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function diagram. To reliably compute this correlator we use a novel perturbation scheme which

involves an expansion in the large dimension of some operators.
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1. Introduction

Since the seminal work of ’t Hooft [2] it has been widely believed that large N SU(N) gauge

theories (with adjoint matter fields) should have a dual description in terms of closed strings with

a string coupling constant gs ∼ 1/N . The original argument for this duality was based on the

reinterpretation of Feynman diagrams as string theory diagrams. Feynman diagrams drawn in ’t

Hooft’s double-line notation resemble two dimensional surfaces with holes. It was conjectured that
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there should be an equivalent description in which the holes get filled up, leading to closed Riemann

surfaces without boundaries.

The arguments of ’t Hooft do not give a prescription to construct the string theory dual to

a specific large N gauge theory. Numerous attempts have been made to directly construct string

theory duals for given field theories. However, success was mainly achieved when the field theory

had a topological interpretation (Chern-Simons theory [3] and the Kontsevich model [4] are good

examples of this) or the putative dual string theory was exactly solvable (d ≤ 2 string/ matrix

model duality). This situation has changed following the AdS/CFT correspondence [5]. By now,

there are many examples in which it is known how to find the closed string dual of gauge theories

which can be realized as the world-volume theories of D-branes in some decoupling limit. In these

cases the closed string dual turns out to be a standard closed string theory, living in a warped

higher dimensional space. In some cases, for which the gauge theory is strongly coupled, the dual

string background is weakly curved and a gravity approximation of the string theory may be used.

In general (and, in particular, for all weakly coupled gauge theories), this is not the case, and the

dual string theory is complicated (and does not necessarily have a geometrical interpretation).

It is interesting to ask is what is the string theory dual of the simplest large N gauge theory,

the free gauge theory.1 There have been various proposals for how to study the string dual of

free large N gauge theories (see, for instance, [1, 6, 7, 8, 9, 10, 11, 12, 13]). It is clear that

the dual string theories must live in a highly-curved background, which may or may not have a

geometrical interpretation (for four dimensional free gauge theories with massless matter fields,

which are conformally invariant, one expects that any geometrical interpretation should include an

AdS5 factor).

In this paper we continue our study of a specific proposal [1]2 for how to map the Feynman

diagrams to worldsheets. This proposal is based on rewriting the propagators in the Feynman

diagrams as integrals over Schwinger parameters, and mapping these parameters to the moduli

of a Riemann surface with holes (which include the moduli of the closed Riemann surface and

the circumferences of the holes).3 One can then integrate over the parameters of the holes, and

translate any Feynman diagram to a correlation function on the closed string worldsheet. This

proposal makes the procedure advocated by ’t Hooft manifest. Most of our discussion will be

general, but whenever we need a concrete example we will consider operators involving adjoint

scalar fields in a four dimensional gauge theory.

The mapping of [1] gives a closed string theory whose integrated correlation functions (of

physical vertex operators), by construction, reproduce the space-time correlation functions. The

worldsheet theory is also automatically conformally invariant (so that it can be interpreted as a

1Note that the free limit of an SU(N) gauge theory is not the same as a theory of (N2 − 1) free fields, since the

Gauss law constraint is still imposed on physical states. Equivalently, we only consider gauge-invariant operators.
2See [14, 15, 16, 17] for further work on this proposal.
3The holes here are not those of the gauge theory Feynman diagram but rather of its dual. They are therefore as

many in number as the vertices of the original graph.
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closed string theory in conformal gauge) and modular invariant. However, the construction does

not give a Lagrangian for the worldsheet theory, and it is not clear from the construction if this

worldsheet theory is a standard local conformal field theory or not.

It was noted in [15] that the prescription of [1] gives rise to an interesting feature, which naively

is in contradiction to having a well behaved worldsheet field theory: some of the putative worldsheet

correlators localize on lower dimension subspaces of the moduli space of marked Riemann surfaces.

In a usual local field theory one expects the worldsheet correlator to be a smooth function on the

moduli space, which naively rules out any localization on subspaces. In this paper we claim that

such a localization can arise in specific field theories by a special conspiracy between the operator

product expansion (OPE) coefficients. We also discuss the manifestation of modular invariance

in the prescription of [1]. Although modular invariance is guaranteed by the prescription, we will

illustrate that in some amplitudes it is realized in a quite intricate manner.

This paper is organized as follows. In §2 we present the problems of modular invariance and the

localization on the worldsheet and our suggested resolution of these problems. In §3 we concentrate

on a specific four-point function : the “Broom” diagram. This diagram does not localize on a

subspace of the moduli space, but it has limits in which it goes over to a localized diagram. We

discuss the limits in which this diagram can illustrate different general features of the prescription,

and we perform an explicit perturbative analysis of the diagram around exactly solvable limits. In

§4 we present results about more general exactly solvable subspaces of the Broom diagram, which

serve as a check on the perturbative analysis. In §5 we discuss the delocalization of the worldsheet

amplitudes as illustrated by the field theory analysis of Broom correlators. We end in §6 with a

summary and a discussion of some open problems. In appendix A we discuss the elliptic function

approach to the Strebel problem which arises in computing the Broom diagram in more detail,

and present the matching between perturbation theory and the exact results. In appendix B two

other diagrams which also localize on a subspace of the moduli space, the Square diagram and the

Whale diagram, are analyzed. We show that the Whale diagram localizes in a different way than

the other diagrams we discuss: it localizes on a two dimensional subspace of the two dimensional

moduli space.

2. General features

In [1] a specific prescription was suggested for mapping the correlation functions of free large N

gauge theories to a string worldsheet, in the ’t Hooft large N limit [2]. This prescription involves

rewriting each Feynman diagram contributing to an n-point correlation function as an integral

over the Schwinger parameters of the propagators, after reduction to a “skeleton graph” in which

homotopically equivalent propagators (when the Feynman diagram is interpreted as a genus g

Riemann surface using the double-line notation) are joined together, and then mapping the space

of these Schwinger parameters to the “decorated moduli space” Mg,n × Rn
+. This is the moduli

space of genus g Riemann surfaces with n marked points, together with a positive number pi
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associated with each point. As described in detail in [1], this mapping uses the properties of Strebel

differentials4 on genus g Riemann surfaces. After integrating over the pi, this procedure gives a

specific worldsheet n-point correlation function associated with this Feynman diagram which, by

construction, reproduces the correct n-point space-time correlation function (upon integration over

the worldsheet moduli).

Certain properties of the mapping proposed in [1] and of the worldsheet correlation functions it

leads to can be understood by general considerations. Two of these properties – the lack of special

conformal invariance in space-time and the localization of certain amplitudes on lower dimension

subspaces of the moduli space – were elucidated in [15]. We begin this section by discussing another

general property of the resulting worldsheet correlation functions, which is modular invariance. We

then discuss in more detail the interpretation of the amplitudes which are localized on the moduli

space. We argue that these amplitudes should be interpreted as delta-function distributions, and

we discuss why the appearance of such distributions in correlation functions is not necessarily in

contradiction with a local worldsheet interpretation. In fact, we derive some general constraints on

the OPE coefficients of the putative local worldsheet theory which are needed for reproducing the

localized correlation function.

In order to establish an exact sense in which the localized correlators should be treated as

delta-functions, we analyze a small deformation of the localized diagram. This deformation involves

taking the limit of correlation functions with a large number of field contractions between the vertex

operators of the original localized diagram, and a small number of additional contractions. We argue

that such correlation functions are smooth but tend to localize near subspaces of the moduli space,

and that the mapping (and the corresponding Strebel differentials) may be computed perturbatively

in the inverse number of fields (or in the distance from the localized limit). By using this expansion

we can show that in the limit in which the correlation functions localize they become delta-function

distributions.

In the subsequent sections of the paper, we discuss in detail a particular 4-point function

diagram, which we call the Broom diagram, and we use this diagram to illustrate the general

features described in this section. In particular, the expansion method described in §2.2 may be

used to compute this diagram in some regions of its parameters.

2.1 Modular invariance of worldsheet amplitudes defined by the procedure of [1]

In this subsection we discuss how modular invariance is realized in the prescription suggested in

[1]. The mapping from the Schwinger parameters on the gauge theory side to the decorated moduli

space of the Riemann surfaces Mg,n × Rn
+ is, by construction, consistent with the action of the

modular group on this space. The mapping uses the Strebel theorem to relate the two, which

ensures that (for generic Feynman diagrams) we cover the whole decorated moduli space (after the

identifications imposed by the modular group) and we cover it exactly once.

4See [18, 19, 20] for details about Strebel differentials and [21, 22, 23] for additional applications of these differ-

entials in string theory.
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However, the way that modular invariance is technically realized can in some cases be non-

trivial. This is because the mapping of [1] involves taking the square root of the Strebel differential.

In cases where this square root has branch cuts, one must be careful to choose specific branches in

order to ensure that the final worldsheet correlators are single-valued on the moduli space.

Several correlators were analyzed in [15, 16] where it was shown by direct computation that these

amplitudes are consistent with the modular invariance. However, in all of these cases the square

roots of the Strebel differentials corresponding to the diagrams contributing to those amplitudes did

not include fractional powers and thus did not have any branch cuts. In this paper we will analyze

in detail a diagram which does have branch cuts for the square root of the Strebel differential.

Note that the existence of the branch cuts does not affect “large modular transformations” such

as η → 1/η, but periodicity issues, such as taking two points in a closed path around each other

or taking the torus modular parameter τ to τ + 1, should be addressed with more care. We will

illustrate the general issue in this subsection by looking at general properties of 4-point functions

on the sphere. A specific example will be discussed in the next section.

Consider a four-point correlator on the gauge theory side,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉. (2.1)

In the suggested mapping, we map the space-time operators Oi(xi) to worldsheet operators Vi,xi(z),

and we are given a specific procedure to calculate

〈V1,x1(0)V2,x2(1)V3,x3(η)V4,x4(∞)〉. (2.2)

Note that when we write the field theory graph and assign specific operators to each node, this by

itself does not fix the assignment of the positions of the dual operators on the worldsheet. The

mapping of [1] is modular invariant; however, it is usually convenient to fix the modular freedom by

choosing three specific operators to map to three specific locations, as indicated in (2.2). Of course,

we could also choose to fix the modular group in any other way, and all such ways are related by

SL(2, C) modular transformations.

Once we choose such a specific fixing of the modular group we can find the correlator (2.2)

using the mapping of [1]. However, when we do this we can find that the relation between the

Schwinger parameters and η is such that there are apparently branch cuts on the η-plane. This

would lead to an ambiguity in rotating η by a full circle around (say) z = 0. Since the mapping

of [1] is well-defined,5 it is clear that there exists a choice of the branch which leads to an answer

which is single valued, i.e. periodic under a rotation taking η → e2πiη. However, in some cases

this choice of branch is not the most natural one, and it requires changing the branch of the square

root at some point when we rotate. Obviously, such a change in the branch is only consistent if the

correlator vanishes at some point on every path taking η → e2πiη, and this is indeed what we will

find in our example in §3.1.1.

5Given a set of Schwinger parameters there is a unique set of circumferences and the position on the moduli space

– 5 –



η

η → e2πiη η → e4πiη

∞

η

0 1
0 1

∞

η

0 1

∞

Figure 1: The skeleton graph which we refer to as the “Broom diagram”. We depict here what happens

if we make the naive choice of branches, in which we do not change branches when we rotate η. We see

that for this choice the rotation in the η plane changes the position of one of the edges, and thus changes

the correlator we are computing.

To illustrate this subtle point consider the “Broom diagram”, illustrated in figure 1. In this

example it turns out, as we will discuss in more detail in §3.1.1 below, that if we stay on the

same branch of the square root of the Strebel differential, the topology of the critical graph of this

differential changes as we take η → e2πiη, leading to a different Feynman diagram, as described in

figure 1. Thus, one should be careful about the choices of branches when performing computations

using the procedure of [1]. However, this subtle issue does not affect the fact that the prescription

of [1] always gives modular-invariant answers.

2.2 Short edge expansions

In this subsection we describe a limit of free field theory correlation functions which is governed by

a saddle point in the Schwinger parameter space. The expansion in the position of the saddle point

corresponds to an expansion in the length of one or more small edges in the critical graph of the

corresponding Strebel differential. As we will see in the next subsection, this is useful for analyzing

correlators involving diagrams whose contributions are localized on subspaces of the moduli space.

These are always diagrams whose dual graph (which is the critical graph of the Strebel differential)

has some vanishing edges.

For simplicity, consider a four dimensional large N gauge theory, and consider a correlation

function

<

n
∏

i=1

Oi(xi) > (2.3)

of gauge-invariant operators made purely of adjoint scalar fields. In the free gauge theory, each

Feynman graph corresponding to such a correlation function involves Jij contractions of fields

between the i’th and the j’th operator, so that the answer is given by

∏

1≤i<j≤n

|xi − xj |−2Jij . (2.4)

is unique up to the modular group, which we fixed as described above. In other words, the prescription does not

distinguish between η and ηe2πik .
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In the Schwinger parameterization (which generalizes the one used in [1] to position space) this is

rewritten as (up to a constant)
∫

∏

1≤i<j≤n,Jij>0

dσijσ
Jij−1
ij e−σij |xi−xj |2 , (2.5)

and the integration over the σ’s is identified with the integral over the decorated moduli space of

Riemann surfaces, with the σ’s identified with the lengths of the edges of the critical graph of the

Strebel differential. When some of the Jij vanish so that some of the σ integrations are not present,

this integral is localized on a subspace of the decorated moduli space, and it may also be localized

on a subspace of the moduli space, as discussed in [15].

Note that a rescaling of all the σ’s acts on the decorated moduli space just by rescaling the pi’s,

without changing the position on Mg,n. Thus, the position on the moduli space is independent

of the overall scale but depends only on the ratios of the σij ’s. It is then useful to separate the

integral into the overall length and the ratios. When (say) J12 > 0, we can do this by defining

sij ≡ σij/σ12. Denoting by S1 the set {(i, j)|1 ≤ i < j ≤ n, Jij > 0} and by S2 the set S1 − (1, 2),

we can rewrite (2.5) as
∫

dσ12(
∏

(i,j)∈S2

dsijs
Jij−1
ij )σ

Σ(i,j)∈S1
(Jij−1)

12 e−σ12(|x1−x2|2+Σ(i,j)∈S2
sij |xi−xj|2) (2.6)

or (up to a constant)

∫

(
∏

(i,j)∈S2

dsijs
Jij−1
ij )



|x1 − x2|2 +
∑

(i,j)∈S2

sij |xi − xj |2




−Σ(i,j)∈S1
(Jij−1)−1

. (2.7)

In general, the integral (2.7) is quite complicated when written as an integral over the moduli

space. However, if we look at the limit when one (or more) of the Jij ’s becomes very large, the

integral is dominated by a saddle point in the Schwinger parameter space, and can be evaluated

in the saddle point approximation. This saddle point maps onto a point in the decorated moduli

space (up to the overall scaling of the pi), and therefore it is also located at a point in the moduli

space. In the limit of large J ≡ ∑

(i,j)∈S1
Jij , and assuming without loss of generality that J12 is

of order J in this limit,6 this saddle point is located at (at leading order in 1/J)

sij =
(Jij − 1)|x1 − x2|2

J12|xi − xj |2
. (2.8)

If all of the Jij ’s become large then this saddle point will map onto a point in the middle of the

moduli space. However, if one (or more) of the Jij ’s remain finite in the large J limit, then the sij

and therefore the Strebel length lij of the corresponding edge scales as 1/J in the large J limit.

Thus, expanding in 1/J leads to an expansion in small edges of the Strebel differential.

As an example, we can consider the following operators

O1(x1) = Tr(ΦJ1
1 (x1)) , O2(x2) = Tr(ΦJ2

2 Φj
3(x2))

6At least one of the Jij ’s must be of order J in this limit, and we choose the ordering of the points so that it is

J12.
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O3(x3) = Tr(ΦJ2
2 ΦJ3

4 (x3)) , O4(x4) = Tr(Φj
3Φ

J3
4 ΦJ1

1 (x4)) (2.9)

where Φi are some scalar fields in the adjoint of U(N). In this case the only planar diagram that

contributes to

< O1(x1)O2(x2)O3(x3)O4(x4) > (2.10)

has the skeleton drawn in figure 2. We can consider the limit where the Ji become large while

j remains finite, so that there are many contractions along the bold lines in figure 2 and a few

contractions on the thin line. The general arguments above imply that in this limit the diagram

will get its dominant contribution from Strebel differentials for which the (dual) edge corresponding

to the line between x2 and x4 is very small.

x1

x3

x4

x2

Figure 2: The skeleton graph of the “Broom” diagram. The xi label space time points where operators

are inserted. Bold lines represent many homotopic contractions. On the other hand, the line connecting x2

and x4 has a small number of contractions.

The limit where edges of the critical graph of the Strebel differential vanish is the same as

the limit where several zeros of the Strebel differential come together, leading to a non-generic

critical graph. In the limit where the zeros come together, this critical graph is the dual of the field

theory diagram which we obtain by removing the edges corresponding to the finite Jij ’s from the

Feynman graph. Such non-generic Strebel differentials are often easier to compute. For instance,

in the example described above, the differential for the resulting “Π” diagram was computed in

[15]. We can then perform a perturbative expansion in the length of the small edges around these

non-generic Strebel differentials, and interpret the result in terms of the large J limit of the field

theory correlation functions described above.

In this way, we are able to reliably change variables of integration in some neighborhood of the

saddle point of (2.7). The correlator in the appropriate part of the Riemann surface (which is the

image of a neighborhood of the saddle point under the Strebel map) is a very good approximation to

the exact result because contributions from other regions in the field theory integral are substantially

smaller.
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2.3 Localized correlators as distributions

It was shown in [15] that certain worldsheet correlators, corresponding to non-generic Feynman

diagrams which do not include all possible contractions in their skeleton graph, are localized on

lower-dimension subspaces of the moduli space of Riemann surfaces. This localization may perhaps

be attributed to the fact that the free field theory is a singular limit from the string theory point

of view, which is naively related (at least in the context of string theory on AdS5 ×S5) to the limit

in which the tension of the string vanishes; recall that similar localizations have been encountered

also in a different “tensionless” limit [24]. So, this fact by itself is not in contradiction with the

existence of a local worldsheet description. In this subsection we discuss the interpretation of the

localized correlation functions and their implications for the OPE coefficients.

Consider a Feynman diagram giving rise to a localized worldsheet correlator. This correlator

may be written as an integral over a subspace of the moduli space of the Riemann surface, which is

the subspace spanned by the Strebel differentials whose critical graph has the topology dual to the

Feynman graph. This integral, at least in the special case considered above of correlation functions

of scalar operators in a four dimensional gauge theory, is positive definite. This is because the

field theory expression for the integral (2.5) is positive definite, and the mapping of the space of

Schwinger parameters to the decorated moduli space is one-to-one (leading to a positive definite

Jacobian).

Feynman diagrams with a specific topology for their skeleton graph give localized correlators

independently of the number of contractions; in particular, we can consider the limit where the

number of contractions J is large. In this limit we can consider adding an additional small number

of contractions to the Feynman diagram such that, as described in the previous subsection, they

will lead to additional small edges in the critical graph of the Strebel differential, with a length of

order 1/J . Upon adding the additional edges the correlator is no longer localized, and is a smooth

function on the moduli space for finite J (this is certainly true if we make all the edges finite, and in

many cases it is true even if we just add one small edge). This function is still positive, and in the

large J limit it becomes localized on a subspace of the moduli space. Since the localized correlator

arises as a limit of smooth positive functions whose integral is finite, it is clear that it must be

proportional to a delta-function distribution on the subspace where the correlator is non-vanishing.

While our argument that the correlator should be thought of as a delta-function distribution is valid

only in the large J limit, it seems likely that the same interpretation of the localized correlators

should hold also for finite values of J .

When we have a correlator localized on a lower-dimension subspace of the moduli space, in

some cases when we take the OPE limit of two points on the worldsheet approaching each other

(say, with two operators at η and at 0 in the η → 0 limit) we find that the correlator is localized at

a specific angle in the η-plane, for instance that it is non-zero only for (negative) real values of η

(as for the Π diagram [15]). How is this consistent with having a smooth OPE ? For simplicity let
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us consider a four-point function which is localized on the negative real axis, namely

< V1(η)V2(0)V3(1)V4(∞) >= f(|η|)δ(θ − π) (2.11)

for some worldsheet operators Vi. Here we have written η = |η|eiθ. Let us write the OPE expansion

of V1 and V2 in the general form

V1(η)V2(0) ≃
∑

n,n̄

c12
nn̄On,n̄(0)ηn−2η̄n̄−2, (2.12)

where the operators On,n̄ have weight (n, n̄) and we assumed that the Vi are physical operators of

weight (1, 1). We know from modular invariance that we can limit ourselves to integer spins n− n̄,

though the sums n + n̄ can take any value (and in string duals of conformal field theories it is

believed that they take continuous values [15, 25]). Combining (2.11), (2.12) and using

2πδ(θ − π) =

∞
∑

k=−∞
(−1)keikθ , (2.13)

we obtain that for any given value of n + n̄ we must have

c12
nn̄ < On,n̄(0)V3(1)V4(∞) >∼ constantn+n̄(−1)n−n̄ (2.14)

where the constant may depend on n + n̄ but is independent of n − n̄; namely, for every value of

n + n̄ there must be an infinite series of operators appearing in the OPE, with

n =
n + n̄

2
,
n + n̄

2
± 1

2
,
n + n̄

2
± 1 , · · · , (2.15)

which all give rise to the same constant in (2.14). A conspiracy of this form (2.14) is sufficient for

reproducing localized correlation functions of the form (2.11); any operators appearing in the OPE

which are not part of such a conspiracy must not contribute to the localized 4-point functions.

3. The Broom diagram and its limits

In this section we study in detail the Broom diagram and the limits in which it degenerates to

the Y and the Π diagrams. In figure 3 we have drawn both the field theory diagram and its dual

diagram which corresponds to the critical graph of the Strebel differential. The field theory graph

is indicated in bolder lines, while the critical graph is indicated by curves. The critical graph has

two vertices: at one vertex three lines meet, while at the other five lines meet. Thus, the Strebel

differential corresponding to this graph has one zero of order 1 and one zero of order 3.

We label the vertices of the Broom diagram to be at 0, 1,∞, η (see figure 3); these correspond

to the poles of the Strebel differential. The residues at these poles are given by the positive numbers

p0, p1, p∞ and pη respectively. From the figure it is easy to see that the following relations hold:

l1 = p∞, l2 + l3 = p1, l4 + l3 = p0, l4 + l1 + l2 = pη. (3.1)
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0 1

∞

η

p0

p∞

pη

p1

l1

l2

l4
l3

Figure 3: The Broom diagram in field theory (the straight lines) and its dual graph.

Here l1, l2, l3, l4 denote the Strebel lengths of the edges of the critical graph as shown in the figure.

From the above equations it is easy to solve for l2, l3, l4

l2 =
1

2
(p1 − p0 + pη − p∞) , (3.2)

l3 =
1

2
(p1 + p0 − pη + p∞) , (3.3)

l4 =
1

2
(pη − p∞ − p1 + p0) . (3.4)

Thus, all the Strebel lengths are solved in terms of the residues, which indicates that in order

to determine the Strebel differential of the Broom diagram for given pi one needs to solve only

algebraic equations, and not the transcendental equations involving elliptic functions in their full

generality. Note also that we have focussed on a particular Broom diagram, in which the vertices

corresponding to 0 and 1 are connected. There are two other possible Broom diagrams (with a

central vertex at η), one in which 0 and ∞ are connected and one in which 1 and ∞ are connected.

All these cases are related by appropriate choices of branch cuts as mentioned in §2.

Now let us look at the various limits of the Broom diagram. There are three limits (for positive

pi) and they are obtained by setting one of the edges l2, l3 or l4 to zero.

l2 = 0

As the edge l2 degenerates, we see the dual edge connecting 1 and η is removed and one is left

with the Π diagram in which the residues satisfy the relation

p1 + pη = p0 + p∞. (3.5)

This Π diagram, which we call the Π1 diagram, and its dual graph are shown in figure 4.
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0 1

∞

η

p0

p∞

pη

p1

l1

l4
l3

Figure 4: The Π1 diagram and its dual graph.

0 1

∞

η

p0

p∞

pη

p1

l1

l2

l4

Figure 5: The Y diagram and its dual graph.

l3 = 0

When the edge l3 degenerates, the Broom diagram reduces to the Y diagram in which the

residues satisfy the relation

p0 + p1 + p∞ = pη. (3.6)

Here the dual edge joining 1 and 0 disappears, as depicted in figure 5.

l4 = 0
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0 1

∞

η

p0

p∞

pη

p1

l1

l2

l3

Figure 6: The Π2 diagram and its dual graph.

In this limit, the Broom diagram reduces again to a Π diagram which is distinct from the earlier

one. Here the residues satisfy the relation

pη + p0 = p∞ + p1, (3.7)

and the dual edge joining η and 0 is removed, see figure 6. We call this diagram Π2.

From the above discussion we see that the Π diagrams and the Y diagrams which are obtained

as limits of the Broom diagram are linear subspaces in the space of the p’s. In fact, since the overall

scale of the Strebel differential only sets the overall scale for all lengths, we only need to consider

the ratios pi

p∞

(i = η, 0, 1). Then, the Π and the Y diagrams correspond to planes in the positive

octant of the three ratios.

Our goal is to compute some Broom diagrams; this should provide us with new worldsheet

correlators which can be studied and lead us to a better understanding of the worldsheet CFT.

Though the equations are algebraic, it is very hard to obtain closed form expressions for the cross-

ratio η as a function of the lengths li. As we will see in the next section, at a generic point in the

octant of the pi’s one needs to solve a sixth order algebraic equation. Thus, closed form expressions

can only be obtained on subspaces where the equations reduce to lower order ones.

We will therefore mostly use perturbation theory around the limits mentioned above. There

are two different techniques to do this. One uses straightforward computations on the sphere, while

the other was developed in [16] and uses expansions around special points of elliptic functions. In

this section, we use the more straightforward technique, and in appendix A we exhibit the other

way to do it.7 Of course, the final results agree precisely. As a further check we will see in the

7It is best to read the appendix after §4, where the relevant schemes are defined.
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∞

0 1

η

c − ǫ
l

0
η

∞
1

c

Figure 7: The critical (and the dual) graph for the Broom expanded around the Y diagram.

next section that the perturbation theory agrees with exact results obtained in some of the exactly

solvable subspaces in a common region of intersection.

3.1 Perturbing around the Π and the Y

In this section we compute explicitly the first non trivial order of the Broom diagram when expanded

around the Π and Y diagrams. We begin with the expansion around the Y diagram, which exhibits

many basic features of the perturbation scheme, and continue to the expansion around the Π,

emphasizing the implications for the localization of the Π found in [15]. A detailed field theory

analysis using the world-sheet correlator that we find is postponed to §5.

3.1.1 Perturbation around the Y diagram

Let us consider the Broom diagram as a perturbation of the Y diagram, and write down its Strebel

differential where we pick the positions of the worldsheet insertions as in figure 7. Our expansion

around the Y diagram is an expansion around the subspace where the residues are related by

pη = p0 + p1 + p∞.

We scale all the Strebel lengths relative to p∞ and define γi = pi/p∞. The quadratic Strebel

differential is

qdz ⊗ dz = −p2
∞

1

4π2

(z − c)(z − c + ǫ)3

z2(z − 1)2(z − η)2
dz ⊗ dz. (3.8)

We consider an expansion around the degenerate differential with all zeroes coincident, or in other

words we perform a Taylor expansion with small parameter ǫ. As mentioned above, there is no

Strebel condition here, just algebraic constraints which fix the residues of the poles. The signs of

the square roots of the residues γ2
i of (3.8) are set by the limit ǫ → 0 which is the Y diagram, for

which [15] γ0 = −c2/η, γ1 = (c − 1)2/(η − 1), γη = (η − c)2/η(η − 1). Expanding to the first order

where the constraint equation is modified we get
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γ0 = −c2

η
+

3

2

c

η
ǫ − 3

8

1

η
ǫ2 − 1

16

1

cη
ǫ3 + O(ǫ4),

γ1 =
(c − 1)2

η − 1
− 3

2

c − 1

η − 1
ǫ +

3

8

1

η − 1
ǫ2 +

1

16

1

(η − 1)(c − 1)
ǫ3 + O(ǫ4),

γη =
(η − c)2

η(η − 1)
+

3

2

η − c

η(η − 1)
ǫ +

3

8

1

η(η − 1)
ǫ2 − 1

16

1

η(η − c)(η − 1)
ǫ3 + O(ǫ4). (3.9)

Let the (rescaled) length of the small edge of the Broom diagram be l (see figure 7) :

2l = γ0 + γ1 + 1 − γη. (3.10)

Using (3.9) this is equal to

l =
1

32

ǫ3

c(η − c)(c − 1)
+ O(ǫ4). (3.11)

Not surprisingly, the edge is non-zero only at the third order in the perturbation; the fact that the

point we expand about has a four-fold degenerate zero implies that the first two contributions to

the additional edge vanish. Note that in (3.11) one can substitute for η and c their zeroth order

(in ǫ) values. The geometric meaning of this equation is very simple : it is 1
32ǫ3 multiplied by

the residue of the four-fold zero in the Y diagram. For all other purposes (except (3.11)), we may

use the equations (3.9) to the first non-trivial order in ǫ. This should suffice to obtain the leading

corrections to the amplitude written explicitly in [16]. Some trivial algebra gives the nice result :

c =
1

2

(

1 + γ1 − η(γ0 + γ1) +
3ǫ

2

)

+ O(ǫ3). (3.12)

Notice that there is no correction of order ǫ2. This will play a major role in the sequel. Substituting

this in the first equation in (3.9) we get

ηγ0 = −1

4
(1 + γ1 − η(γ0 + γ1))

2 +
3ǫ2

16
+ O(ǫ3). (3.13)

It is easy to obtain explicit formulas in the gauge we use, as was noticed in [16]. We can rewrite

(3.13) as

η2(γ0 + γ1)
2 − 2η(γηγ1 − γ0) + (1 + γ1)

2 − 3ǫ2/4 = O(ǫ3), (3.14)

using the relation among circumferences γη = γ0 + γ1 + 1 + O(ǫ3). This is a quadratic equation for

η, with the two solutions corresponding to two possible orientations of the Y diagram before the

additional line is added. We choose the solution of (3.13) given by

η =

(√
γηγ1 + i

√
γ0

γ0 + γ1

)2

− 3

16

iǫ2
√

γ0γ1γη
+ O(ǫ3). (3.15)

This is the only thing we need, in principle, for the variable change to the field theory. From here

on all the equations we write will be correct up to O(ǫ3). One can invert equation (3.15) to simplify

the substitution in the field theory. First, note that

η − 1 =

(√
γ1 + i

√
γηγ0

γ0 + γ1

)2

− 3

16

iǫ2
√

γ0γ1γη
. (3.16)
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Simple manipulations lead to the equations

(γ0 + γ1)|η| = (1 + γ1) +
3

32(1 + γ1)

[

− iǫ2
√

γ0γ1γη
(
√

γηγ1 − i
√

γ0)
2 +

iǭ2
√

γ0γ1γη
(
√

γηγ1 + i
√

γ0)
2

]

,

(γ0 + γ1)|η − 1| = (1 + γ0) +
3

32(1 + γ0)

[

− iǫ2
√

γ0γ1γη
(
√

γ1 − i
√

γηγ0)
2 +

iǭ2
√

γ0γ1γη
(
√

γ1 + i
√

γηγ0)
2

]

.

(3.17)

A nice consistency check is that in the zeroth order, ǫ = 0, one reproduces the equations obtained

in [16]. It is easy to solve the equations in the zeroth order (these are linear equations), and then

to iterate and find the first correction. The zeroth order result is :

γ0 =
|η − 1| − |η| + 1

|η − 1| + |η| − 1
, γ1 =

|η| − |η − 1| + 1

|η − 1| + |η| − 1
, γη =

|η| + |η − 1| + 1

|η − 1| + |η| − 1
. (3.18)

To the end of finding the final iterated results as γ = γ(η, ǫ) the form (3.17) is not very convenient.

An equivalent form of (3.17) (obtained by using the known zero order relations) is

(γ0 + γ1)|η| = (1 + γ1) −
3

16

|η − 1| + |η| − 1

|η|

(

Im(ǫ2η)

Im(η)

)

,

(γ0 + γ1)|η − 1| = (1 + γ0) −
3

16

|η − 1| + |η| − 1

|η − 1|

(

Im(ǫ2(η − 1))

Im(η)

)

. (3.19)

It is now trivial to solve these equations, and obtain the corrected form of the circumferences as

functions of the sphere modulus η and the separation of the zeroes ǫ. The first non trivial order of

the corrected solution is :

γ0 =
|η − 1| − |η| + 1

|η − 1| + |η| − 1
+

3

16

|η| − 1

|η − 1|

(

Im(ǫ2(η − 1))

Im(η)

)

− 3

16

|η − 1|
|η|

(

Im(ǫ2η)

Im(η)

)

,

γ1 =
|η| − |η − 1| + 1

|η − 1| + |η| − 1
+

3

16

|η − 1| − 1

|η|

(

Im(ǫ2η)

Im(η)

)

− 3

16

|η|
|η − 1|

(

Im(ǫ2(η − 1))

Im(η)

)

,

γη =
|η| + |η − 1| + 1

|η − 1| + |η| − 1
− 3

16

1

|η|

(

Im(ǫ2η)

Im(η)

)

− 3

16

1

|η − 1|

(

Im(ǫ2(η − 1))

Im(η)

)

. (3.20)

Combining (3.11) with (3.9) one obtains at leading order

l2 =
1

322

ǫ6

c2(η − c)2(c − 1)2
=

1

322

−ǫ6

η2(η − 1)2
1

γ0γ1γη
. (3.21)

The cross-ratio (3.15) contains ǫ2, which means that one has to take a third root of equation (3.21).

This leads to 3 possible solutions which corresponds to the 3 possible locations of the additional

edge. For any value of η and l we have three possible ways to split the zeros of the differential

corresponding to Y diagram and obtain the Broom, the difference will be in the position of the

extra edge. Fixing the specific diagram we want to compute uniquely fixes the branch of the cubic

root as was explained in §2.1. We also explained in §2.1 that the naive choice of the branch is

wrong because it changes the worldsheet correlator we actually compute. This is now obvious from

equation (3.21) : a rotation around, say, η = 0 changes the branch upon computing the cubic root,
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so it would change the topology of the diagram. Note that this is consistent only if the additional

edge vanishes somewhere as we do this rotation, and indeed, for η ∈ (0, 1) the circumferences blow

up in the zeroth order and the additional edge, consequently, vanishes.

Finally, to accomplish the variable change we need to integrate the appropriate field theory inte-

gral (2.5) over the small edge, l ≡ s01. As described in §2.2, we suppose that
∑

(i,j) 6=(0,1) Jij is very

large compared to J01. Then, this integral is dominated by a saddle point which is parameterically

small s01 ∼ J01/
∑

J . Combining with (3.21) we obtain that

J01
∑

J
∼ |ǫ|3 , (3.22)

which connects the small parameter of the expansion on the Strebel side to the small parameter in

the space-time field theory.

3.1.2 Perturbation around the Π diagram

0∞

η 1

c − ǫ

l

∞

η

0

1

c

Figure 8: The skeleton (and the dual graph) of the field theory graph we consider. The line connecting 0

and η is taken to have few contractions compared to the bold lines.

In this subsection we study the localization of diagrams on the worldsheet by perturbing around

the Π diagram.8 We start by discussing the relevant Strebel differential and then calculate the field

theory expression. Finally, we take a short edge limit, as discussed in §2.2, to get an explicit

worldsheet expression (our short edge is depicted in figure 8).9

For the Π diagram p∞ + p1 − p0 = pη. We begin with the differential

qdz ⊗ dz = −p2
∞

1

4π2

(z − c)(z − c + ǫ)3

z2(z − 1)2(z − η)2
dz ⊗ dz. (3.23)

ǫ is considered to be small and vanishes for the unperturbed Π diagram. As in the expansion around

8More specifically we work around the Π2 diagram.
9There is another possibility of adding an extra edge to the Π diagram by making it into a Square diagram.

However, also for the Square diagram the worldsheet correlator localizes on the same subspace (see appendix B), so

this does not regularize the worldsheet correlator.
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the Y diagram there are no reality constraints here. Expanding the residues in ǫ gives

γ0 =
c2

η
− 3

2

c

η
ǫ +

3

8

1

η
ǫ2 +

1

16

1

cη
ǫ3 + O(ǫ4),

γ1 =
(c − 1)2

η − 1
− 3

2

c − 1

η − 1
ǫ +

3

8

1

η − 1
ǫ2 +

1

16

1

(η − 1)(c − 1)
ǫ3 + O(ǫ4),

γη =
(η − c)2

η(η − 1)
+

3

2

η − c

η(η − 1)
ǫ +

3

8

1

η(η − 1)
ǫ2 − 1

16

1

η(η − c)(η − 1)
ǫ3 + O(ǫ4). (3.24)

Solving for the zero and substituting back we get

η2(γ1 − γ0)
2 − 2η(γηγ1 + γ0) + (1 + γ1)

2 − 3ǫ2/4 = O(ǫ3), (3.25)

which is solved by

η =
(
√

γηγ1 ±
√

γ0)
2

(γ1 − γ0)2
± 3ǫ2

16

1
√

γηγ1γ0
+ O(ǫ3). (3.26)

It is explicit that in the zeroth order the cross-ratio is purely real. The sign ambiguity appearing in

equation (3.26) is fixed by the choice of the ordering of insertions in the critical graph, figure 8 (see

[15] for details). One can show that for our choice of ordering the right sign choice is +. Another

important equation (all equations from here on are at leading non-trivial order in ǫ) is

2l = γη + γ0 − γ1 − 1 = − 1

16

ǫ3

c(η − c)(c − 1)
, (3.27)

which upon using the relations above can be written in the following form :

l2 =
1

322

ǫ6

η2(η − 1)2
1

γ0γ1γη
. (3.28)

We can put the zeroth order values of the η modulus in equation (3.28). Hence, it follows that

given a specific l there are 6 solutions for ǫ, which can be written as :

ǫ = e
−kπi

3 l1/3

[

1

322

1

(η(0))2(η(0) − 1)2
1

γ0γ1γη

]−1/6

, k = 0, · · · , 5, (3.29)

where η(0) stands for the zeroth order solution (which is a real quantity). Recalling equation (3.26)

we see that there are four deformations of the critical graph of the Π diagram for which η becomes

complex and two for which it remains real at the leading order.

It is easy to see that there are indeed 6 possible blow ups of the 4-fold degenerate zero in the

Π diagram which have a single simple zero and a 3-fold zero as in (3.23). Two of them are simply

adding self contractions to the Π which turn it into a diagram which is set to zero in the field

theory. The other 4 diagrams correspond to adding a diagonal line to the Π. They come in two

pairs corresponding to the mirror image of each other. In general, by imposing l > 0 in (3.27) we

cut the number of diagrams to 3, and then the two complex conjugate solutions of (3.26) correspond

to adding a diagonal line (a Broom diagram, figure 8) and the third, real solution, corresponds to

the self contraction10 of the vertex mapped to the point η. These deformations of the critical graph

of the Strebel differential are depicted in figure 9.

10This may be seen geometrically, because the original critical curve is symmetric with respect to complex conjuga-

tion. It is possible to add a self contraction respecting this symmetry (and leaving the Strebel differential manifestly

real), as in figure 9, while it is not possible to do this for the Broom diagram.
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Figure 9: 3 of the 6 possible blow-ups of the four-fold degenerate zero, the other 3 are similar. The

corresponding (dual) field theory graph contains a self contraction for the figure on the left. The insertions

are at 0,1,η,∞, and are exactly in this order also for the faces in the figures.

4. Exactly solvable subspaces of the Broom diagram

4.1 The Strebel differential for the Broom diagram

In this section we reanalyze the broom diagram using a different technique. This uses the uni-

formizing map for the Strebel differential onto an auxiliary torus. By taking appropriate scaling

limits of the general case studied in [16], we can specialize to the case of the Broom diagram. We

obtain a set of algebraic equations which turns out in general to be equivalent to a single sixth

order equation. However, we will find subspaces where the order is lower, where we can obtain

closed form expressions for the cross-ratio. The techniques developed in this section will be used

in appendix A to rederive the perturbative results of the previous section and to check some of the

exact results obtained here.

As mentioned above, the Strebel differential for the Broom diagram has both a third order zero

and a simple zero. Therefore, it can be put in the general form

φ(z)dz ⊗ dz = −C
(za − 1)z3

(z − z0)2(z − z1)2(z − z2)2(z − z3)2
dz2. (4.1)

Here we have chosen the triple zero at the origin and the simple zero at 1
a .11 The equations which

determine the Strebel differential for a given set of Strebel lengths are algebraic, as noted earlier.

However, we will find it advantageous to work with an equivalent set of algebraic relations that one

obtains from taking an appropriate limit of the general Strebel differential for a four-point function.

The most general Strebel differential can be written as

φ(y)dy ⊗ dy = −C′ (y2 − 1)(y2k2 − 1)

(y − y0)2(y − y1)2(y − y2)2(y − y3)2
dy2. (4.2)

We substitute the change of variables

y = 1 − ǫ2
(

a − 1

z

)

, ym = 1 − ǫ2
(

a − 1

zm

)

, (m = 0, 1, 2, 3) (4.3)

and take the limit ǫ → 0 with a, y and ym finite. We also scale C′ such that C′/ǫ10 is finite. It

easy to see that with this substitution, the general Strebel differential (4.2) reduces to that of the

Broom diagram given in (4.1).

11Unlike in the general discussion and figures of the previous section, the poles are now at arbitrary positions zi.
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For the general Strebel differential (4.2), it is appropriate to go to the uniformizing variable u

for the elliptic integral

u =

∫ y

1

dy

w
, w =

√

(1 − y2)(1 − y2k2). (4.4)

To obtain the required limit we perform the substitution for y given in (4.3). We can then perform

the integral by first expanding the integrand around the origin and then integrating term by term.

This leads to the following asymptotic expansion

u = − 1
√

2(k2 − 1)

(

2ǫx +
1 − 5k2

6(1 − k2)
(ǫx)3 +

3 + 2k2 + 43k4

80(k2 − 1)
(ǫx)5 + · · ·

)

(4.5)

where

x2 ≡ a − 1

z
. (4.6)

From the above expansion we see that the expansion in ǫ corresponds to an expansion about u = 0.

To see this in another way, note that from the definition of u (4.4) we have

y =
cn(u)

dn(u)
∼ 1 +

1

2
(k2 − 1)u2. (4.7)

Here we have inserted the leading expansions of the functions cn(u) and dn(u) about u = 0.

Inverting the above equation we see that we obtain the leading expansion in (4.5).

Our goal is to determine the positions of the poles and thus their cross-ratio η. The general

equations for the positions of the poles in the u plane are12

3
∑

m=0

rm
1

sn(um)
=

3
∑

m=0

rmsn(um) =
3
∑

m=0

rm
cn(um)dn(um)

sn(um)
= 0. (4.8)

The r2
m are the residues of φ(z) at z = zm, as in [16]. We can now perform an expansion in ǫ

in these equations to obtain (up to order ǫ6)

3
∑

m=0

rm

(√
2(1 − k2)xm +

1 + 3k3

2(k2 − 1)

√

(2 − 2k2)ǫ2x3
m

)

= 0,

3
∑

m=0

rm

(
√

k2 − 1

2

1

xm
+

1 + 3k2

4

√

1

2 − 2k2
xmǫ2 +

(3 + k2)(5k2 − 1)

32(k2 − 1)

√

1

2 − 2k2
x3

mǫ4

)

= 0,

3
∑

m=0

rm

(
√

k2 − 1

2

1

xm
− 3 + k2

4

√

1

2 − 2k2
xmǫ2 +

3k3 + 50k2 − 5

16(8(k2 − 1))3/2
x3

mǫ4

)

= 0. (4.9)

The above equations give the following simple conditions, at leading order, for the poles :

3
∑

m=0

rmxm =
3
∑

m=0

rm
1

xm
=

3
∑

m=0

rmx3
m = 0. (4.10)

These equations are algebraic.

The SL(2, C) invariant quantity which characterizes the location of the poles is their cross-ratio.

From the definition of xm in (4.6) and its relation to the poles ym (4.3) which occur in the Strebel

12See equation (2.9) in [16] and the discussion in §2 there. The location of the pole corresponding to zm in the

u-plane is denoted by um.
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differential we see that the cross-ratio is a function of x2
m. Using this freedom one can suitably

change xm → ±xm to write the conditions on the residues as conditions on the perimeters

p0 = |r1|, p1 = |r2|, pη = |r3|, p∞ = |r0|. (4.11)

Note that all the perimeters are greater than zero. Rewriting the condition in (4.10) in terms of

the perimeters leads to the following equations

p0

x1
+

p1

x2
+

pη

x3
=

p∞
x0

,

p0x1 + p1x2 + pηx3 = p∞x0,

p0x
3
1 + p1x

3
2 + pηx3

3 = p∞x3
0. (4.12)

In terms of the ratios

γi =
p0

p∞
, γ1 =

p1

p∞
, γη =

pη

p∞
,

wi =
xi

x0
, i = 1, 2, 3, (4.13)

the conditions (4.12) reduce to

γ0

w1
+

γ1

w2
+

γη

w3
= 1,

γ0w1 + γ1w2 + γηw3 = 1,

γ0w
3
1 + γ1w

3
2 + γηw3

3 = 1. (4.14)

Since the perimeters p0, p1, pη, p∞ are positive we have γ0, γ1, γη > 0. Thus we have to look for

the solutions to the above system of equations in the (γ0, γ1, γη) positive octant. These are the

equations we will be using in appendix A to analyze perturbations around some exact solutions of

(4.14).

To make the change of variables from the Schwinger parameters to the cross-ratio we need

to express the latter in terms of the Strebel lengths (which in this case are determined by the

perimeters). The solutions to equations (4.14) are sufficient to determine the cross-ratio η in terms

of p0, p1, pη, p∞ (or rather the ratios γ0, γ1, γη),

η =
(w2

3 − w2
2)(w

2
1 − 1)

(w2
1 − w2

2)(w
2
3 − 1)

. (4.15)

Here we have used the expression for the cross-ratio of the poles yi and substituted the change of

variables (4.6), (4.3).

The equations in (4.14) can be reduced to a sixth order equation in one of the ratios wi.

Therefore, it is difficult to solve them in general. However, they simplify in various limits which we

will discuss next.

4.2 Global solutions

As mentioned above, we have to look for solutions to (4.14) in the positive octant defined by

γ0 > 0, γ1 > 0, γη > 0. In this octant there are three special planes in which the solutions reduce
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to that of the Y diagram of (3.6) and the Π diagrams of (3.5) and (3.7). Since these planes are

important limits of the general solution we will summarize the results for the cross-ratio in these

planes obtained in [15, 16].

i. Y -plane

From (3.6) we see that the Y -plane is specified by the following linear equation in the octant

γ0 + γ1 + γη = 1. (4.16)

From [16, 15] , the formula for the cross-ratio in terms of the γ’s reduces to

ηY ± =

(√
γ1 ± i

√
γ0γη

γ0 + γ1

)2

. (4.17)

ii. Π1-plane

We will call the subspace given by (3.5) the Π1-plane

γ1 + γη = 1 + γ0. (4.18)

The expression for the cross-ratio is obtained in a way similar to the Y -plane and is given by

ηΠ1± = −
(√

γ0 ∓√
γ1γη

γ1 − γ0

)2

. (4.19)

Here we have defined ηΠ± corresponding to the ∓ branches, note that both branches are real and

negative.

iii. Π2-plane

The Π2-plane is the subspace given by (3.7). In the γ-octant, its equation is given by

γ0 + γη = 1 + γ1. (4.20)

This plane is related to the Π1-plane by γ0 ↔ γ1 exchange. The equation for the cross-ratio on this

plane is given by

ηΠ2± =

(√
γ0 ±√

γ1γη

γ1 − γ0

)2

. (4.21)

An important point to note is that the choice of branches ηY ± is related to the choice in ηΠ1±

and ηΠ2±. We now focus on two particular limits which enable us to fix the solution globally, the

diagonal line γ0 = γ1 = γη and, more generally, the plane γ0 = γ1.
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4.2.1 The diagonal line γ0 = γ1 = γη = γ

A nice feature of this line is that it intersects both the Π-planes,13 (3.5), (3.7) at γ = 1 and also

the Y -plane, (3.6) at γ = 1/3. As we will shortly see, on this plane the equations in (4.14) can

be exactly solved and the cross-ratio can be exactly determined. In addition, matching with the

solutions on the Π-planes given in (4.19), (4.21) and the Y -plane in (4.17) at the intersection points

will enable us to uniquely fix the branch of the solution.

We will first evaluate the cross-ratio at the intersection points with the Π and the Y planes.

Consider the Π1 plane, and approach the point γ = 1 on the diagonal line along the Π1 plane by

taking γη = 1 + ǫ, γ1 = γ0 − ǫ. Substituting this in (4.19) we obtain to leading order in ǫ

ηΠ+ = − 1

4γ0
(1 − γ0)

2
, ηΠ− = −4

γ0

ǫ2
. (4.22)

The values of the cross-ratio given above correspond to the two different signs in (4.19). We will

choose the positive branch in what follows, a similar analysis can be carried out with the negative

branch. What is important in our analysis is to show that the perturbation about the Π plane leads

in general to a complex cross-ratio; it will be easy to see that this is true in both of the branches

(4.22). On the positive branch the value of the cross-ratio at γ0 = γ1 = γη = 1 is given by

ηΠ+ = − 1

4γ0
(1 − γ0)

2 = 0. (4.23)

Now let us look at the point γ = 1/3 where the diagonal line intersects the Y -plane. Substituting

the values γ0 = γ1 = γη = 1/3 we obtain

ηY ± = exp(±i
π

3
). (4.24)

We again choose the positive branch here since that is what corresponds to the positive branch in

the Π1 plane. This gives the following value for the cross-ratio

ηY + = exp(i
π

3
) = −ω2, (4.25)

where ω ≡ exp(2πi/3) is the cube root of unity.

The Π2 plane is related to the Π1 plane by γ0 ↔ γ1. In fact it can be shown from (4.19) and

(4.21) that ηΠ1±(γ0, γ1, γη) = 1 − ηΠ2±(γ1, γ0, γη). Thus it is sufficient to focus on the Π1 plane.

Furthermore when γ0 = γ1 it seems that we have ηΠ1± and 1 − ηΠ1± labelling the same Riemann

surface. This is consistent with the Z2 permutation symmetry of the Broom diagram.

Let us now solve the equations (4.14) at a general point on the diagonal line. They reduce to

the following simple set of equations

1

w1
+

1

w2
+

1

w3
= w1 + w2 + w3 = w3

1 + w3
2 + w3

3 =
1

γ
. (4.26)

One can solve for any of the variables in the above equations to obtain the following cubic equation

(we assume γ 6= 1)

3γ2w3
3 − 3γw2

3 + w3 − γ = 0. (4.27)

13Note, however, that this intersection point is actually a singular Π diagram where one edge is of zero length.
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Here we have chosen to eliminate w1, w2 and write the remaining equation for w3. One can solve

this cubic equation quite easily: under the shift w3 = y + 1
3γ , the equation simplifies to

y3 − 1

3γ

(

1 − 1

9γ2

)

= 0. (4.28)

This gives the following three solutions for w3

w3 =
1

3γ
+

(1, ω, ω2)

3γ
(9γ2 − 1)1/3. (4.29)

One can then solve for the values w1, w2 from the first two equations of (4.26).

From the symmetry of the equations in (4.26) it is easy to see that there are 6 solutions which

correspond to the 6 permutations in the assignments of the 3 solutions in (4.29) to w1, w2, w3. From

the formula for the cross-ratio in (4.15) one can see that a permutation involving the exchange

(1 ↔ 2) has the effect (η ↔ 1 − η), while the exchange (1 ↔ 3) has the effect (η ↔ 1/η).

Since the diagonal line intersects both the Π and the Y plane at γ = 1 and γ = 1/3, respectively,

we must choose the assignment such that the cross-ratio reduces to the values at these points, given

in (4.23) and (4.25), respectively. The following assignments satisfy this criterion uniquely :

w1 =
1

3γ
+

1

3γ
ν, w2 =

1

3γ
+

ω

3γ
ν, w3 =

1

3γ
+

ω2

3γ
ν. (4.30)

Here we have defined, for convenience

ν ≡ (9γ2 − 1)1/3 (4.31)

to be the real value of the cube root. Evaluating the cross-ratio (4.15) using the above assignment,

we obtain

ηdia = −ω2(ν − 2)2(ν + 1)

(ν − 2ω)2(ν + ω)
. (4.32)

It is easy to see that this expression for η vanishes at ν = 2 ,14 or γ = 1, which corresponds to

the point where the diagonal line meets the Π-plane. It also correctly reduces to −ω2 at ν = 0 or

γ = 1/3, where the diagonal line meets the Y -plane.

We easily see from the exact expression (4.32) that, at least in the direction of this diagonal

line, the cross-ratio becomes complex when we perturb infinitesimally away from the Π plane(s).

4.2.2 The γ0 = γ1 plane

We will now study in a little more detail the behavior of η in the plane γ0 = γ1 ≡ γ. In this plane

we know the exact value of η along the line γη = 1 (which is the intersection with the Π planes)

as well as along the line γη = γ analyzed above. We will use this exact information and study the

perturbation around the Π plane and see that it is consistent with our general results.

The exact equations (4.14) in this plane take the simplified form

γ

w1
+

γ

w2
+

γη

w3
= γ(w1 + w2) + γηw3 = γ(w3

1 + w3
2) + γηw3

3 = 1. (4.33)

14If we had chosen the negative branch in (4.22) we would have had to perform the w1 ↔ w3 exchange in the

assignments of (4.32), which would have resulted in ηdia ↔ 1/ηdia.
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We can eliminate w1, w2 from these equations and obtain a quartic equation for w3

γη(γ2
η−γ2)w4

3−γ2
η(γ2

η +3−4γ2)w3
3 +3γη(1+γ2

η−2γ2)w2
3−(3γ2

η +1−4γ2)w3+γη(1−γ2) = 0. (4.34)

In principle, it is possible to solve this quartic equation exactly and obtain the cross-ratio explicitly.

However, the general expressions appear to be much too cumbersome, so we will content ourselves

with looking at various limits and, in appendix A, perturbing around them.

In the limit γη = 1 we get the simple quartic equation

(1 − γ2)(w3 − 1)4 = 0. (4.35)

For γη = γ, we get the cubic equation

w3
3 − 1

γ
w2

3 +
1

3γ
w3 −

1

3γ
= 0, (4.36)

which we had obtained and solved in the previous subsection. There is a further limit where the

quartic simplifies. This is along the line γ = 1. We again get a cubic equation

γηw3
3 − γ2

ηw2
3 + 3γηw3 − 3 = 0. (4.37)

This cubic equation can be mapped to the previous cubic in terms of the variables w′
3 = 1

w3
,

γ′
η = 1

γη
.

5. Field theory analysis

In this section we return to the field theory and consider the worldsheet correlator for the Broom

diagram, in the limit where it is close to the Π diagram. As mentioned in §2, this is obtained by

taking a suitable limit of a large number of contractions. We will, therefore, consider this limit in

more detail.

The field theory integral, written with conductance variables as in §2.2, is (up to an overall

numerical factor)

G(x0, x1, x∞, xη) =

∫

dσ∞ηdσ1ηdσ0ηdσ01σ
m∞η
∞η σ

m1η

1η σ
m0η

0η σm01
01 × (5.1)

exp
[

−σ∞η(x∞ − xη)2 − σ1η(x1 − xη)2 − σ0η(x0 − xη)2 − σ01(x0 − x1)
2
]

.

Notice that the m’s are the physical multiplicities Jij defined in §2.2 minus one, and are non-negative

integers. We integrate over the overall scale to get

G(x0, x1, x∞, xη) =

∫

dσ∞ηds1ηds0ηds01σ
m∞η+m1η+m0η+m01+3
∞η s

m1η

1η s
m0η

0η sm01
01 ×

exp
[

−σ∞η

(

(x∞ − xη)2 + s1η(x1 − xη)2 + s0η(x0 − xη)2 + s01(x0 − x1)
2
)]

=

∫

ds1ηds0ηds01s
m1η

1η s
m0η

0η sm01
01 ×

(

(x∞ − xη)2 + s1η(x1 − xη)2 + s0η(x0 − xη)2 + s01(x0 − x1)
2
)−M

, (5.2)

– 25 –



where si ≡ σi/σ∞η and M ≡ m∞η + m1η + m0η + m01 + 4. We assume that m0η << mi where

mi stands for all other m’s. The integration over s0η can then be performed by a saddle point

approximation. Most importantly, the saddle point is dominant and the value of s0η at the saddle

point is extremely small. Indeed, denoting

A = (x∞ − xη)2 + s1η(x1 − xη)2 + s01(x1 − x0)
2, (5.3)

we have

s0η |saddle point=
m0η

M

A

(xη − x0)2
. (5.4)

Note that around the saddle point we will have an integration of the form
∫

d(δs0η)e−
1
2χ(δs0η)2 with

χ =
M2

m0η

[

(xη − x0)
2

A

]2

=
m0η

[

s0η |saddle point

]2 , (5.5)

and in order for the saddle point to be dominant χ should be very large. This is a reason why

the small m0η expansion can be useful to study localization. It remains to evaluate the integral at

this saddle point taking into account the quadratic fluctuations of the Gaußian. One can actually

evaluate the integral exactly using the formula

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
=

∫ ∞

0

tx−1

(1 + t)x+y
dt. (5.6)

The result of the integral over s0η is given by

G = B(m0η + 1, M − m0η − 1)

∫

ds1ηds01s
m1η

1η sm01
01 ×

(

(x∞ − xη)2 + s1η(x1 − xη)2 + s01(x1 − x0)
2
)−m∞η−m1η−m01−3 1

(xη − x0)2(m0η+1)
. (5.7)

This effectively means that we have separated out the propagators corresponding to the m0η + 1

contractions, and written the others as in a Π diagram. The non trivial input is still to come, with

the transformation to the η plane. One should keep in mind that the above form of the integral

would be completely useless in the case where we don’t have a dominant saddle, because one cannot

generally make the change of variables in the last equation (η = η(s1η, s0η, s01) and s0η is generic).

We can now use our results on the Strebel problem from the previous sections to explicitly

calculate the relevant worldsheet correlator, identifying the (normalized) lengths in the two for-

malisms, l ∼ s0η, γ0 ∼ s01, γ1 − γ0 ∼ s1η (in the notation of §3). First, let us summarize the

important relations we have established so far :

ǫ2 = e−
2kπi

3 l2/3

[

322(η(0))2(η(0) − 1)2γ0γ1γη

]1/3

,

l |saddle point=
m0η

M

(x∞ − xη)2 + (γ1 − γ0)(x1 − xη)2 + γ0(x1 − x0)
2

(xη − x0)2
, (5.8)

η =
(
√

γηγ1 +
√

γ0)
2

(γ1 − γ0)2
+

3ǫ2

16

1
√

γηγ1γ0
, γη + γ0 − γ1 = 1 + 2l.
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We define Re[η(0)] = d2, to find at zeroth order in l

γη =
(d +

√
γ0)

2

d2 − 1
, γ1 = γ0 +

(d +
√

γ0)
2

d2 − 1
− 1 =

(1 + d
√

γ0)
2

d2 − 1
. (5.9)

We see that d is well defined in the range 1 ≤ d < ∞. In what follows we limit ourselves to small

d2 − 1 ≡ α, since this is relevant for the OPE limit η → 1 and it will give compact expressions.

However, an analysis for general values of α is also possible.

The above relations assume smallness of ǫ and l and thus we can not trust them for all values

of the parameters. Smallness of l implies

l ∼ m0η

M

(

x1 − xη

x0 − xη

)2 (1 +
√

γ0)
2

d2 − 1
≪ min(1, γ0), (5.10)

which constraints γ0 (defining n ≡ m0η/M) to

n

α

(

x1 − xη

x0 − xη

)2

≪ γ0 ≪ α

n

(

x1 − xη

x0 − xη

)−2

. (5.11)

For generic, finite xi and γ0, we see that we can not get as close as we like to d = 1; we are bounded

by a value of order m0η/M . The smallness of l automatically implies the smallness of ǫ. Thus, we

conclude that for generic xi the calculations can be trusted for

n ≪ α ≪ 1,
n

α
≪ γ0 ≪ α

n
. (5.12)

To actually calculate the worldsheet correlator we have to establish the dictionary between the

Schwinger parameters appearing on the field theory side and the cross-ratio appearing in the string

correlator. From (5.8) we find

Re[η] = d2 − 3

25/3

(

x1 − xη

x0 − xη

)4/3 (1 +
√

γ0)
2/3

γ
1/6
0

n2/3α1/3,

Im[η] = ±33/2

25/3

(

x1 − xη

x0 − xη

)4/3 (1 +
√

γ0)
2/3

γ
1/6
0

n2/3α1/3, (5.13)

and we get that (define β1/3 ≡ 33/2

25/3

(

x1−xη

x0−xη

)4/3

)

22/3β1/3n2/3α1/3 < Im[η] ≪ 1 (5.14)

in the trusted regions. From (5.13) we can easily write down the dictionary (choosing the plus sign

for Im[η]) :

α = Re[η] +
1√
3
Im[η] − 1, (5.15)

as well as the solution for γ0

√

γ±
0 =

Im[η]3

2βαn2
− 1 ±

√

Im[η]3

2βαn2
(
Im[η]3

2βαn2
− 2). (5.16)
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The plus sign is for γ0 > 1 and the minus sign is for γ0 < 1. The Jacobian of the transformation

{Re[η], Im[η]} → {γ0, d} is

|J | =| 2d
∂Im[η]

∂γ0
|= βn2/3α1/3 1

3

(
√

γ±
0 + 1)−1/3(

√

γ±
0 − 1)

(γ±
0 )7/6

, (5.17)

where we have to sum over both branches for γ0. The Jacobian of {γ0, γ1} → {γ0, d} is, in the

vicinity of d = 1,

2
(1 +

√

γ±
0 )2

α2
. (5.18)

From here we easily obtain that to leading order the total Jacobian is

6
(1 +

√

γ±
0 )7/3(γ±

0 )7/6

βn2/3α7/3(
√

γ±
0 − 1)

. (5.19)

Finally, we can recast the field theory integral as a worldsheet expression. The field theory

integral (5.7) is proportional to

∫

dIm[η]dRe[η]

(

√

γ+
0

)1/2

√

γ+
0 − 1

(

√

γ+
0

m01−m∞η

−
√

γ+
0

m∞η−m01

)α
2
3+m∞η+m01





(1 +
√

γ+
0 )2

√

γ+
0





− 11
6 −m∞η−m01

.

(5.20)

Here we have summed over both branches of the Jacobian. One can use the dictionary (5.15),(5.16)

to write the integrand directly in terms of the cross-ratio η.

We expect that the above integrand has an extremum at the point corresponding to the unique

saddle point of the field theory integral. We indeed find this maximum, which is a consistency check

on the computation. The typical behavior of the integrand is shown in figure 10.

This provides a concrete example of our general discussion in §2.2; we see that in the Broom

diagram the correlation function is a smooth function on the worldsheet, but that in the limit in

which this diagram goes over to the Π diagram the correlator becomes proportional to a delta-

function on the real line.

6. Summary and discussion

In this paper we analyzed in detail a specific four-point function diagram, the Broom diagram, in

order to illustrate several general features of the translation of [1] from Feynman diagrams to the

worldsheet. We showed that this translation is modular invariant, but that the modular invariance

is sometimes realized non-trivially (requiring following specific branches of fractional powers). We

showed that diagrams which localize on lower-dimensional subspaces of the moduli space can be

thought of as delta-function distributions, and that such a localization can be consistent with the

worldsheet OPE.
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Figure 10: A typical behavior of the integrand. Depicted here is the integrand as a function of Im[η] for

some given Re[η]. The vertical axis is proportional to the amplitude (denoted by S). As m0η → 0, the

integrand approaches δ(Im[η]).

While we have gained some understanding of the localization that certain worldsheet correlators

exhibit, we would also like to be able to extract some broad patterns related to this behavior. For

instance, we might ask the following general questions:

• Which free field theory diagrams exhibit localization on a subspace of the moduli space ?

• What subspace of the moduli space do the corresponding Strebel differentials localize on ?

The idea here would be to obtain an answer to the first question based purely on the graph topology

rather than through the kind of explicit computations that we have carried out. Obviously, a

sufficient condition for localization (discussed in [15]) is for a diagram to have less edges than one

plus the (real) dimension of the moduli space, but this is certainly not a necessary condition. An

answer to the second question would also be important in studying the properties of the conjectured

worldsheet theory.

So far we do not have any general answers to these questions, but we can make an observa-

tion based on the analysis of various sphere 4-point function diagrams in [15] and in this paper

(including appendix B). In these examples two types of localization occur : localization to a

one-real-dimensional subspace of the two-real-dimensional moduli space, or localization to a two

dimensional region (in the Whale diagram discussed in appendix B). In all cases, the localization is

such that one of the three possible OPE limits of the diagram (which are η → 0, η → 1 and η → ∞)

does not appear (namely, the region covered by the Strebel map comes close to two of the fixed

vertices but not the third one). Recall that in a 4-point function one cannot distinguish between

the OPE limit of two points coming together and that of the other two points coming together (the

two limits are related by a modular transformation). In all cases, we find that the worldsheet OPE

limit that is not present corresponds to bringing two points together such that both pairs of the

corresponding space-time operators have no contractions between them in the Feynman diagram

that is being computed. For example, in the Π1 diagram of figure 4, the covered region includes
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η → 0 and η → ∞ but not η → 1, and there are indeed no contractions between the operators at η

and at 1, as well as between the operators at 0 and at ∞.

We can give the following heuristic explanation for this observation. In general, the space-time

OPE of single-trace vertex operators in large N gauge theories contains two types of terms (which

contribute at leading order in large N to correlation functions) : single-trace operators and double-

trace operators. In free large N theories, the single-trace operators arise just by contractions, and

they do not contribute to diagrams where there is no contraction between the two operators in the

OPE. Now, in general, as discussed in [15], there is no clear relation between the space-time OPE

and the worldsheet OPE in the string theory corresponding to a large N gauge theory. However,

when we have an OPE between two operators in some n-point function, the single-trace terms in

the space-time OPE are related to (n − 1)-point functions, which are in turn related to (n − 1)-

point functions on the worldsheet, so it is natural to expect that the contributions related to these

terms in the space-time OPE will arise from the OPE limit also on the worldsheet (which also gives

(n−1)-point functions). It is hard to directly relate the two OPEs because the operators appearing

in the space-time OPE are non-normalizable (from the point of view of the string theory living

in a higher dimensional space), and such non-normalizable single-trace operators do not appear in

the worldsheet OPE;15 however, it seems likely that some relation of this type should exist. The

observation in the previous paragraph is consistent with this point of view, since the only cases

where a worldsheet OPE does not exist is when it is not required to exist from the point of view of

the space-time OPE. However, the observation is stronger, since one might think that a worldsheet

OPE could exist even when it is not required to exist, but (in the examples that we analyzed)

this does not happen. This seems to suggest that the worldsheet OPE always leads to non-zero

contributions related to the single-trace operators in the space-time OPE, so that the appearance

of the two is precisely correlated.

It would be interesting to check whether the observation described above can be generalized

also to higher n-point functions, and whether all localizations may be explained by arguments like

the one presented in the previous paragraph. It seems that more elaborate arguments are needed

to explain localizations of the type found in two-point functions on the torus in [15]. It would

also be interesting to understand why in some cases the diagram localizes to a lower dimensional

subspace of the moduli space, while in other localized cases it has a non-zero measure on the

moduli space. One difference between these cases is that the localization to the lower dimensional

subspace implies strong constraints on the worldsheet OPE limit (for pairs of points which do have

an OPE limit), as discussed in §2.3, while no such constraints arise when the localized subspace

has non-zero measure. Note that when we go away from the free field theory limit we expect all of

these localization properties to disappear, since at some order in the perturbation expansion in our

coupling constant there should appear some diagram which covers the whole moduli space; this is

15The question of how the worldsheet OPE is related to the space-time OPE in the AdS/CFT correspondence can

be explicitly studied in the AdS3/CFT2 case (for some of the relevant works see [26]).
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consistent with the argument above, since in a non-free theory single-trace operators in the OPE

can always contribute to any correlation function, beginning at some order in the perturbation

expansion.
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A. Perturbation expansion and the matching with exact answers

Our goal here is to find the particular branch of the perturbation expansion around the Π-plane

which is consistent with the global solutions discussed in §4. We will carry out the general expansion

in appendix A.2. However, as a simpler exercise we will first perturb in the γ0 = γ1 = γ plane.

This will illustrate how matching with the exact solution along the diagonal line fixes the branch.

A.1 Perturbing around the line γη = 1

With the data of the exact solution in these limits we can study the perturbation around the line

γη = 1. More precisely let us consider the strip γη = 1 + ǫ and fixed γ. To study the perturbation,

we need to make a double expansion of (4.34) in ǫ and δw3 = w3 − 1. The resulting equation is

(γ2 − 1)δw4
3 + 8γ2ǫδw3 + 12γ2ǫδw2

3 + 4γ2ǫ2 + 12γ2ǫ2δw3 + . . . = 0. (A.1)

If we take δw3 ∝ ǫβ, we see that the first few terms scale as ǫ4β , ǫβ+1, ǫ2β+1, ǫ2, ǫ2+β respectively.

It is easy to verify that we can have two consistent branches for the perturbation. In one branch

ǫβ+1 ∝ ǫ2, implying β = 1. The other is where ǫ4β ∝ ǫβ+1, which implies that β = 1
3 .

In the first expansion where δw3 ∝ ǫ, we can show from (4.15) that η ∝ 1
ǫ2 . This is not the

branch we need.

In the second expansion where δw3 ∝ ǫ
1
3 , we find upon solving (A.1) to leading order that

δw3
3 = − 8γ2

(1 − γ2)
ǫ ≡ −8µ3ǫ. (A.2)
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Therefore, w1w2 =
1−γηw3

w3−γη
w3 = −1 + 2µǫ

1
3 . Here µ has to be chosen to be one of the appropriate

cube roots defined by (A.2), as will be fixed later. Together with the equation for w1 + w2, this

gives

δw1 = µǫ
1
3
1 − γ

γ
, δw2 = µǫ

1
3
1 + γ

γ
. (A.3)

This gives a cross-ratio (to leading order)

η = − 1

4γ
(1 − γ)2, (A.4)

which agrees with the answer obtained for the Π plane. This is, therefore, the correct branch of the

perturbation expansion.

However, we see from the expression (A.2) for µ that this perturbation expansion is valid away

from γ = 1. it will break down in some vicinity of γ = 1. More precisely, if we take γ = 1 + δ for

small δ, then we see from (A.2) that the small parameter in the perturbation expansion is not ǫ

but rather ǫ
δ ≡ 1

b . We can thus approach γ = 1 as long as we choose ǫ so that b ≫ 1.

Actually, we can independently do a perturbation expansion for arbitrary values of b. In other

words consider some small neighborhood of γ = γη = 1. We take δ = bǫ and do a double expansion

of (4.34) in δ and ǫ keeping the first few terms. We get

2ǫ(w3 − 1)[b(w3 − 1)3 − w3(w
2
3 + 3)] = 0. (A.5)

Since w3 is not identically one everywhere in this region of expansion, we have the cubic equation

for w3

αw3
3 + 3w2

3 + 3αw3 + 1 = 0, (A.6)

where α ≡ − b−1
b . The roots of this cubic equation are given by

w3 = {− 1

α
(q + r + 1),− 1

α
(qω + rω2 + 1),− 1

α
(qω2 + rω + 1)}, (A.7)

where

q ≡ (1 − α2)
1
3 (1 + α)

1
3 , r ≡ (1 − α2)

1
3 (1 − α)

1
3 . (A.8)

In the b → ∞ limit, we see that q ∼ 2
1
3 /b

2
3 and r ∼ 2

2
3 /b

1
3 , so that to leading order in 1/b

w3 = {1 +
2

2
3

b
1
3

, 1 +
2

2
3

b
1
3

ω2, 1 +
2

2
3

b
1
3

ω}. (A.9)

This exactly matches with the result of the earlier perturbation expansion (A.2).

To decide which is the appropriate cube root to pick we go back to the exact answers obtained

on the line γη = γ. By specializing to the case b = 1, we restrict ourselves to this line in the vicinity

of γη = γ = 1. In this case the possible values of w3 from (A.7) are given by

w3 = {∞,− i√
3
,

i√
3
}. (A.10)

But from the exact answer we know that the global properties demand that we choose the middle

root w3 = − i√
3

(as in (4.30)). Since we expect to continuously interpolate between b = 1 and large

b, we must continue to pick the middle root in the perturbation expansion about the Π-plane in

(A.9) as well. As we will see in the next subsection this choice leads to the cross-ratio near the

Π-plane being generically complex.
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A.2 Perturbation expansion about the Y and the Π diagrams

We now consider the perturbation expansion about a generic point in either the Π or the Y -planes.

The exact global solutions discussed in the previous sections will fix the precise branch of the

solution. This will enable us to show that the perturbation expansion of the cross-ratio about the

Π-plane is generically complex though the cross-ratio on the Π-plane is real.

We first obtain a perturbation expansion either about the Y or the Π diagram by looking at a

further limit of the equations in (4.10). From (4.1) we see that in the limit a → ∞ we obtain the

appropriate Strebel differential either for the Y or the Π diagram. Expanding the equations (4.10),

using (4.6) in the a → ∞ limit we obtain

3
∑

m=0

rm

(

1 − 1

2zma
− 1

8(zma)2
− 1

16

1

(zma)3
+ · · ·

)

= 0,

3
∑

m=0

rm

(

1 +
1

2zma
+

3

8(zma)2
+

5

16

1

(zma)3
+ · · ·

)

= 0,

3
∑

m=0

rm

(

1 − 3

2zma
+

3

8(zma)2
+

1

16

1

(zma)3
+ · · ·

)

= 0. (A.11)

Taking linear combinations of these equations further we obtain the following equivalent set

3
∑

m=0

rm

(

1 +
1

16
ǫ̃3z̃3

m

)

+O(ǫ̃4) =

3
∑

m=0

rm

(

z̃m +
1

8
ǫ̃2z̃3

m

)

+O(ǫ̃3) =

3
∑

m=0

rm

(

z̃2
m +

1

2
ǫ̃z̃3

m

)

+O(ǫ̃2) = 0,

(A.12)

where ǫ̃ = 1/a and z̃m = 1/zm. From these equations we see that the leading order equations

reduce to those found in [16] (see equation (3.4)). To solve for the corrected cross-ratio to order ǫ̃

we first remove the translational mode z̃0 by defining z̃1 = ṽ1 + z̃0, z̃2 = ṽ2 + z̃0, z̃3 = ṽ3 + z̃0. In

terms of these variables the sum of the residues in the first equation of (A.12) reduces to

3
∑

m=0

rm = − ǫ̃3

16
(r1ṽ

3
1 + r2ṽ

3
2 + r3ṽ

3
3). (A.13)

Here we have kept terms only to O(ǫ̃3). From this equation we see that the condition on the sum

of the residues is violated only at O(ǫ̃3). Keeping terms to O(ǫ̃2) in the remaining two equations of

(A.12) we obtain

r1ṽ1 + r2ṽ2 + r3ṽ3 = − ǫ̃2

8
(r1ṽ

3
1 + r2ṽ

3
2 + r3ṽ

3
3),

r1ṽ
2
1 + r1ṽ

2
2 + r3ṽ

2
3 = − ǫ̃

2
(r1ṽ

3
1 + r2ṽ

3
2 + r3ṽ

3
3) + O(ǫ̃2). (A.14)

Note that in the last equation we have not evaluated the O(ǫ̃2) term explicitly. We will see that

this term does not contribute to the cross-ratio to O(ǫ̃2). Now define

v1 =
ṽ1

ṽ3
, v2 =

ṽ2

ṽ3
. (A.15)

Then the equations (A.14) reduce to

r1v1 + r2v2 + r3 = − ǫ̃2

8

(

r1v
3
1 + r2v

3
2 + r3

)

ṽ2
3 ,

– 33 –



r1v
2
1 + r2v

2
2 + r3 = − ǫ̃

2

(

r1v
3
1 + r2v

3
2 + r3

)

ṽ3 + O(ǫ̃2). (A.16)

It is clear from these equations that they reduce to the zeroth order equations of [16] (see equation

(3.5)), and we need the information of ṽ3 at the zeroth order to solve for the first corrections in

v1, v2. The zeroth order expression for ṽ3 is obtained from the deviation of the sum of perimeters.

Writing (A.13) in terms of v1, v2 and ṽ3 we obtain

−2
3
∑

m=0

rm =
ǫ̃3

8
(r1v

3
1 + r2v

3
2 + r3)ṽ

3
3 . (A.17)

Writing
∑

m rm = sǫ̃3 we obtain ṽ3 to the zeroth order as

ṽ
(0)
3 = −2(1, ω, ω2)

(

2s

r1v
(0)3
1 + r2v

(0)3
2 + r3

)1/3

. (A.18)

Here the superscripts in v1 and v2 refer to their zeroth order values. We will fix the choice of the

cube root later using global considerations. Let us define

δ1 =
1

2
(r1v

3
1 + r2v

3
2 + r3)ṽ3 + O(ǫ̃),

δ2 =
1

8
(r1v

3
1 + r2v

3
2 + r3)ṽ

2
3 . (A.19)

Then, the two equations of (A.16) are

r1v1 + r2v2 + r3 = −ǫ̃2δ2,

r1v
2
1 + r2v

2
2 + r3 = −ǫ̃δ1. (A.20)

We will show that the correction to the cross-ratio is a function of ǫ̃2δ1 and ǫ̃2δ2, thus the O(ǫ̃)

correction to δ1 in (A.19) is not required at this order. Eliminating v2 using the first equation of

(A.20) we obtain the following quadratic equation for v1,

r1(r1 + r2)v
2
1 + 2r1(r3 + ǫ̃2δ2)v1 + r3(r3 + r2 + 2ǫ̃2δ2) + r2ǫ̃δ1 = 0. (A.21)

Here we have retained terms to O(ǫ̃2); note that δ1 has an O(ǫ̃) term which will not be important

in the final result for the cross-ratio. Solving for v1 to O(ǫ̃) we obtain

v1 =
−r1(r3 + ǫ̃2δ2) ±

√
D

r1(r1 + r2)
, (A.22)

where

D = r1r2r3r0 − r1r2(r1 + r2)ǫ̃δ1 − 2r1r2r3ǫ̃
2δ2. (A.23)

From the first equation of (A.20) we obtain

v2 = −r2(r3 + ǫ̃2δ2) ±
√

D

r2(r1 + r2)
. (A.24)

The cross-ratio is obtained from

η = v1
1 − v2

v1 − v2
. (A.25)
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Substituting the values of v1 and v2 from (A.22) and (A.24) we obtain

η± = ± 1

(r1 + r2)2
√

D

(

−r1(r3 + ǫ̃2δ2) ±
√

D
)(

r2(−r0 + ǫ̃2δ2) ±
√

D
)

. (A.26)

Now, expanding all terms to O(ǫ̃2) we obtain the following expression for the cross-ratio

η± = η
(0)
± ± 1√

r1r2r3r0
ǫ̃2δ2 (r1r2(r0 − r3) ± (r2 − r1)

√
r1r2r3r0) ±

ǫ̃2δ2
1

4

√

r1r2

r3r0

1

r3r0
, (A.27)

where the zeroth order term for the cross-ratio is given by

η
(0)
± = ± 1

(r1 + r2)2
√

r1r2r3r0
(−r1r3 ±

√
r1r2r3r0) (−r2r0 ±

√
r1r2r3r0) . (A.28)

Note that the corrections to the cross-ratio begin at O(ǫ̃2), and the δ1 dependence occurs as ǫ̃2δ2
1 .

Therefore, we need only the leading term in the ǫ̃ expansion of δ1. We now have to substitute the

values of δ1 and δ2. This is simplified by the observation

r1v
(0)3
1 + r2v

(0)3
2 + r3 =

r3r0

r1r2(r1 + r2)2
(r1r2(r0 − r3) ±

√
r1r2r3r0(r2 − r1)) . (A.29)

Using this relation one can write the term involving δ2 in corrections to the cross-ratio in (A.27) in

terms of δ2
1 . Then the expression for the cross-ratio simplifies to

η± = η
(0)
± ± 3

4

√

r1r2

r3r0

1

r3r0
δ2
1 ǫ̃

2. (A.30)

Now, substituting the value of δ1 from (A.19) and using the relation (A.29) we obtain

η± = η
(0)
± ± 3

16
(1, ω2, ω)

28/3(sǫ̃3)2/3

(r1r2r3r0)1/6(r1 + r2)8/3
(
√

r1r2(r0 − r3) ±
√

r3r0(r2 − r1))
4/3

. (A.31)

We now need to choose the value of the cube root of unity in ṽ
(0)
3 . We do this by systematically

matching the solutions globally. Since we have chosen the positive branch of the square root we

must choose the branch η+. We fix the choice of the cube root by examining the cross-ratio at the

point γ0 = γ1 = γη = 1/3 + ǫ̃3. This point lies on the diagonal line, and it is also close to the

Y -plane. Evaluating the cross-ratio from (4.32) we obtain

ηdia = −ω2 + i
313/6

42/3
ωǫ̃2. (A.32)

One can easily verify that it is the choice ω2 among the roots in (A.31) in which the cross-ratio η+

reduces to the above expression. Thus, the cross-ratio at a generic point near the Y -plane is given

by

ηY + = η
(0)
Y + + i

3

16
ω

28/3(sǫ̃3)2/3

(γ0γ1γη)1/6(γ0 + γ1)8/3

(√
γ0γ1(1 + γη) + i

√
γη(γ0 − γ1)

)4/3
, (A.33)

where sǫ̃3 = γ0 + γ1 + γη − 1 and η
(0)
Y +, the zeroth order cross-ratio, is given in (4.17). Here we

have made the choice r3 = −1, r2 = γ0, r1 = γ1, r0 = γη. The cross-ratio at a generic point near

the Π-plane is given by

ηΠ+ = η
(0)
Π+ − 3

16
ω2 28/3(sǫ̃3)2/3

(γ0γ1γη)1/6(γ1 − γ0)8/3

(

−√
γ0γ1(1 + γη) +

√
γη(γ0 + γ1)

)4/3
, (A.34)
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where sǫ̃3 = 1 + γ1 − γη − γ0 and η
(0)
Π+ is the zeroth order cross-ratio given in (4.19). Here we have

made the choice r1 = γ2, r0 = −γη, r2 = −γ1, r3 = 1 to obtain the expansion about the Π2 plane.

It is clear from the above expression that the perturbation expansion of the Broom diagram about

a generic point in the Π-plane leads to a complex cross-ratio.

B. The Square and the Whale diagrams

η

1 ∞

0

Figure 11: The Square diagram.

In this appendix we discuss two additional interesting simple four-point function diagrams, the

Square diagram (see figure 11) and the Whale diagram (see figure 13). Both of them obey the

constraint (defining as before γi = pi/p∞)

−γη + γ0 + γ1 = 1. (B.1)

The Strebel differential is given by

qdz2 = −p2
∞

1

4π2
(d ln F (z))2, F (z) = zγ0(z − η)−γη (z − 1)γ1 . (B.2)

The poles of the differential are given by poles and zeros of F (which are at 0, η, 1 and ∞). The

zeros of the differential are given by the zeros of ∂F , which we will denote by c±. We have here

one Strebel condition

Re [ln F (z)] |c+
c− = 0 → FF †(c+) = FF †(c−). (B.3)

Next, define

x = −γ0η, y = γ1(1 − η), (B.4)

so that the zeros are given by:

2c± = 1 − x − y ±
√

(1 + x)2 + y2 − 2y(1 − x). (B.5)

From here it’s easy to see that for x, y real and y− ≤ y ≤ y+ (x− ≤ x ≤ x+), where

y± = 1 − x ± 2
√
−x = (1 ±

√
−x)2, (x± = −1 − y ± 2

√
y = −(1 ∓√

y)2 ), (B.6)
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the reality condition (B.3) is satisfied as the two zeros are complex conjugates of each other. Note

that the zeros can be rewritten as:

c± =

(√
y+ − y ±√

y− − y

2

)2

, c± − 1 =

(√
x+ − x ∓√

x− − x

2

)2

. (B.7)

Further, the dictionary between the two sets of variables is given by

η =
x(y − ȳ)

yx̄ − xȳ
, γ0 =

xȳ − x̄y

y − ȳ
, γ1 =

xȳ − x̄y

x − x̄
. (B.8)

Note that when η is real the transformation is singular, but as we saw above in this case we can

solve the Strebel problem.

From equation (B.3) we see that there is no solution for large η’s. Note that when we take η to

be large and at least one of the circumferences does not scale to zero, one of the zeros c± becomes

large and the other remains finite, and the condition (B.3) can not be satisfied. Recall that γ0 and

γ1 cannot both be small due to (B.1). The fact that there are no solutions for large η means that

the OPE of the vertices at η and at ∞ is not covered by diagrams satisfying (B.1). The solution

of equation (B.3) can be obtained numerically, and has the general shape depicted in figure 12.

The nice feature of the Strebel differential (B.2) is that the horizontal leaves can be computed here

II II

I

−0.3  0  0.3  0.6  0.9  1.2

−0.4

−0.2

 0

 0.2

 0.4

II II

I

−0.3  0  0.3  0.6  0.9  1.2

−0.4

−0.2

 0

 0.2

 0.4

Figure 12: The curve on the complex η plane for which the Strebel condition is satisfied. On the left

γ0 = γ1 = 70 and on the right γ0 = 40, γ1 = 70. In general one can see numerically that as γ0 is taken to

1 the curve around η = 1 shrinks to zero size, and as γ1 is taken to 1 the curve around η = 0 shrinks to

zero size. This implies that the diagrams corresponding to these curves cover the full region corresponding

to the OPE limits η → 0, 1.

explicitly. The horizontal leaves satisfy

(

dz

dt

)2

> 0, (B.9)

and thus

d

dt
Re[ln F (z)] = 0 → F (z(t))F †(z̄(t)) = C. (B.10)

Here C is a non-negative constant parameterizing a certain leaf. The Strebel condition (B.3) now

has a nice interpretation: the C parameter for both zeros has to be equal, and this is required if
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we want a leaf to go from one zero to another. Otherwise, either the leaves emanating from a zero

will not be compact (will not end) or they will end on the same zero and the critical graph will be

disconnected. Both of these cases contradict the Strebel conditions.

We still have to identify which diagram the various solutions depicted in figure 12 correspond

to. The only two diagrams which have the Strebel differential (B.2) are the Square diagram and

the Whale diagram. We claim that the solution corresponding to the Square is the real16 η solution

∞
0

1η

Figure 13: The Whale diagram, which satisfies γη + 1 = γ0 + γ1, like the Square diagram.

on the straight line in figure 12, and the other solutions correspond to the Whale. First, note that

at a generic point of the η plane (where the Strebel condition is not satisfied) the horizontal leaves

begin and end on the same zero, and can have only two topologically distinct shapes. This follows

from the fact that the nodes of the graph (the zeros of the Strebel differential) correspond to saddle

points of FF † (as the zeros are second order), and from the fact that the parameter C goes to zero

in the vicinity of 0 and 1 and diverges as one approaches ∞ or η. We can call the two shapes shape

I and shape II, see figure 14. It is easy to show that the graph in figure 12 is the boundary region

between the two different shapes. The real line is the boundary between two different ways to get

shape I, and the complex solution is the boundary between shape I and II. When one goes from

shape I to I one gets a dual of a Square diagram, and when going from I to II one obtains the dual

of the Whale diagram. The topology in the different regions is shown in figure 12.

In the following figures we depict the critical graphs of the Square, the Whale, and the additional

diagrams that we get by slightly deforming away from the solution to the Strebel condition (B.3).

16Note that these real solutions span only the interval η ∈ (0, 1), and thus the cross-ratio of the square can take

values only in this interval.
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Figure 14: The (disconnected) critical graphs and the leaves of the two possible topologies. The arrows

indicate directions of increasing C. On the left we have shape I, and on the right shape II.
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Figure 15: On the left we draw the critical graph of the Square diagram for a typical real solution. On

the right we have the critical curves when slightly moving to the complex plane. We see how the graph

smoothly becomes disconnected, and has topology I.
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Figure 16: On the left, we draw the critical graph of a complex solution for η. It is easy to see that this

critical graph is dual to the Whale diagram. In the next two graphs we again slightly move away from the

point where the Strebel conditions are satisfied. We keep the same real part of η and first move up and

then down along the imaginary axis. The critical graph has topology II when lowering Im(η), and topology

I when raising Im(η). The last graph is a generic complex η not satisfying the Strebel conditions. The

critical graph is disconnected and we do not have a cell decomposition.
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