergent saturation of the bilayer; however, 

even at detergent/phospholipid ratios exceeding 50:1 (above the cmc), complete bilayer 

solubilization was not observed. To rule out the possibility of perturbations resulting from 
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surface-accessible fluorescent tags, the experiment was repeated with an in-membrane 

fluorescent label with the same result. The evidence suggests, however, that the platform 

described is not a case of a detergent-resistant bilayer as seen in many biological systems,52 

but possibly the result of the high surface area for mixed micelle adsorption. Finally, protein 

reconstitution into preformed supported bilayers was carried out at detergent saturating 

conditions and resulted in a large increase in reconstitution efficiency and orientation 

selectivity.  

 

Conclusion 
Over the last several decades, membrane-bound proteins have become recognized as a major 

target for therapeutic and biosensing technologies. Interfacing these biological structures 

with synthetic materials thus offers an important challenge for the realization of future 

innovations. In order to overcome commonly observed artifacts resulting from the secondary 

interaction of transmembrane proteins with their synthetic substrates, supported 

phosphocholine bilayers on nanoporous silica microbeads were investigated at a range of 

sizes common to biological cells. Additionally, two methods of functional protein 

incorporation were demonstrated for comparison in vivo.  

 

The results of these experiments provide a basis for ionic and fluorescent dye-based 

compartmentalization assays as well as high-resolution optical and electrochemical 

interrogation such as laser trapping and patch clamp. The structural stability added to the 

bilayer as a result of the porous substrate allows proteins to be incorporated using traditional 

nonionic detergent-based methods. Additionally, the availability of uniformly sized beads 

with uniform pore structure allows the bilayer diameter and surface area to be directly 

controlled. These findings demonstrate that bilayer-coated porous silica beads offer a stable, 

size selective, and convenient platform for the study and incorporation of purified 

transmembrane-bound proteins with minimal unfavorable protein-substrate interaction due 

to high surface porosity with <10 nm scale surface structures.  
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