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Summary 
 

 During July 2001, Pacific Northwest National Laboratory was requested by the U.S. Department of 

Energy, Office of Nuclear Facilities Management, Office of Nuclear Energy, Science and Technology, 

Germantown, Maryland, to review calculations of piping failure probabilities for the High Flux Test 

Reactor (HFIR) located at and operated by the Oak Ridge National Laboratory (ORNL).  The objective 

of the failure probability calculations was to estimate the probabilities of large leaks (>1500 gpm) that 

are of sufficient size to disable the primary coolant system of HFIR to the extent that there is a potential 

for core damage.  PNNL reviewed the computational methods and the inputs to the calculations along 

with an evaluation of potential failure mechanisms not explicitly addressed by the ORNL calculations.  

The review concluded that the calculated failure probabilities even with consideration of uncertainties in 

the calculations and of other potential failure mechanisms provide a high level of confidence that failure 

frequencies are less than the stated goal of 10
-6

 piping failures per year. 
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Introduction 
 

 Pacific Northwest National Laboratory (PNNL) during July 2001 was requested by the U.S. 

Department of Energy, Office of Nuclear Facilities Management, Office of Nuclear Energy, Science and 

Technology, Germantown, Maryland, to review calculations of piping failure probabilities for the High 

Flux Test Reactor (HFIR) located at and operated by the Oak Ridge National Laboratory (ORNL).  The 

present report reviews calculations for HFIR piping that was performed by ORNL with the assistance of 

Dr. David Harris of Engineering Mechanics Technology, Inc. (EMT).  PNNL’s review was based on 

information presented in an ORNL report titled Probability of Failure of the HFIR Primary Piping 

(Cherverton 2001) and Safety Analysis to Resolve the USQ Regarding Discovery of a Cracked Pipe in 

HFIR PWD Drain Line (Ramsey et al. 2001), a background briefing at a meeting (held at ORNL on 

August 2, 2001), a set of computer outputs received on August 13
th
 from Dr. Harris, and several 

teleconferences with ORNL and EMT staff. 

 

 The objective of the failure probability calculations was to estimate the frequencies of larger leaks 

that are sufficient size to disable the primary coolant system of HFIR to the extent that core damage can 

result.  The ORNL approach was to first calculate failure probabilities for individual girth welds of 

concern and then to calculate an overall probability of failure for the piping of the primary coolant 

system.  A “best estimate” system level probability of a large system disabling leak of 10
-6

 per year was 

stated as being sufficiently small to classify the failure event as a “beyond design basis event.”  

Accordingly, PNNL has reviewed the calculated failure probabilities to determine if the probabilities as 

calculated along with consideration of the uncertainties in the calculations provide a high level of 

confidence that the frequencies are less than the goal of 10
-6

 piping failures per year. 

 

 The review consisted of the following: 

 

(1) The main objective of PNNL’s review was to examine the inputs and outputs of the probabilistic 

fracture mechanics calculations in sufficient detail to determine if the calculations adequately support 

the conclusion that failure frequencies for large disabling leaks in the HFIR piping system are very 

small and consistent with an annual failure frequency of less than 10
-6

. 

 

(2) Because the PRAISE computer code was applied to calculate failure probabilities, PNNL’s review 

addressed the extent to which this code has been subject to technical peer review and 

verification/validation efforts. 

 

(3) Uncertainties and conservatisms in both the inputs to PRAISE and in the fracture mechanics models 

themselves were reviewed and were quantified to the extent possible. 

 

(4) Because the calculations with the PRAISE code addressed only piping failures due to low cycle 

fatigue associated with fabrication flaws in welds, PNNL considered the potential for alternative 

failure mechanisms such as stress corrosion cracking and high cycle fatigue from vibrational stresses. 
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(5) Because vibrational fatigue was identified as the alternative failure mechanism of potential concern 

to HFIR piping, this mechanism was evaluated for the design and operating conditions that apply to 

HFIR piping in sufficient detail to conclude that vibrational fatigue does not need to be considered. 

 

(6) Data bases on piping failures reported from operating nuclear power plants were examined for failure 

mechanisms and observed failure frequencies that could be applicable to HFIR piping, with special 

attention to vibrational fatigue failures. 

 

 

PRAISE Code - Peer Review and Validation 
 

 PNNL performed a review of the PRAISE code during 1999 on behalf of the Nuclear Regulatory 

Commission (NRC).  The discussion below was based on this prior review.  In addition, it should also be 

noted that PNNL staff have performed extensive calculations for NRC with the PRAISE code including 

studies to benchmark outputs of the code against hand calculations and with results of other probabilistic 

fracture mechanics code. 

 

 The PRAISE code was developed during the early 1980s and has been applied over the years as a 

research tool.  As such, it has not been subjected to formal and documented V&V processes.  However, 

the discussion below shows that elements of a rigorous V&V process have been performed over the time 

frame that the code has been in use by NRC and the nuclear power industry.  In these applications 

PRAISE calculations have supported regulatory decisions and NRC has accepted its use by industry 

applicants in requesting NRC approval for actions such as implementation of risk informed inspection 

programs for piping systems. 

 

History of PRAISE 
 

 The development and maintenance of the PRAISE code has been through a series of short-term 

efforts, each driven by a need to address specific safety issues.  As such, there has been no continuity of 

funding to maintain the code and its documentation or to develop code enhancements on a regular basis.  

Nevertheless, the PRAISE code has been viewed as a standard for probabilistic fracture mechanics codes, 

in part because of a lack of competing codes with comparable capabilities.  The PRAISE code as it exists 

today is the result of the following incremental efforts performed over some 20 years: 

 

(1) The initial development was funded by NRC through the Lawrence Livermore National Laboratory 

(LLNL).  This effort during the early 1980s (Harris, Lim, and Dedhia 1981) provided a probabilistic 

fracture mechanics code to address issues on the Seismic Safety Margins Program.  At that time, the 

capabilities of the Monte Carlo simulation code were limited to piping failures associated with the 

growth of fabrication flaws in piping welds by the mechanisms of fatigue crack growth and ductile 

tearing. 
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(2) During the mid-to-late 1980s there was a revival of interest in PRAISE as a fracture mechanics code 

to address failures of stainless steel piping by the mechanism of intergranular stress corrosion 

cracking.  An enhanced version of PRAISE was developed (Harris et al. 1986) to simulate the 

initiation and growth of stress corrosion cracks. 

 

(3) PRAISE was originally written to run large mainframe computers, such as the Control Data and 

CRAY machines at LLNL.  By the early 1990s, the capabilities of personal computers had increased 

sufficiently to warrant the conversion of PRAISE to pc-PRAISE (Harris and Dedhia 1991) in order to 

perform calculations on DOS-based machines. 

 

(4) Starting in the early 1990s, PNNL began research for NRC to develop methodologies for risk-

informed inservice inspection.  The pc-PRAISE code was applied extensively by PNNL to calculate 

piping failure probabilities and to evaluate the potential of inservice inspection programs to reduce 

these failure probabilities (Khaleel and Simonen 1994a, 1994b, 1995, 1997).  The original developer 

of the code (Dr. David Harris now with Engineering Mechanics Technology, Inc.) was engaged as a 

subcontractor to PNNL to implement enhancements to the code to better simulate the effects of 

inservice inspections. 

 

(5) During 1997-98, Dr. Harris responded to a need within the nuclear power industry for a probabilistic 

fracture mechanics code that could support the development of risk-informed inservice inspections 

on a plant-specific basis.  The result was the WinPRAISE code (Harris and Dedhia 1991) that is a 

proprietary version of pc-PRAISE that features a user-friendly interactive front-end and some other 

features of particular use to the inspection application.  Dr. Harris has marketed this version of the 

code, but has provided copies to NRC staff and PNNL on a complimentary basis for use on NRC 

studies. 

 

(6) During 1999, the DOS version of pc-PRAISE was significantly enhanced by the addition of a model 

for simulating the initiation of fatigue cracks.  This model was made possible by the extensive 

research by Argonne National Laboratory (ANL) on environmentally assisted fatigue (Keisler, 

Chopra, and Shack 1994, 1995).  Funding for the collaborative effort between PNNL and Dr. Harris 

was part of the resolution of GSI 190.  A report (NUREG/CR-6674) was issued during the first 

quarter of CY2000 to document the enhanced version of pc-PRAISE. 

 

Peer Reviews 
 

 Peer reviews have included formal reviews of the PRAISE code on behalf of NRC by panels of 

experts as well as publication in peer-reviewed journals and conference proceedings.  Peer reviews have 

included efforts directed to critical elements of the fracture mechanics models, such as equations based 

on experimental data used to predict the initiation and growth of fatigue and stress corrosion cracks. 

 

 The original version PRAISE code was developed as part the Seismic Safety Margins Project at 

LLNL.  As part of this project PRAISE was extensively reviewed by a panel of outside experts.  While 

formal documentation of the reviews may still exist in project files, the present discussion is limited to 



 

4 

recollections by Dr. Harris and Dr. S. H. Bush.  There were several meetings during the early 1980s at 

LLNL.  Panel members included G. E. Apostolakis, S. H. Bush, G. Irwin, and E. Rodabaugh, all 

nationally recognized experts in fracture mechanics, structural reliability, and risk assessment. 

 

 Another peer review panel was organized during the mid 1980s to address the enhancements of 

PRAISE to address stress corrosion cracking.  As a result of these reviews, the initial implementation of 

the IGSCC model was forced to go through revisions before the final version of the code was released. 

 

 PNNL presented results of pc-PRAISE calculations during the early 1990s to the ASME Research 

Task Force on Risk-Based Inservice Inspection.  This group included a number of practitioners of 

probabilistic fracture mechanics, such as Westinghouse Electric (Bruce Bishop), Pacific Northwest 

National Laboratory (Fred Simonen), independent consultants (David Harris), and overseas organizations 

(O.J.V. Chapman from Rolls Royce Marine Power).  Inputs from Mr. Chapman were particularly 

significant in that his work in the area of probabilistic fracture mechanics was performed independently 

from U.S. efforts. 

 

 Probabilistic fracture mechanics codes saw intensive applications during the mid-to-late 1990s on 

pilot applications of risk-informed inservice inspection.  Noteworthy was the use of the SRRA code by 

Westinghouse Electric on Surry 1 evaluations.  The ASME Research Task Force on Risk-Based Inservice 

Inspection provided a forum for reviewing the methodologies of the SRRA and PRAISE code on a 

comparative basis (Bishop 1997).  The main conclusion of this work was a need to better define critical 

input parameters to the calculations, with particular concerns with inputs for the number and sizes of 

fabrication flaws in welds.  Both codes greatly benefited from a technology transfer from work 

performed in the United Kingdom by Rolls Royce. 

 

 PNNL published several papers based on the PRAISE code during the 1990s at ASME conferences, 

in the ASME Journal of Pressure Vessel Technology, and at international conferences on structural 

reliability and risk (Simonen and Woo 1984; Khaleel and Simonen 1994a, 1994b, 1995, 1997).  These 

publications were subject to the usual peer review process. 

 

 The most recent enhancements to pc-PRAISE incorporated the ANL model for predicting 

probabilities of initiating fatigue cracks.  The development of the ANL model was subject to extensive 

peer review from the international community performing research in the area of environmentally 

enhanced fatigue.  Other reviews of ANL work came from interactions with structural integrity 

specialists from the nuclear power industry, often through ASME conferences and consensus code 

bodies. 

 

Validation 
 

 Failure probability predictions of the PRAISE code have been validated with trends from plant 

operation experience.  In contrast, the term validation applies to comparisons of calculated failure 

probabilities from PRAISE with failure frequencies from plant operating experience. 
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 Validations have been accomplished more readily for stress corrosion cracking than for fatigue, 

because there are more data for service-related failures for IGSCC than for mechanical and thermal 

fatigue.  The documentation for the PRAISE code (Harris et al. 1986) and recent papers describing 

PNNL calculations (Khaleel and Simonen 1995, 1997, Khaleel et al. 1995) have compared calculated 

failure probabilities as a function of time with failures that have occurred at BWR plants expressed as a 

function of time since the start of plant operation.  Most IGSCC data come from cracking detected before 

1990, which corresponds to the time period before plants implemented the mitigating actions that have 

since significantly reduced the number of IGSCC failures.  The validation efforts showed good 

agreement between calculations and operating experience, and also resulted in modifications (reductions 

in residual stress levels and reduced damage from load/unload cycles) of the fracture mechanics model to 

achieve even better agreement with field data. 

 

 The number of fatigue failures is insufficient to make many comparisons of predicted versus 

observed probabilities.  Fatigue failures have been associated with mechanical vibration and thermal 

fatigue.  For these failures it is difficult to establish the actual stress levels and number cycles.  The most 

notable attempt to compare PRAISE predictions with service experience was by LLNL (Woo and Chu 

1982a, 1982b) in terms of feedwater nozzle cracking that was found at a number of pressurized water 

reactor (PWR) plants during the 1980s.  Calculations with PRAISE were performed for the estimated 

stress conditions at several plants.  The calculations were successful in predicting failure probabilities 

approaching 1.0 for operating periods similar to those at which the cracking was found to occur in the 

field. 

 

 In another validation for fatigue, the predicted cycles to crack initiation as predicted by the ANL 

equations were compared to results of fatigue tests performed by Southwest Research Institute of 

prototypical vessels.  Other data from large scale specimens and specimens with realistic surface 

roughness (rather than the polished surfaces of laboratory test specimens) were compared with 

predictions based on the ANL equations.  This has resulted in ANL recommending reduction in cycles to 

failure by a factor of 4.0 to enable more realistic predictions for piping components. 

 

 As part of the calculations for fatigue crack initiation (GSI-190 resolution) PNNL also reviewed data 

on service experience on piping fatigue failures.  This recent review focused on the relative numbers of 

reported large leaks (or ruptures) versus the much larger number of small leaks.  These trends were used 

to evaluate predictions from pc-PRAISE and to fine-tune inputs to the failure probability calculations.  

This effort is summarized in NUREG/CR-6674. 

 

 It is useful to cite the comparisons of service experience with predictions from the recent PNNL 

fatigue calculations.  These PRAISE calculations identified a number of components with predicted 

probabilities of through-wall cracks that would be essentially 100 percent after the 40-year operating 

period.  This prediction would incorrectly imply that some operating plants have already experienced a 

relatively large number of leaks.  In reality, the high fatigue damage locations do not experience the 

number or severity of cyclic stresses that were postulated in the design stress reports.  Research by 

EPRI/DOE (Deardorf and Smith 1994) has demonstrated with instrumentation and refined fatigue 

evaluations that components can experience fatigue usage factors as small as 10% of the predicted levels.  
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Such reductions in fatigue cycling can greatly reduce the predicted probability of through-wall cracks 

(e.g., from 80 percent to less than 5 percent). 

 

Verification 
 

 The term verification applies to efforts to show that the PRAISE code performs the calculations 

correctly in the manner that it is said to perform.  Such efforts have focused on the running of benchmark 

problems on codes similar to PRAISE to establish that both codes calculate the same or similar failure 

probabilities, given that both codes are provided with the same input parameters. 

 

 Failure probabilities calculated by PRAISE have been compared on several occasions with failure 

probabilities calculated by other probabilistic fracture mechanics codes.  The following describes a 

number of these verification (or benchmarking) calculations. 

 

 A probabilistic fracture mechanics code (PARIS) was developed in Germany (Bruckner-Foit et al. 

1989) with essentially the same methodology as the PRAISE code.  These calculations considered only 

failures caused by fatigue crack growth from preexisting fabrication flaws.  The German organization 

obtained a copy of PRAISE and evaluated the same piping components with the same input parameters 

using both PARIS and PRAISE.  Tables in the 1989 paper show calculated failure probabilities that are 

very nearly equal.  These benchmarking calculations provide assurance that the PRAISE code has 

correctly implemented the fracture mechanics models and Monte Carlo simulations in the manner stated 

in the code documentation. 

 

 Other fatigue calculations have been performed by Dr. Harris as part of the code development and 

verification.  These calculations were largely performed by exercising the PRAISE code in a 

deterministic manner and comparing solutions with results from deterministic fracture mechanics codes 

such as the NASCRAC code developed for aerospace applications (NASCRAC 1990; Harris et al. 1987).  

These calculations verify fracture mechanics models used in PRAISE. 

 

 Some ten years ago there was a benchmarking effort performed by Westinghouse Electric that 

compared failure probabilities calculated by PRAISE and the Westinghouse developed SRRA code.  

These calculations were again limited to failures due to preexisting fabrication by the mechanism of 

fatigue crack growth.  The results of the calculations showed the PRAISE and SRRA calculate similar 

failure probabilities if common input parameters are used for both calculations. 

 

 A more recent benchmarking effort was part of the Westinghouse Owners Group pilot application of 

risk-informed inspection to the Surry-1 plant.  Results of this work were reported by Bishop (1997) and 

Simonen and Harris (1998).  Much of this effort was concerned with the selection of appropriate inputs 

to describe plant-specific piping welds with particular concern with flaw densities and size distributions.  

Again the benchmarking was limited to piping failures due to fatigue crack growth of preexisting 

fabrication flaws.  The range of parameters (pipe size, levels of cyclic stresses, etc.) was much greater 

than addressed by the prior benchmarking of PRAISE and SRRA.  As in the earlier work the two codes 

were found to give essentially the same failure probabilities if same values of input parameters are used 
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by the two codes.  There were, however, a few cases from the large matrix of calculations where the 

SRRA code gave different probabilities than PRAISE.  A few SRRA probabilities were much larger than 

even bounding values of probabilities based on closed form calculations.  The differences were limited to 

examples that had very low probabilities and then only when the calculations included the effects of leak 

detection on failure rates.  The benchmarking effort ended before the reason for the anomalous results 

from the SRRA code could be established. 

 

 There have been not yet been any benchmarking calculations to verify the stress corrosion cracking 

model of the PRAISE code, because there are no other comparable fracture mechanics codes that 

addresses stress corrosion cracking.  The focus for stress corrosion cracking has therefore been in 

comparing results of calculations with trends from plant operation experience. 

 

 The most recent version of the PRAISE code simulates piping failures caused by the initiation and 

growth of fatigue cracks.  Benchmarking of PRAISE has been performed by comparing calculated failure 

probabilities with results of an independently develop PNNL code (Khaleel and Simonen 1998) based on 

a Latin hypercube methodology rather than a Monte Carlo simulation.  The two codes give identical 

probabilities of fatigue crack initiation and similar probabilities of through-wall cracks.  The PNNL code 

uses a simplified fracture mechanics model that gives somewhat higher crack growth rates.  As a result 

the probabilities of through-wall crack are somewhat greater.  The differences were greatest for thin-wall 

pipes and for cases that had relatively low crack initiation probabilities. 

 

 

Calculations for HFIR Piping 
 

 Part of PNNL’s review addressed details of the PRAISE calculations for the HFIR piping and 

focused on inputs to the probabilistic fracture mechanics calculations rather than the technical basis of 

the code. 

 

Inputs/Outputs for HFIR Calculations 
 

 PNNL reviewed inputs and outputs of the HFIR calculations that were provided by Dr. Harris of 

EMT as computer output files.  A major part of this review was a detailed evaluation of critical inputs for 

flaw densities and size distributions.  The review verified the correctness and reasonableness of all 

numerical input numbers used by Dr. Harris. 

 

 Based on PNNL’s experience and knowledge of past applications of PRAISE, it was concluded that 

the outputs of the EMT calculations were consistent with the inputs for piping stresses, flaw 

distributions, and material properties.  It was noted that calculated failure probabilities had very small 

values with cumulative probabilities of large leaks over the life of the plant, which were less than 10
-10

.  

Such small values for failure probabilities are similar to values from past probabilistic fracture mechanics 

calculations by various organizations (including PNNL) for PWR stainless steel piping systems that like 
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HFIR are governed by failures caused by cyclic stresses from operational transients and preexisting 

fabrication flaws. 

 

 Results for the HFIR piping as reported by EMT indicate that failures will occur only if there are 

large fabrication flaws (e.g., 75 percent of the pipe wall thickness or greater).  This trend is consistent 

with past experience with the PRAISE code.  It is noted that the probabilistic fracture mechanics model 

addresses the statistical randomness in the sizes of the fabrication flaws as well as the randomness in 

fatigue crack growth rates.  As such, small values of calculated failure probabilities for the HFIR piping 

come from Monte Carlo sampling from tails of statistical distributions, which implies large uncertainties 

in the calculated values of the piping failure probabilities.  The potential impacts of these uncertainties 

are discussed below. 

 

Stress Inputs 
 

 A review the finite element calculations for piping stresses that provided inputs for the PRAISE code 

was outside the scope of the PNNL review.  However, information provided through ORNL reports and 

discussions with ORNL staff indicated that the calculations were subject to a high level of prior reviews 

and were revised to correct inconsistencies in modeling of the HFIR piping.  It was also learned that 

ORNL contracted with an outside organization (EQE) with a national reputation in piping and seismic 

evaluations for purposes of an independent confirmatory stress analysis of the HFIR piping.  These 

calculations were performed with a finite element program subjected to a rigorous quality assurance 

program. 

 

 PNNL examined the stresses as listed in the ORNL and EMT reports for consistency with values 

expected from simple/bounding hand calculations.  The pressure-induced stresses are readily evaluated 

and found to be consistent with expected values.  Thermal expansion stresses were compared to a 

bounding value of 24 ksi.  This value was based on the assumption that the thermal expansion from the 

HFIR temperature excursion from 70°F to 160°F was fully constrained.  One HFIR location (14-inch 

pipe) had a thermal expansion stress of about 16.7 ksi, or about 66% of the bounding value.  A discussion 

of this observation with ORNL indicated a relatively low level of flexibility at this piping location, such 

that the thermal expansion stress was relatively high but still well within limits allowed by the ASME 

Code.  Similarly, the dead weight stress of 13.5 ksi for the 10-inch piping was also noted as being 

relatively high, but again well within limits allowed by the ASME Code. 

 

 PNNL reviewed the approach (as described in Appendix A of Harris 2001) used to generate 

equivalent cyclic stress histories.  This approach was needed because the PRAISE code was developed 

for applications to commercial nuclear power plants, and accordingly uses a simplified approach which 

restricts loading histories to typical pressure and thermal cycles of power reactors.  Fortunately the 

simple Paris power law relationship for fatigue crack growth rates lends itself to adjusting the cyclic 

stress levels and numbers of cycles in a manner to give the correct interactions of sustained and cyclic 

stresses (including the effect of R = Kmin/Kmax).  PNNL in past applications of PRAISE has also used such 

an approach to adjust stress histories.  In summary, the stress history methodology for the HFIR 
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calculations was found to be developed in a systematic manner and to provide consistent inputs for the 

probabilistic fracture mechanics calculations. 

 

Treatment of Thermal Expansion Stresses 
 

 Section 4.1 of the Harris 2001 report states that displacement-controlled stresses from piping thermal 

expansions were not always included in the calculations of critical crack sizes for sudden and complete 

pipe severance.  Such stresses were neglected for higher toughness welds (non-flux welds) but were 

included for lower toughness welds (flux welds).  In the case of non-flux welds, only the load-controlled 

stresses (pressure and deadweight) were included in the pipe severance calculations.  PNNL reviewed the 

treatment of displacement-controlled stresses for consistency with accepted practices for evaluating flaws 

in nuclear piping as approved by the U.S. Nuclear Regulatory Commission and the ASME Section XI 

Code.  It was concluded that the approach used by ORNL and EMT followed practices approved by NRC 

and ASME.  These approaches were developed on the basis of extensive research on pipe fracture 

consisting of both fracture mechanics calculations and large-scale pipe fracture testing.  These criteria for 

inclusion (or exclusion) of thermal expansion stresses (Pe) are outlined in ASME Section XI Appendix C 

(Evaluation of Flaws in Austenitic Piping) and Appendix C (Evaluation of Flaws in Ferritic Piping). 

 

Treatment of Leak Detection 
 

 The calculations with the PRAISE code accounted for the benefits of leak detection in reducing the 

probabilities of occurrence of pipe breaks and large disabling leaks.  The logic for simulating piping 

failures was as follows: 

 

(1) At such time as a part-through wall crack is predicted to grow to the depth of the through-wall crack, 

the existing semi-elliptical part-through crack is assumed to immediately become a through-wall 

crack with a length equal to the maximum length of the semi-elliptical part-through crack. 

 

(2) A fracture mechanics calculation is performed to determine if the new through-wall crack is stable or 

unstable with unstable cracks assumed to cause a pipe severance. 

 

(3) Unstable cracks are counted in the Monte-Carlo simulation as contributions to probabilities of both 

pipe breaks and large disabling leaks. 

 

(4) Leak rates are calculated for the stable cracks and compared with the assumed value of detectable 

leak rate (5 gpm). 

 

(5) If the calculated leak rate is greater than the detectable rate, it is assumed that the leakage is 

immediately detected and the reactor is immediately shutdown to permit a repair of the leaking pipe. 
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(6) If the leak rate is less than the detectable level, the pipe is assumed to remain in service until the 

lengthwise growth of the crack causes the leak rate to increase to the detectable level, at which time 

the leaking piping is assumed to be immediately repaired. 

 

Under these assumptions large disabling leaks will only occur if the initial length of a through-wall 

cracks exceeds the length of crack corresponding to a disabling leak.  This means that a large disabling 

leak can occur when a crack transitions to become a through-wall crack or not at all.  Dr. Harris at EMT 

was requested to perform a sensitivity calculation to confirm the expected trend of the leak detection 

model by increasing leak detection threshold from 5 gpm to 50 gpm.  The two PRAISE runs gave the 

expected trend of identical probabilities of large disabling leaks. 

 

 It should be noted that PRAISE has a basic assumption that the time delay to detect a leaking crack is 

small relative to the time for a through-wall crack to increase to the size corresponding to a large 

disabling leak.  PNNL concluded this assumption is clearly appropriate for the fatigue crack growth 

associated with the normal operating transients at HFIR.  Further considerations indicated that the 

assumption of timely leak detection is also reasonable for more rapid crack growth rates associated with 

high cycle vibrational fatigue. 

 

 The trends of the data on vibrational fatigue in the SKI database (Lydell 1999) were discussed during 

a phone call with Mr. B. Lydell as part of PNNL’s review.  A detailed interrogation of the current SKI 

database showed no reported vibrational failures (large leaks) of butt-welded piping in nuclear piping, 

and specifically none for primary coolant system piping or piping as large as 3-inch diameter.  

Furthermore, the maximum of the “large” leak rates in the SKI database was 39 gpm, corresponding to a 

failure of a 1-inch diameter line.  This information indicated that failures reported as ruptures or large 

leaks while greater than 5 gpm were in all cases much less than the 1500 gpm disabling leak rate of 

concern to HFIR. 

 

 The SKI database on nuclear experience also indicates that vibrational failures are in large measure 

detected as leakage before the failure develops into a full pipe severance.  PNNL also noted from the 

Updated Final Safety Analysis Report that the primary system is maintained at pressure by two primary 

pressurizer pumps each with a capacity of 137 gpm and an auxiliary pump with a capacity of 30 gpm.  

These capacities are much greater than the leak rate of 5 gpm assumed in the PRAISE calculations but 

are much less than the system disabling leak rate of 1500 gpm.  In the context of vibrational fatigue 

failures, a growing through-wall crack could result in a rapid increase in leak rate from 5 gpm to 

1500 gpm in a time period of less than an hour.  However, it appears that the limitations of pump 

capacities would cause the plant to experience a noticeable decay in system pressure before a 1500 gpm 

leakage rate is attained.  It is therefore reasonable to assume that the trend of the SKI database 

(vibrational failures have leak rates of 39 gpm or less) is relevant to HFIR. 

 

Selection of Limiting Welds 

 

 PNNL noted that the specific locations for each pipe size used for the PRAISE calculations were 

selected on the basis of the worst-case nodes that could not be qualified by ORNL for the periodic 
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hydrotest.  It was initially not clear to PNNL that this procedure would necessarily lead to the selection 

of the same welds that would also give the highest calculated failure probabilities.  The concern was that 

proof test evaluations would not give the same importance to thermal expansion stresses (relative to 

seismic stresses), as the probabilistic fracture mechanics model.  Discussions with ORNL confirmed that 

the thermal expansion stresses were properly addressed for all pipe sizes in the selection of welds for the 

PRAISE calculations.  After further evaluation, PNNL concluded that thermal expansion stresses are 

inherently included in the ORNL hydrotest evaluation for the flux welds (all piping 10 inches and larger).  

This removed PNNL’s initial concerns for the selection of limiting welds for the larger piping.  The 

correct selection of the limiting 3- and 4-inch welds remains based on confidence in ORNL’s evaluations, 

which indicate that these relatively flexible small-diameter lines have relatively small thermal expansion 

stresses. 

 

 Another concern identified by PNNL was that the ORNL evaluations did not specifically address the 

3-inch and 18-inch diameter piping, because all welds in this piping were said to be covered by 

hydrotesting.  Concerns with the 18-inch piping were resolved, because the qualification by hydrotesting 

implies that thermal expansion stress are relatively small.  This means that PRAISE calculations would 

give small failure probabilities (~10
-18

) typical of those for the 16- and 20-inch piping rather than those 

reported for the more highly stressed 14-inch piping (~10
-11

).  Concerns for the 3-inch piping were 

resolved, because it was learned that the 3-inch piping was addressed by PRAISE calculations that were 

not reported in the final version of ORNL report.  For the 3-inch piping, the calculated probability for a 

system disabling leak was ~4x10
-11

. 

 

Calculation of Failure Frequencies 
 

 The failure probability calculations estimated the probabilities of small leaks (through-wall cracks) 

and large leaks at sufficient rates (>1500 gpm) to disable the primary coolant system of HFIR and cause 

core damage.  The ORNL approach first calculated failure probabilities for individual girth welds and 

then calculated an overall failure probability for the primary coolant system.  A system level (best 

estimate) probability of a large system disabling leak of <10
-6

 per year was the criterion used to classify 

the event as being a “beyond design basis” event.  PNNL reviewed the calculated system level 

probabilities to determine if the probabilities as calculated (including consideration of the uncertainties in 

the calculations) provide a high level of confidence that the probabilities are less than the goal of 

<10
-6

 piping failures per year. 

 

 The PRAISE calculations gave the largest value for disabling leak for any HFIR weld as 7.7x10
-10

.  

This calculation assumed one fabrication flaw per weld and assumed the occurrence of an earthquake and 

design basis overpressure event at the 60-year end-of-life.  In the present discussion we will not take 

credit for the low probabilities of seismic and over-pressure events.  A bounding probability for 

fabrication flaws is based on the largest piping in HFIR (20-inch × 0.60-inch wall), which gives 

0.18 flaws per weld.  It was assumed that there are some 50 welds of concern in the piping system and 

that the operating period of interest is 60 years.  The resulting bounding system failure frequency is 
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  Failure Frequency  <  (50 welds) × (0.18 flaws per weld) × (1/ 60 years) × (7.7x10
-10

) 

 

  Failure Frequency  <  1.0×10
-10  

failures per year 

 

 PNNL in past work has performed uncertainty analyses that evaluated the uncertainties in failure 

probabilities calculated by the pc-PRAISE code.  These studies have included very small probabilities 

such as those of the present discussion.  At a failure probability of 10
-10

 the uncertainty bounds covered 

3 to 4 orders of magnitude in each direction from best estimate of median values.  Therefore, even an 

upper bound on the failure frequency accounting for an upper bound on uncertainties would still be 

consistent with the goal of <10
-6

 failures per year. 

 

 It is also useful to note that the very low values of failure probabilities as calculated by PRAISE are 

consistent with the failure probabilities calculated in other studies that evaluated primary coolant system 

piping of PWRs.  This common trend is expected because of the similarities in materials, designs, 

operating conditions, and construction standards.  HFIR has lower operating pressures and lower 

operating temperatures relative to PWR plants, which would make for even lower failure probabilities.  

However, the operational transients and associated cyclic stresses for HFIR are of a different nature than 

those for PWRs.  In this regard, the inputs to the PRAISE calculations were designed to account for these 

differences, and calculations indicate that the HFIR cyclic stresses (like those for PWRs) result in 

relatively low rates of fatigue crack growth. 

 

 In summary, the approximate or bounding calculations by PNNL, although not following the exact 

steps or equations used by ORNL, confirm the conclusion that the probabilistic fracture mechanics 

results demonstrate that failure frequencies for HFIR piping are much less than 10
-6

. 

 

Sensitivity Calculations 
 

 Sensitivity calculations were performed by EMT to address some concerns identified by PNNL and 

Brookhaven National Laboratory staff during the meeting held at ORNL on August 2, 2001.  These 

sensitivity calculations covered some of the same issues as past uncertainty calculations performed by 

PNNL on an NRC-funded research project.  The sensitivity calculations supplement the prior PNNL 

studies by addressing other issues.  The EMT calculations included effects of residual stresses, truncation 

of the Monte-Carlo simulation, an alternative/updated curve for fatigue crack growth rates, vibratory 

stresses, and the parameters used for the leak rate calculations. 

 

• Residual Stresses - Residual stresses can be due to the heat inputs applied during welding processes 

or may originate during the fit-up of the piping during construction.  EMT performed PRAISE 

calculations for several assumed distributions of residual stresses.  Tensile residual stresses increased 

the mean stress level (or R-ratio) that enters into the calculations of fatigue crack growth.  The most 

conservative assumption was that of a 30-ksi stress distributed uniformly through the thickness of the 

pipe wall.  For this bounding case, the probability of disabling leak increased by about a factor of 

10 from 7x10
-13

 to 5x10
-12

.  This change is too small to change the essential conclusion that failure 

frequencies are much less than 10
-6

 per year. 



 

13 

• Monte Carlo Truncation - The PRAISE calculations by EMT used a minimal number of trials 

needed to achieve 10 failures per cell of the stratified sample space used to describe the depths and 

lengths of the initial fabrication flaws.  This number of trials was considered by EMT to be adequate 

to achieve a reasonable level of accuracy.  A sensitivity study was requested to increase the base line 

of 10 failures to 100 and then 2000.  The study gave a change in calculated failure probabilities of 

less than a factor of 2.  This demonstrated that a more conservative limit on the Monte Carlo 

sampling truncation would have little impact on meeting the failure probability criteria of <10
-6

 per 

year. 

 

• Fatigue Crack Growth Rates - The probabilistic correlation for fatigue crack growth rates used by 

PRAISE was developed during the early 1980s.  Subsequently, more data from fatigue crack growth 

tests have become available and a correlation of this expanded set of data has been developed for use 

in the ASME Section XI Code.  Plots were developed by EMT to compare crack growth rates of the 

more recent code equation with the correlation of PRAISE code.  It should be noted that no 

probabilistic calculations were performed with the PRAISE code.  Nevertheless, the comparison of 

crack growth rates showed that the PRAISE correlation would tend to predict somewhat higher crack 

growths than the more recent correlation.  Therefore, from the standpoint of crack growth rates, it is 

expected that piping failure probabilities will tend to be overestimated by the PRAISE code. 

 

• Leak Rate Calculations - PRAISE calculations were performed to evaluate the effect of 

uncertainties in the pathway loss coefficient (e) on calculated failure probabilities.  A smaller value 

for e means that shorter cracks will result in the critical leak rate of 1,500 gpm, with a corresponding 

increase in calculated failure probabilities.  A decrease in e from 6 to 3 increased the failure 

probability by a factor of about 2, which is a small change in the present context. 

 

• Vibratory Stresses - EMT was requested to perform a set of PRAISE calculations to study the 

potential effect of vibrational stresses on piping failure probabilities.  These calculations 

supplemented other calculations by PNNL that had the same objective.  The inputs for vibrational 

stresses to both the EMT and PNNL calculations were intended to be very conservative.  The 

objective was to establish which of the larger HFIR pipe sizes could be considered beyond any 

concern for vibrational stresses. 

 

 The guidelines of draft report NUREG-1661 were used to select bounding inputs for vibrational 

stresses.  These inputs conservatively assumed that (1) a significant source of vibrational stress exists at 

the piping location of concern, and (2) the resulting level of vibrational stress was at the bounding levels 

recommended in NUREG-1661 for use in developing risk-informed inservice inspection programs. 

 

 Figure 1 presents results of sensitivity calculations performed by PNNL.  A deterministic threshold 

value for the ∆K was assigned at 4.0-ksi √inch.  The crack depth distribution and the number of flaws per 

weld were the same as used in the EMT PRAISE calculations.  PNNL conservatively assumed that all 

flaws were very long (large aspect ratio).  The calculations in effect predicted the probability of a weld 

having a flaw of sufficient depth to exceed ∆Kth for the specified vibrational stress levels.  Figure 1 

indicates that pipe sizes of about 6 inches or greater will have probabilities less than 10
-6

.  From these 
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calculations PNNL concluded that only the 3- and 4-inch piping at HFIR will present any concern for 

vibrational stresses.  Figure 1 indicates that the smaller diameter piping could have probabilities of small 

leaks in the range of 10
-3

 to 10
-2

 with probabilities for larger leaks of (1500 gpm) being much smaller. 
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Figure 1.  Estimates of Small Leak Probabilities Based on Guidance of NUREG-1661 

 

 Probabilistic calculations were performed by EMT with results summarized by Table 4 of their report 

to ORNL.  Probabilities for small leaks for 3- and 4-inch piping were consistent with the probabilities 

estimated by PNNL.  The EMT results also included PRAISE predictions for system-disabling leaks 

(1500 gpm or greater) having values in the range of 10
-12

 to 10
-8

.  However, PNNL discussed these results 

with EMT.  It was concluded that limitations in the PRAISE treatments of vibrational fatigue and leak 

detection make these predictions of questionable value.  Specifically, PRAISE does not in the case of 

vibrational stresses account for fatigue crack growth once a part-through-wall crack transitions to become 

a leaking through-wall crack.  In addition, PRAISE assumes that a leak rate greater than 5 gpm is 

immediately detected, and does not account for the rapid increase in crack lengths that could occur 

during the short time period of a few hours needed for the plant operational staff to diagnose the various 

control room indications that a leak has developed. 

 

 The guidance of NUREG-1661 permits a probability to be estimated for the occurrence of the 

bounding vibrational stress.  Typical applications of the risk-informed procedures have assigned this 

probability to be zero, unless clearly justified by adverse conditions that apply for a specific piping 

location.  Examples would be a history of cavitation or flow-induced vibration, presence of fatigue-

sensitive socket welds, poorly supported cantilevered small diameter piping, a history of pipe failures, 

observations of vibrational sources from rotating equipment, etc. 
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 In summary, the sensitivity calculations for vibrational fatigue were in some respects inconclusive.  

For pipe sizes 6 inches and greater the results show that vibrational stresses should make insignificant 

contribution to piping failure probabilities relative to the 10
-6

 failure frequency.  However, smaller piping 

(3- and 4-inch diameter) needs to be addressed on a case-by-case basis, by demonstrating that sources of 

vibrational stresses and potential levels of vibrational stress are insignificant.  Factors as they apply to 

small diameter HFIR piping are discussed in a later section of the present report. 

 

 

Uncertainties and Conservatisms in PRAISE Calculations 
 

 There are many uncertainties related to both the inputs to the PRAISE code and perhaps more 

importantly the formulation of the fracture mechanics model itself.  These uncertainties can either 

increase or decrease the calculated failure probabilities.  Some of these uncertainties, including factors 

that could increase the failure probabilities, were addressed by sensitivity calculations as described 

above.  In contrast, there are other modeling assumptions and treatments of input parameters that could 

decrease the failure probabilities that were not addressed by the sensitivity calculations.  The discussion 

below identifies a number of such conservative assumptions.  Also discussed is a systematic 

quantification of uncertainties in the PRAISE calculations that was performed by PNNL at the request of 

NRC staff. 

 

Evaluation of Uncertainties in Probabilistic Calculations 
 

 PNNL on a past NRC project performed a systematic uncertainty analyses that evaluated the 

uncertainties in failure probabilities as calculated by the PRAISE code (Khaleel and Simonen 1999).  

This study is relevant to the present review because it concerned fatigue failures due to fabrication flaws 

and covered the very small failure probabilities of concern to HFIR piping. 

 

 Figures 2 through 4 show results from the PNNL uncertainty analysis.  These calculations described 

important input parameters to PRAISE (such as the number and sizes of flaws per weld) in terms of 

statistical distributions rather than as point estimates.  As indicated in Figures 2 through 4, the 

uncertainty calculations gave a distribution of possible values for leak and break probabilities rather than 

as a single best estimate value.  Mean and median values were then calculated from these distributions 

for comparison with best estimate values.  The upper and lower bounds of Figure 3 correspond to 

approximately the 1
st
 and 99

th
 percentiles of the range of calculated failure probabilities.  It is seen that 

the uncertainties become larger (range between bounding curves) as the failure probabilities become 

smaller.  The median values tend to be relatively close to the best estimate values, whereas the mean 

values of the uncertainty distributions are significantly larger than the best estimate values. 

 

 At a failure probability of 10
-10

, the uncertainty bounds covered 3 to 4 orders of magnitude in each 

direction from the best estimate values.  Therefore, even an upper bound on the failure frequency 

accounting for an upper bound on uncertainties would still be consistent with the goal of <10
-6

 failures  
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Figure 2.  Histogram for Probability of Failure Calculated by PRAISE 
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Figure 3.  Upper and Lower Bounds of Leak and Break Probabilities from Uncertainty Analyses 
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Figure 4.  Probabilities from Uncertainty Analyses Compared to Best Estimate Calculations 

 

per year.  However, it is inappropriate to use an upper bound value in the present HFIR evaluation.  The 

stated criteria for acceptable failure probabilities was in terms of a best estimate, with any considerations 

of uncertainties encompassed in the <10
-6

 acceptance standard.  Other risk evaluations state the 

acceptance standards in terms of a mean value for failure probability rather than a best estimate value.  

Figure 4 indicates (failure probability of about 10
-10

) that the mean value of failure probability would be a 

factor of 10 to 100 greater than the best estimate value.  This would lead to an upwards adjustment of the 

best estimate HFIR failure probability of 10
-10

 to 10
-8

 if the acceptance standard were to be stated in terms 

of a mean value of failure probability. 

 

Conservatisms in PRAISE Fracture Mechanics Model 
 

 The sensitivity calculations addressed concerns with potentially optimistic assumptions in the 

fracture mechanics model and inputs to the calculations that could increase the failure probabilities from 

the PRAISE code.  We now list a number of conservative aspects of the calculations that cannot readily 

be quantified but nevertheless collectively result in conservative estimates for failure probabilities: 

 

(1) Random fabrication flaws in welds are assumed to occur at the same circumferential locations as the 

circumferential location of maximum stress resulting from pressure, dead weight, thermal expansion 

stress, and seismic loading (potentially a factor of 2 to 5 effect on failure probability). 

 

(2) Failure probabilities are calculated with the bounding stress levels for each pipe size, and are then 

assumed to apply to all welds of concern for this pipe size (potentially a factor of 2 to 5 effect on 

system failure probability). 
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(3) The stresses on the pipe welds dead weight, thermal expansion, and seismic loading are added 

together.  In some cases a compressive stress from one source may cancel a tensile stress from 

another source.  In other cases the maximum tension from one source could be at the top of the pipe 

cross section, whereas the tension stress from another source could be at flank location offset at 

90 degrees (potentially a factor of 2 to 5 effect on failure probability). 

 

(4) No credit is taken for the ultrasonic inservice inspections of welds, both in eliminating individual 

degraded welds before they fail, and in identifying and correcting unexpected operational conditions 

to prevent additional occurrences of cracking (potential factor of 2 to 5 effect on failure probability). 

 

(5) The PRAISE calculations take no credit for the very sensitive ability to detect leakage (<5 gpm) by 

visual means during the routine pressure tests at reactor startup performed at intervals as short as 

once per month. 

 

(6) The fracture mechanics model of PRAISE assumes that growing part-through fatigue cracks 

immediately become a full though-wall cracks with a length equal to the maximum length of the 

original part-through crack.  Long part-through cracks go suddenly from zero leakage to the leak rate 

for the full-length through-wall crack.  In contrast, experience shows that through-wall cracks start 

with only a short length penetrating at the outer surface of the pipe.  This length then gradually 

increases with an associated increase in leakage rate.  The pressure tests at HFIR (performed as 

frequently as once per month) that would provide opportunities for the visual detection of low levels 

of leakage, which would greatly decrease the subsequent likelihood of large leaks. 

 

(7) The crack growth rate correlation used in the PRAISE calculations was derived for PWR conditions 

and are based in part on crack growth rate data from water environment tests for PWR reactor water 

conditions.  Therefore, the crack growth rates may be conservative for the temperatures and 

environment of HFIR piping. 

 

 In summary, we have listed a number of unquantified conservatisms in the PRAISE calculations that 

collectively could readily account for overestimating piping failure probabilities by perhaps two orders of 

magnitude or more.  The ORNL evaluation did not consider these sources conservatisms but, on the other 

hand, did address some potential factors from the EMT sensitivity calculations that increased estimated 

failure probabilities. 

 

 

Review of Alternative Failure Mechanisms 
 

 The PNNL review has also evaluated the possibility that the governing failure mechanism could be 

other than the fatigue crack growth mechanism addressed by the PRAISE calculations.  A review was 

performed by PNNL independently of a similar review by ORNL.  PNNL came to the same conclusion 

that there is no reason to believe that failure mechanisms not addressed by the PRAISE calculations 

could cause the failure frequency (greater than 1500 gpm leak) to be greater than 10
-6

. 
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 It was recognized that there is no evidence of leaks or service-induced cracking during the many 

years of operational experience at HFIR.  However, the PNNL evaluation addressed the potential for 

future occurrences of failure mechanisms such as stress corrosion cracking, thermal fatigue, flow-assisted 

corrosion, or vibrational fatigue that have been observed at commercial nuclear power plants.  

Occurrences of such mechanisms at commercial nuclear power plants have resulted in most cases in 

small leaks and much less frequently in pipe rupture events. 

 

 Section XI of the ASME Code currently has a methodology (Code Case N-578-1 Risk-Informed 

Requirements for Class 1, 2, or 3 Piping Method B, Section XI, Division 1) to identify failure 

mechanisms that are relevant to specific piping locations.  This methodology accounts for factors related 

to the materials and operating conditions.  The following degradation mechanisms are addressed by 

Table 1-1 of this N-578-1: 

 

• Thermal Fatigue - HFIR operates at low temperatures with inlet and outlet temperatures of 120°F 

and 160°F, respectively, which offers little opportunity for significant thermal fatigue type stresses.  

The ASME Code Case considers thermal fatigue to be relevant if there is a potential for the mixing 

of hot and cold fluids with temperature differences >50°F such as due to leakage past flow control 

valves or from turbulent penetration of a branch connection containing a hot flowing fluid.  None of 

these conditions are known to exist at HFIR.  In the case of rapid changes in temperatures due to the 

initiation of cold fluid injection, the Code Case is concerned with thermal fatigue of stainless steels 

only if the temperature differences exceed 200°F.  This precludes thermal fatigue for the conditions 

that exist at HFIR. 

 

• Stress Corrosion Cracking - Stainless steel piping is considered susceptible to IGSCC for BWR 

systems and is to be evaluated per NRC Generic Latter 88-01.  The BWR conditions do not apply to 

HFIR because of relatively low operating temperatures and more favorable water chemistries.  At 

operating temperatures <200°F stress corrosion cracking is of concern only if water chemistries have 

contaminants such as chlorides and fluorides.  The Code Case considers SCC to be of concern at 

temperatures as low as 150°F if the outside surface of the piping is exposed to wetting by chloride 

bearing environments such as brackish water.  Cracking of Inconel piping and of welds with Inconel 

buttering is also of concern, but only for temperatures well above the HFIR operating temperatures.  

With relatively low operating temperatures and the control of both water chemistries and external 

environments as practiced at HFIR, the ASME Code Case would not consider stress corrosion 

cracking to be relevant to HFIR piping. 

 

• Localized Corrosion - The Code Case addresses degradation mechanisms such as microbiologically 

induced corrosion (MIC), pitting (PIT), and crevice corrosion (CC).  MIC is not relevant to HFIR 

coolant piping because the adverse water chemistries such as present in raw water systems are not 

present.  PIT is likewise not relevant from consideration of the high purity of the water at HFIR.  For 

CC to occur there must be design features to produce crevices, water temperatures >150°F and 

adverse water chemistries, which are factors not present at HFIR. 
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• Wall Thinning - Erosion-cavitation can occur at the lower temperatures of HFIR operation, but the 

flow velocities must be relatively high (>30 feet/second) with the potential occurrence of cavitation 

at locations such as throttling or pressure-reducing valves or orifices.  No such conditions are known 

to exist for the HFIR piping. 

 

• Water Hammer - This mechanism requires unusual conditions such as fluid voiding and relief 

valves discharge that are not known to exist at HFIR. 

 

• Vibrational Fatigue - The Code Case does not list vibrational fatigue, but was identified in PNNL’s 

review as a potential mechanism for HFIR, because there are no clear differences between HFIR and 

commercial nuclear power plants in terms of piping materials, piping design, and operating 

environments.  PNNL addressed vibrational fatigue in detail as discussed in the next section of the 

present report.  This mechanism was eliminated from consideration after ORNL provided additional 

details of the HFIR piping design and operational practices.  It should be noted that vibrational 

stresses have been the cause of many piping failures at commercial plants, and for small bore piping 

in particular.  However, PNNL is not aware of specific cases of vibrational failures for piping with 

diameters as large as 3 to 4 inches, although such failures are reported in a database on piping 

failures available to PNNL staff. 

 

 In summary, the only alternative failure mechanism of concern is that of vibrational fatigue.  The 

following section addresses this mechanism in detail and concludes, based on plant-specific factors for 

HFIR, that vibrational fatigue should not impact the essential conclusion that large leak frequencies 

should be <10
-6

 per year. 

 

 

Potential for Vibrational Stresses 
 

 This section reviews factors relevant to HFIR that govern the potential for vibrational fatigue 

failures.  It is concluded that such failures should be of sufficiently low probability that this failure 

mechanism will not impact the conclusion that failure frequencies for HFIR piping are less than <10
-6

 per 

year. 

 

Data on Vibrational Fatigue Failures at Commercial Nuclear Power Plants 
 

 Data on piping failures at commercial nuclear power plants (Simonen and Gosselin 2000) show that 

vibrational fatigue (VF) is a significant contributor to piping failures as indicated by Figures 5 and 6.  

Failures are much more common in small diameter piping (diameter <2 inch) than for larger piping with 

few failures in piping with diameters greater than 2 to 3 inches.  Failures of small-bore piping are very 

often associated with socket-welded connections. 
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Figure 5.  Service Failures in Small Bore Piping (<2 inch NPS) 
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Figure 6.  Service Failures in Large Bore Piping (>2 inch NPS) 

 

 Another important trend (shown by Figure 6) is that vibrational fatigue failures are most frequent 

during the early years of plant operation.  The failure rates then decrease as plants correct design 

problems and identify and mitigate sources of vibrational stress.  Therefore, it is likely that piping 

locations at HFIR with any potential for vibrational fatigue would likely have already failed early in the 
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life of the plant.  Nevertheless, vibrational failures have continued to occur at commercial power plants 

(but at much lower rates) during later years of operation.  Failures later in life can be associated with the 

development of new sources of vibrational stresses (bearings in rotating equipment fail) or due to 

vibrations that occur only during brief operational periods (plant startup or during testing of equipment) 

such that many years of operation are needed to accumulate a sufficient number of cumulative cycles 

(10
5
 to 10

6
) to cause a failure by high cycle fatigue. 

 

 A database from an ongoing world-wide data search for piping failures (Bush et al. 1996; Lydell 

1999) shows 85 leaks and 4 pipe rupture events for piping >2-inch diameter.  Assuming that this data 

base covers 4000 years of reactor operation, we can estimate a failure frequency of 4/4,000 = 10
-3

 per 

year.  The reported failures cover a large population of plants, piping designs, and operating conditions, 

which in most instances would not be relevant to HFIR.  A plant-specific evaluation for vibrational 

failure considering the HFIR plant-specific conditions can justify much lower values for failure 

frequencies for the reasons discussed below. 

 

 The ORNL report cites a report on initiating events (INNEL 1999) that shows no vibrational fatigue 

failures for piping 3-inch diameter or greater.  This conclusion would appear to be inconsistent with the 

SKI database.  Because PNNL did not have access to the cited INNEL report, the apparently conflicting 

information could not be reconciled.  However, it is likely that the INNEL report confined the definition 

of initiating events to larger leaks (or pipe breaks), and may only have considered failures that impacted 

the primary coolant system.  The INNEL database may also have been limited to experience in the 

United States, whereas the SKI data also covered overseas plants. 

 

 It could not be determined if any of the 4 pipe ruptures in the SKI data were for piping as large as 

3 inches or if the failures were for piping in the range of 2 to 3 inch.  PNNL staff are also aware of other 

difficulties in the application of databases caused by the incorrect reporting of details associated with 

failure events.  It is common for vibrational failures to occur at a location where a small-diameter piping 

connects to a large-diameter line.  In such cases, a failure in small-bore pipe is often incorrectly reported 

as being in the larger-diameter line.  In other cases, the failed pipe is repaired without a detailed root 

cause analysis.  In such cases, a failure may be reported in a database as vibrational fatigue, where a 

correct evaluation would attribute the failure to another cause such as thermal fatigue. 

 

Plant-Specific Vibrational Factors for HFIR Piping 
 

 Although a conservative estimate of a failure frequency (large leak) of 10
-3

 per year could be 

assigned for vibrational fatigue of small-diameter HFIR piping (3 to 4 inch), such a high failure 

frequency is not a reasonable estimate for HFIR piping for the following reasons: 

 

(1) HFIR has operated for some 35 years without any vibrational fatigue failures (even small leaks) and 

the industry trends show that it is even more unlikely that failures will occur during a future period of 

operation. 
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(2) The HFIR piping of concern has diameters of 3 and 4 inches, which is a size range for which 

vibrational failures are rarely if ever experienced and larger than the >2-inch cutoff of the SKI 

database. 

 

(3) There are no socket-type welds in the HFIR piping of concern. 

 

(4) HFIR has instrumentation on coolant pumps to monitor for displacement (with an automatic 

shutdown feature), which will minimize the most likely source of vibrational stresses. 

 

(5) Plant operational staff have access to the HFIR piping prior to each period of reactor operation and 

have opportunities to observe any unusual conditions that would indicate the presence of vibrational 

stresses. 

 

(6) The piping designs at HFIR have been extensively reviewed and analyzed, including walkdowns of 

the piping by a leading piping design organization to identify features that would make pipe runs 

susceptible to vibration. 

 

The following section describes how these factors would collectively contribute to a very low probability 

of vibrational failure. 

 

A Semi-Quantitative Evaluation of HFIR Piping 
 

 Most of the failures in the SKI database (diameters >2 inch) are most likely for piping only 

somewhat greater than 2-inch diameter.  It is not known if any of these reported failures corresponded to 

piping even as large as 3-inch diameter.  We will assume for the present discussion that only 1 of the 

4 failures was for piping 3-inch or greater, which reduces the failure probability by a factor of ¼. 

 

 The data on service experience shows that vibrational failures are more common early in the life of a 

plant (see Figure 7) as vibrational problems are discovered and corrected.  Nevertheless, vibrational 

failures have continued to occur at lower rates after the initial years of plant operation.  The nominal 

failure frequency of 10
-3

 per year as cited above would be unrepresentative of an older plant such as 

HFIR.  Furthermore, it is also noted that no vibrational failures have ever been reported at HFIR even for 

small leaks in the smallest diameter piping, which is an indication that there are few if any significant 

vibrational sources.  Such indications of favorable past operational experience provide justification for 

estimating failure probabilities for HFIR that are significantly less than for commercial power reactors.  

We will assume for the present discussion a reduction factor of 1/10 for periods of future operation. 

 

 The failures in the database cover all systems in commercial power plants (feedwater systems, etc.), 

and not only the piping of the primary coolant system.  Therefore, the number of piping welds per plant 

at risk as addressed by the database is much higher than the piping of concern to the HFIR evaluation.  

We will assume for the present discussion a factor of 5 for the number of welds at risk, which reduces the 

failure probability by a factor of 1/5. 
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Figure 7.  Vibrational Fatigue Failures Showing Decrease In Failure Rate as Plants Become Older 

 

 It is known that the operating conditions (vibration sources such as from flow cavitation) are more 

severe for the piping addressed by the SKI database than for the HFIR piping of interest.  We will assume 

for the present discussion a factor of 5 in terms of failure probabilities, which reduces the failure 

probability by a factor of 1/5. 

 

 HFIR is reported to have no failure-prone socket-type welds.  We will assume for the present 

discussion that a factor of 10 applies in terms of failure probabilities for the HFIR weld configurations 

relative to those addressed by the failures reported in the database, which reduces the failure probability 

by a factor of 1/10. 

 

 Combining the above factors and applying the combined factor to the failure frequency of 10
-3

 per 

year gives 

 

 Failure Frequency ≅ (1/4) × (1/10) × (1/5) × (1/5) × (1/10) × (10
-3

 per year) 

.  ≅ 1×10
-7

 per year 

 

The above calculation is intended to argue why the failure frequency for the 3- to 4-inch diameter lines at 

HFIR are likely to be less than 1×10
-7

 per year.  Nevertheless, the calculation shows how various plant-

specific factors can reduce the expected failure probabilities to negligible levels.  It is concluded that 

HFIR piping should have frequencies of vibrational fatigue failures that are very small relative to generic 

failure rates for reactor piping. 
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Exploratory Calculations with PRAISE 
 

 A previous section of the present report describes sensitivity calculations for vibrational fatigue with 

PRAISE.  These calculations show that an application of NRC guidelines for the treatment of vibrational 

fatigue gives failure rates for piping >6 inch that are negligible even for conservative bounding inputs for 

vibrational stress levels.  These same guidelines can also be applied to 3- and 4-inch piping to allow 

vibrational stresses to be neglected for calculations of failure probabilities.  However, a review of the 

plant-specific factors is needed to justify the use of inputs less conservative than the bounding values 

recommended in the NRC guidelines. 

 

Conclusions on Potential for Vibrational Fatigue 
 

 In summary, the PNNL review comes to the following conclusions relative to the potential for 

vibrational fatigue failures in HFIR piping: 

 

(1) Large-diameter piping (6 inches and greater) is estimated to have negligible failure frequencies due 

to high cyclic vibrational stresses. 

 

(2) Small-diameter piping (diameters of 3-4 inches) should also have very low failure frequencies from 

high cyclic vibrational stresses.  It is difficult to quantify a failure rate for this piping.  However, the 

NRC guidelines for estimating failure probabilities for risk-informed inservice inspection programs 

would justify the exclusion of vibrational fatigue as a relevant failure mechanism for the smaller 

diameter HFIR piping. 

 

(3) Vibrational failures may be the most likely potential cause of failure for HFIR piping, but only 

because (1) other sources of cyclic stress from plant operational transients give such very low failure 

probabilities, and (2) all other potential failure mechanisms such as stress corrosion cracking, thermal 

fatigue, and flow-assisted corrosion are not credible contributors to piping failures. 

 

(4) There are measures in place at HFIR to assure and to gain confidence that probabilities of vibrational 

failure are maintained at low levels including monitoring and measurements of vibrational stresses, 

monitoring of potential sources of vibrational loadings such as pumps, and procedures for detecting 

leakage both during periods of operation and during pressure tests prior to periods of operation. 

 

 

Conclusions and Recommendations 
 

 PNNL has reviewed documents from ORNL that present the technical bases for the conclusion that 

the loss-of-coolant accident at HFIR has a frequency of occurrence less than 1×10
-6

 per year for piping 

3 inches and greater.  PNNL reviewed the computational methods and input parameters for the PRAISE 

code that was used for probabilistic fracture mechanics calculations.  Another part of PNNL’s evaluation 
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addressed potential failure mechanisms not explicitly addressed by the PRAISE calculations, with a 

specific focus on the potential for high cycle vibrational fatigue. 

 

 PNNL endorses the conclusion that the expected annual frequency of large leaks (>1500 gpm) for 

HFIR piping is less than 10
-6 

 per year.  A detailed evaluation of factors relevant to HFIR piping 

concluded that vibrational fatigue will not increase the failure frequency beyond this limit.  These 

conclusions are based on the following considerations: 

 

(1) A review of the probabilistic fracture mechanics calculations performed with the PRAISE code.  

These calculations predict failure frequencies that are much less than 10
-6

 per year. 

 

(2) A comparison of the materials and design of the HFIR piping with similar piping systems at 

commercial nuclear power plants which operate under conditions of temperature and pressures more 

severe than those for HFIR.  These piping systems have exhibited a high level of structural reliability 

for which the failure frequencies have been characterized as less than 10
-6

 per year. 

 

(3) The lack of any evidence of active degradation mechanisms in the form of cracking or leaks during 

the many years that HFIR has operated. 

 

(4) The reportedly high construction standards used in the fabrication of HFIR piping along with 

ORNL’s subsequent ultrasonic inspections of HFIR welds that have not shown evidence of 

fabrication flaws of significant size. 

 

(5) The many measures now in place at HFIR that will reduce the potential for piping failures, including 

(a) hydrotesting of the primary pressure boundary, (b) vibration monitoring for sources of high-cycle 

fatigue stresses, (c) ultrasonic inspections of welds, (d) the frequent visual inspections for evidence 

of small levels of leak as part of pressure tests performed before each operational interval, and (e) the 

potential to detect larger leaks during periods of plant operation. 
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