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Abstract 

 Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to 
model contact forces between interacting particles or blocks. A new simple contact 
algorithm is proposed to model contacts in FE/FD methods which is similar to the CP 
algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh 
instead of blocks or particles used in the original CP method. The new method does not 
require iterations even for very stiff contacts. It is very robust and easy to implement both 
in 2D and 3D parallel codes. 

Introduction 

 Many materials and structures are discontinuous by nature. For example, rock masses 
include multiple joints and faults, granular materials are composed of small particles, 
buildings are composed of bricks etc. There are two types of methods to describe 
discontinuous media: implicit and explicit.  
 In the implicit methods discontinuities are contained within the elements and are 
characterized by additional variables. The simplest example is the Volume-Of-Fluid 
(VOF) method used to describe material interfaces in Eulerian hydrocodes [1]. Joints and 
faults in rocks present another type of discontinuities. Mechanical properties of joints are 
different from those for the material and their thickness is very small compared to the 
wave length in the problem. Such discontinuity can be treated as thin structures imbedded 
into continuum. Due to the presence of joints the total response of an element is a 
combination of solid and joint responses. In this case the stress update for the element 
may require iterations between the solid and joint components and overall response is 
anisotropic. For heavily jointed rock media the implicit approach is often reduced to the 
equivalent continuum models [3,4,5]. Such approach is useful when the total number of 
joints is very big. 
  The implicit methods become complicated when there are several sets of joints in the 
system so that each element contains differently oriented joints. One of the advantages of 
the implicit joint treatment is that there are no additional efforts required to parallelize the 
code. Yet, it may not be robust if deformations are large since the anisotropy of the 
element response may cause elements to distort, for example, along the sliding direction. 
Besides, the implicit treatment of discontinuities is not appropriate for contact-impact 



problems, for example, when the blocks separate from each other and impact other 
blocks. 
 In the explicit methods the joints are represented either by thin-layer elements [6, 7] or 
by the contact interactions between the mesh boundaries. In either case the discontinuities 
are aligned along the mesh boundaries. The method using contact interactions is 
considered in the present paper. The interactions are modeled by adding contact forces 
which prevent the mesh boundaries from interpenetration. 
 The most popular approach for contact calculations in the explicit finite element 
analysis is the master-slave slide-line algorithm with the penalty method [8, 9]. In this 
method one of the interacting surfaces (master) serves as a boundary constraining the 
motion of the nodes for the other surface (slave). To prevent the penetration of a slave 
node through the master surface a penalty force proportional to the projected over-
penetration is applied both to the slave node and with the opposite sign to the nodes of 
the master face. The direction of this force is usually defined by the normal to the master 
surface, which is discontinuous due to discretization of the boundary. This discontinuity 
causes oscillations at the contacts. More sophisticated methods have been developed to 
overcome this problem [10,11].  
 When master-slave approach is used, the user is expected to designate master and 
slave surfaces in advance before the start of calculations [12]. For better symmetry master 
and slave surfaces can alter each cycle [9,13]. The penalty method only approximately 
satisfies the contact displacement constraints and is sensitive to the value of the penalty 
coefficient controlled by the user. Small values of this coefficient can cause over 
penetration as a consequence a softer than needed contact response. Big values of the 
penalty coefficient can cause instability at the contact.  
 In many practical problems such as for the motion of heavily jointed rock masses the 
number of discontinuities is big. The accuracy of the modeling for these discontinuities 
may have a significant effect on overall response of the system. To reproduce the 
response of a single joint observed in experiments constitutive equations used to model 
contacts should be able to describe more than just simple Coulomb-type frictional sliding. 
The normal stiffness can be very non-linear and the shear strength typically shows initial 
hardening followed by dilatancy and softening [17].  Therefore effective contact 
detection algorithms with realistic mechanical models implemented for distributed-
memory parallel computers become very important. Systems with multiple 
discontinuities can be effectively modeled with DEM methods. The DEM has been 
applied to model underground structure response to strong ground motion [21], multi-
fracturing of solids [22], granular flow etc. One of the popular contact detection 
techniques in DEM, is the Common-plane algorithm introduced by Cundall [14]. This 
algorithm reduces the expensive object-to-object contact detection problem to a less 
expensive plane-to-object contact problem. Interacting objects are polygons in 2D case 
and polyhedral in 3D case. The Common Plane (CP) is defined as a plane bisecting the 
space between the objects. After CP has been determined each object is tested separately 
for contacts with the common-plane. The algorithm [14] was improved in [15] by adding 
a fast method to identify the right candidates for the common plane. DEM by nature are 
not designed to model continuum and, for this purpose, are very often supplemented by 
coupled FE codes [21]. Also, when subject to very intense shock loadings DEM with stiff 



contacts cannot run effectively due to severe restrictions on time step imposed by the 
stability condition.     
 The algorithm described in the present paper has been designed to model multiple 
contacts in FE rather than DEM codes. Because it handles a more simple case, the 
interaction of two faces rather than blocks, it was called the Simple Common Plane 
contact algorithm or SCP. This algorithm has been implemented in a parallel 2D and 3D 
Lagrange FE code (GEODYN-L) for shared memory machines using MPI. 
 In addition to the traditional explicit algorithm for the stress update at Common Plane 
similar to one used in [14] a more advanced quasi-implicit update has been implemented 
to avoid strict time step limitations for the problems with stiff contacts.  
 

GEODYN-L Computational Algorithm 

 GEODYN-L is a parallel explicit Lagrangian solver for 2D and 3D unstructured 
meshes. It supports simple 2D and 3D elements (QUADS, TETS, HEX) and multiple 
materials within the elements. Parallel implementation of GEODYN-L can be 
summarized as follows: 
 

 The code does not use globally defined connectivity tables. Therefore, there is  no 

limit on the size of the mesh it can load assuming there are enough CPUs 

available, since there is no need to hold global connectivity on master CPU 

 Each CPU reads the same set of data (input file) registering all basic objects used 

in the problem, such as materials, boundary conditions (BC) and mesh 

descriptors. So all these objects have the same IDs across CPUs. Arrays of mesh 

variable and connectivity tables are only allocated locally where they are used. 

 The code loads multiple grids decomposing them while reading the mesh file 

using ParMetis [20] tools. Alternatively, the meshes can be assigned to the CPUs 

by the user. 

 Element nodes shared by different CPUs are moved to separate arrays before the 

main cycle of calculations. An additional force exchange step is done for these 

nodes at every cycle. 

 The code uses global sorting bins to find close external faces. The face sorting can 

be done in a number of cycles specified by the user. The Common-Plane entity 

can be created for each pair of close faces if the contact area is positive. If one of 



the faces resides on another CPU, then its copy is created and used locally as a 

ghost face.  

 Each external face refers to a face based boundary condition. If two different 

boundary conditions are assigned at interacting faces then the average parameters 

are used at the Common Plane working with the faces. 

The following steps are done to run a problem: 
 

1) LOAD INPUT OR RESTART: Reading data files, allocating structures, 
generating local connectivity and allocating grid variables 

 
2) PREPARING FOR THE RUN: Global space limits are found across all CPUs. 

They define global orthogonal sorting bins used on all CPUs. Nodes are sorted 
into the bins and coincident nodes are searched for on each CPU. If such nodes 
are found they are merged and local connectivity tables are rewritten. All CPUs 
exchange their bounding boxes, after that the CPUs with overlapping boxes 
exchange the lists of bins occupied with the nodes. Based on that information 
nodes shared across CPUs are found and lists of such nodes are created on each 
CPU. Since element connectivity does not change throughout the computations 
this step should be done just once before the main cycle. 

 
3) COMPUTATIONAL CYCLE BEGINS: All entities (nodes, faces, Common 

Plane Objects, elements) are sorted if needed. For example, if there are contact 
boundaries specified in the problem, then external faces, and existing Common 
Plane Objects are sorted into the bins on each CPU 

 
4) EXCHANGING FACE CONNECTIVITY DATA BETWEEN CPUS: CPUs 

exchange their bounding boxes, then the CPUs with overlapping boxes exchange 
lists of bins occupied by the faces. The list of CPUs contacting with the given 
CPU through the faces is created by selecting CPUs with commonly occupied 
bins. In addition to that the list of overlapping bins is created for each CPU 
interacting with the given CPU. The array of ghost faces is created. The data for 
that array will be copied from the other CPUs using the list of contacting CPUs 
and the list of overlapping bins. 

 
5) ZERO FORCES: Nodal forces are set to zero and new variables for the external 

faces are calculated 
 
6) APPLYING ELEMENT SOLVERS: Using current nodal velocities nodal 

positions are estimated for ½ time step forward, velocity gradient tensor as well as 
the new cell volume are found, using these quantities the new material state is 
found for ½ time step forward, internal nodal forces are calculated using newly 
found cell based stresses and the hourglass forces are added 

 



7) EXCHANGE FORCES FOR THE NODES SHARED ACROSS CPUS: 
Using the list of shared nodes found at STEP 2 each CPU sends and receives the 
forces for these nodes. 

 
8) EXCHANGE GHOST FACES DATA: Coordinates and velocities for the face 

nodes as well as face masses are sent to other CPUs to update the ghost faces. 
 
9) CALCULATING CONTACT FORCES: Generally the code loops on the 

existing CP entities at each cycle to calculate contact forces but in a number of 
cycles specified by the user new CP entities can be created. (For example, to 
model wave propagation through the jointed rock mass it can be done just once 
since the number of contacts stays the same throughout the calculations but for 
penetration problems it should be done every 2-4 time steps since the contacts 
change all the time.) For that purpose all candidate face pairs are looked for in a 
loop on non-empty sorting bins with the following requirements: the normals for 
the separated faces point in opposite directions; faces can not belong to the same 
element; ghost face pairs are excluded (because they are treated on the other 
CPU). If the area of contact is positive when looking for new CPs, one must 
check if there is an existing CP separating candidate  faces among the CPs sorted 
into the current space bin (Note that all CPs store information about the contacts 
including the IDs of faces they separate). If this is no such CP found then a new 
CP entity is created with a new history, otherwise the existing CP entity is used to 
store the history variables. The number of history variables stored depends on the 
contact properties. Usually they include the normal and shear displacements, 
maximum displacements, shear slip and the forces incremented at the plane each 
time step 

 
 The area of contact and the forces on CP are found using the following steps: 
 
A. coordinates for the face nodes are found at ½ time step using their current 

coordinates and velocities, 
B. trial Point Of Contact (POC) is found as the midpoint of the segment connecting 

the candidate faces, 
C. face projection polygons are found when the nodal coordinates from step A are 

projected onto the CP with the normal defined as an average normal for the faces, 
D. the area of contact is found as intersection of the face projection polygons and 

final POC is set to the center of gravity of the contact area polygon, 
E. the forces are calculated at the plane using contact area, velocity and the history 

variables. Calculated contact forces at existing or newly found common planes are 
then distributed to the participating nodes. More details can be found in the next 
paragraph. 

 
10) BC: face based boundary conditions (pressure boundary) are applied to add 

external forces 
11) BC: node based boundary conditions (velocity or force boundary) are applied to 

add external forces 



 
12) UPDATING NODES: moving nodes to the new locations and update nodal 

velocities 
13) BACK TO STEP 3 

Contact forces update                     

 Let us consider two interacting faces with the unit normal vectors 1nr  and 2nr pointing 
outwards. Figure 1 shows a 2D case. Using current nodal velocities one can advance both 
faces to ½ time step forward and find , the area of intersection of their projections onto 
the common plane. The point of contact then is found as the center of gravity for the 
contact area. We will define the unit normal to the common plane as 

cA
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−−=  and the center of the plane as the midpoint of the segment 

connecting the face centers. The unit normal is updated every time step. Depending on 
the contact model applied the following history variables may be required for the update: 
 

1) The old unit normal  oldnr

2) The value of the old normal force and shear forces vector nF sF
r

 
3) The maximum normal closure  maxu
4) The normal closure u  
5) The shear displacement  su
6) The shear slip  spu
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Figure 1. Common plane determination for a pair of faces in 2D. The CP is shown with the dashed line. 
 
The faces are allowed to over penetrate. The penalty force resisting the penetration 
depends on the value of the penetration called “the normal closure” in a nonlinear way. 
 



Constitutive relations at the contact 

 Since one of main application of the contact algorithm is to model jointed rock media 
it is important to capture the main features of the joints. It is known from the 
experimental observations [16] that the joint closure is a non-linear function of the 
applied normal stress resembling a hyperbola. Let us assume the following function of 
form for the normal modulus 
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Here  is the aperture, u is the normal closure,  is the initial normal modulus and 
 is the maximum closure up to the current time. If integrated for the loading 

condition it gives the following dependence for the normal stress 
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Contacts are considered to be isotropic with a Coulomb friction law and a limited tensile 
strength. Thus the shear force at the contact is limited by the yield surface dependent on 
the normal force as 

)tan(max φncs FCAF +=  (3) 

where C is the shear cohesion,  is the area of contact and cA φ  is the friction angle. 

Anytime the yield surface is applied to restrict shear stress (forces) some plastic 
deformations are accumulated. We will use “shear slip” variable to characterize the 
amount of plastic deformation at the contact similar to [17]. The increment of the shear 
slip is expressed as 
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where G is the shear modulus. 

The friction angle φ  is changing with the amount of shear slip to account for the 
softening effect as 

0100 /1)( spsp uu−−+= φφφφ  (5) 

To account for joint dilation due to shear slip ν, the normal force should be adjusted 
anytime the shear slip is incremented as 
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where  is the initial dilation angle and  is the critical normal force above which 
dilation will not occur. 

0Ψ crF

The model described above is capable of reproducing the main features of joint response 
in rocks as it was shown in [17]. 

Explicit update of contact forces  

 
The normal closure is advanced to the end of the time step as  

tVuu nnn ∆+=′  (7) 

The maximum closure for all times is found as 
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The normal force is incremented as 
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where E  is the normal modulus which depends of the normal closure.  
 In the explicit scheme the value of closure in the end of the step is used in the stiffness 
function. If time step is big enough then the projected closure nu ′ may surpass the 
aperture. In this case a cut-off value  is used for the modulus.  maxE
The velocity   describes relative motion of the faces towards the common plane and is 
expressed as 
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where  are the average velocities of the faces calculated using their nodal velocities. 21,VV
rr

The shear force is incremented using similar expression 
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  is the velocity of the relative motion of the faces parallel to the common plane 
calculated as 
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To exclude incremental rotations of the common-plane, the vector representing the shear 
force in global co-ordinates is corrected using the old and the new normal vectors as 
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After the shear force has been incremented, the yield surface is applied to limit its 
amplitude as 
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 If the dilation angle is big, then the maximum shear force will be changing 
because of the increase in normal stress due to dilation described by Eq(6). This change 
should be accounted for by using in Eq.(3) the following corrected value of  
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The value of the shear slip increment, consistent with the new normal force , is 
expressed as 
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 Once the forces at the plane have been found, they are distributed to the nodes of the 
interacting faces. There are few ways how it can be done. The method of force 
distribution proportionally to the node penetration  has proved to be robust. In this 
case the contact force added to the node i of the plane 1 is expressed as 
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Forces added to the plane 2 have the opposite sign as 
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Distributing forces with the weight proportional to their penetration seems to prevent 
instabilities at the contact interface. 
 
For the reasons of stability time step should be limited by the following formula 
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where  is the safety factor and safeC ρ  is the average density of the material separated by 
the joint.  As it is seen from (19), when the joint is closing and ∞→E  the time step 
would go to zero. That is why this scheme is not appropriate for very strong loadings of 
the jointed media. For this purpose another more robust implicit scheme has been 
developed. 



Implicit update of contact forces 

 
 If the constitutive law for the contact is very stiff, small change in the normal joint 
closure will cause a dramatic increase in stiffness. This will lead to overestimation of the 
contact force if the explicit scheme described above is applied.  
 Let us assume that the contact acts like a non-linear spring connecting two faces.  
Each face has a mass associated with it. This mass is defined as the mass of the element 
behind the face divided by the number of element nodes and multiplied by the number of 
face nodes. However, only a fraction of the face mass is included into consideration. For 
simplicity this fraction is defined as cAAf /11 =  for the first face and  for the 
second face. The motion of each face is controlled by the internal forces from the element 

and unknown forces at the contact.  Assuming that the faces decelerate during the 
time step with the force taken from the end of the step gives 
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Where 
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=  and  are face masses. The resultant internal force is 

expressed as 
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where 21 , FF
rr

 are the sums of the internal forces acting on the nodes of the first and the 
second faces. Note, that the internal nodal forces have been calculated before STEP 9 of 
the algorithm. 
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Solving quadratic equation (22) gives the change of the normal closure and the 
equivalent value of the normal force required to yield the given closure 
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If the contact is very stiff and ∞→→− Eua ,00 , one can find that the solution of the 
quadratic equation gives . The normal force needed to stop relative motion of the 
faces by the and of the step can be found as 
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Eq.() gives the limit of so called “slide line” contact, when the closure is very small but 
sliding can be big since no friction is applied. This limit can be useful to model very stiff 
contacts. 
 
The shear force is determined after the normal force has been found using the algorithm 
described for the explicit update. 
 
Condition of no-shear can be enforced if the shear force is calculated as 
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If the normal force is calculated using Eq.()  and the shear force is found using Eq.(25) 
the contact will behave as tied mesh boundary. This option called here as “sticky contact” 
is useful, for example, to model continuum using multiple meshes tied along the 
boundaries. 
 Accounting for the internal forces during the contact force calculation makes implicit 
scheme more expensive, because one need to send these forces for each node of the ghost 
face at STEP 8. A better way of including internal forces into consideration is to correct 
nodal velocities before STEP 8. In this case both  and  should be set to zero but 
the nodal velocities used in (10) and (12) need to be adjusted for the internal forces. 
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sF int
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Contact options and model parameters 

The following contact options are available in GEODYN-L: 
 

 “Slide Line”  - no shear forces are applied, normal forces are calculated using 

Eq.()   

  “Sticky contact” - normal forces  are calculated with Eq.() and shear forces are 

found using Eq.(25) 

 Explicit contact - constitutive equations for the contact are used in a simple 

explicit update. Time step is limited by the stiffness of the joints. 

 Implicit contact – constitutive equations for the contact are used. Kinematics of 

the faces interactions is accounted for during the update. Therefore the joints do 

not dictate the time step no matter how stiff they are. 

 



The Table.1 below shows the list of parameters for the contact model specified by the 
user. 
 
Parameter Typical value Name 
a  0.1 mm Aperture 
C 0.001GPa Shear cohesion 

0φ  40  Initial friction angle 

1φ  10 Residual friction angle 
aKG s=  0.05 GPa Shear modulus 
aKE n=0  0.05 GPa Initial normal modulus 

0Ψ   0-15 Initial dilation angle 

ccrcr AF /=σ  0.1 GPa Critical dilation normal 
stress 

0spu  100. Shear slip at which friction 
angle drops to its residual 
value 

 
Table 1: Parameters used in GEODYN-L contact models 
 
The “slide lines” enforcing non penetration constraint are very often used in contact-
impact problems. The “sticky” contact represents the case of very stiff contacts with 
infinite shear cohesion. It can be used to connect non-matching meshes in FE/FD 
simulations. In the current framework it is also possible to develop “sleepy” contacts that 
behave as the “sticky” contact for the intact material and turn into “slide lines” with 
residual Coulomb friction as material fails. The measures of failure in the separated 
elements (such as plastic strain, porosity etc) cab be used as the switch in the contact 
response. This approach can help to model macro fracture and fragmentation activating 
preexisting contacts.



Examples of simulations 

1D wave propagation through a jointed media 

 To study the effect of joints on wave attenuation for a plane shock wave a 1D problem 
described below was simulated. Solid material (without joints) was modeled first as a 
reference case. 100 cells were used for 100 mm long region where the first 10 cells were 
initialized to 1 km/s velocity.  
Free surface boundary conditions were applied from both ends. The material model, 
described in [18] was used for the limestone with the reference sound speed of 4.5 km/s 
and the density of 2.6 g/cc. The joints were modeled using both implicit and explicit 
schemes for three different stiffnesses controlled by the aperture parameter . Figure 2 
shows velocity histories recorded at 80 mm range for the different cases. 
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Figure 2. Velocity history for 1 km/s impact of 10 mm layer onto 90 mm layer of jointed rock measured at 
X=80 mm range: 1-solid material (thick solid line),jointed material with very stiff contacts (thin solid line), 
jointed material with slide lines(dashed line); 2-jointed material calculated using implicit (solid line) and 
explicit (thick dashed line) schemes with 1 cell per block;3-jointed material with soft contacts  calculated 
with implicit and explicit schemes  and different resolution (1 and 10 cells per block) 
 



The case of very stiff joints (see set 1 in Fig.2) was run only using implicit scheme, since 
the explicit scheme would require a prohibitively small time step in order to run. In this 
case the result looks very close to the one calculated for the solid target. The “slide line” 
contact logic also yields very close results. As the joint stiffness is reduced, the wave 
travels with slower speeds (see sets 2-3) because of extra time needed to compact the 
joints. Soft joints also cause more reflection from the block interfaces. It is interesting to 
note, that the explicit scheme enhances those reflected waves due to systematic 
overestimation of the contact forces at the interfaces. Increasing the number of cells used 
per block from one to 10 makes the results of the two schemes close.   

2D wave propagation in a jointed media with sticky contacts 

By changing contact properties one can get various responses from the jointed media. 
One of the limiting cases is the “sticky” joint, where material is not allowed to slip and 
penetrate across the interface. In this case the response of the jointed media should be 
very close to the material without joints. To illustrate this 2D cylindrical detonation wave 
has been modeled both on the structured I-J mesh without joints and on an imbricate 
mesh where blocks where staggered in Y direction (see Fig.3.A mesh on the right)  

 
Figure 3. Numerical meshes (A) for a cylindrical detonation wave at different times. Continuum is shown 
on the left and jointed media with “sticky” joints is shown on the right, the ignition point is shown in the 
middle.   



 

 

 
Figure 4. Pressure contours for a cylindrical detonation wave at different times. Continuum is shown on 
the left and jointed media with sticky joints plotted as dots is shown on the right.  



2D block normal impact test: Implicit update vs Explicit update 

 To test the robustness of both implicit and explicit contact schemes a simple normal 
impact of two equally sized blocks was simulated using fixed safety factors for the 
elements. The blocks were meshed differently on purpose to exercise the case when the 
contact faces are different. The safety factor  for the stability of contacts used in (19) 
was set to a very big number. As a result of this explicit scheme crashed when the 
problem was run with a typical Courant number S=0.5. When the time step was reduced 
by a factor of 5 to S=0.1 the scheme still produced unstable results and only a 10 times 
reduction of the time step (S=0.05) gave results similar to ones produced with the implicit 
scheme. The following joint properties were used in calculations: a=0.2 mm, E=0.5 GPa, 
G=0.3 GPa, 

safeC

0φ =38, 1φ =38. 
  

 
Figure 5. Numerical mesh with the pressure contours for 1 km/s velocity impact of two 1.5x1.5 cm blocks 
calculated with the implicit (bottom row) and the explicit (top row) schemes with different time step 
stability factors (0.5,0.1,0.05) 
 



 

2D block sliding impact test 

 To test algorithm for the case of non-zero dilation angle a sliding impact of two equal 
size blocks meshed with 17x17 elements each was simulated using both implicit and 
explicit updates. The geometry of the problem is shown in Fig.6.The following joint 
properties were used in calculations: a=0.005 mm, E=0.5 GPa, G=0.5 GPa, 0φ =31, 1φ =0, 

=5, =1 GPa. The evolutions of the transmitted normal stress and shear velocity 
(shown in Fig.7) were recorded at points A and B located in the middle of the contacts in 
the impacted blocks. 

0Ψ crF

 

 
Figure 6. Initial conditions for a sliding impact of two blocks. 
 
Figure 7 demonstrates advantages of using implicit update for the normal force in the 
case of non-zero dilation at the joints. Both shear velocity and the normal stress are 
smooth if the implicit update using Eq.(15) is applied (see solid lines). The same 
variables show some signs of instabilities if the increment for the normal force due to 
shear slip is calculated using explicit scheme (see dashed lines).  
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Figure.7 Oblique impact of two blocks: evolution of normal stress and transverse velocity for the implicit 
(A) and the explicit (B) contacts. Results calculated with the explicit adjustment of the normal contact force 
for dilation are shown with dashed lines. 
 

 

2D Projectile penetration through a brick wall  

 As an illustration of the dynamic contact algorithm in 2D case simulations of a steel 
projectile penetrating 5 cm thick imbricate wall of concrete at 139 m/s is shown in the 
figure 8 below. During the penetration of the projectile more and more contacts are 
activated. Therefore, new Common-Planes were looked for every other time step in order 
to capture new contacts in time.   
 The concrete response was modeled with pseudo-cap strength model described in [18]. 
The model includes effects of hardening due to porous compaction and softening due to 



dilatancy. As material softens its tensile strength approaches zero. The consequence of 
the effect of softening is the presence of elongated elements containing damaged material 
shown in Fig.9. 
 A Coulomb friction law was used for the joints. The load-unload curve included one 
history-dependent parameter, the maximum joint closure, to describe tangent unloading 
for the joints. 
 
 

 

 

 
Figure.8 Numerical mesh and contact face locations (black dots) at various times ( t=0 ms is at the top, 
t=0.8 ms in the middle and t=2 ms at the bottom) 
 
It is interesting to note that, because the blocks were allowed to separate, no special 
technique was needed to prevent mesh distortions which usually takes place in 
penetration problems. 



 
Figure.9 Numerical mesh and tensile strength contours for concrete blocks at t=0.8 ms. White color 
corresponds to fully damaged concrete. 

A bar hitting 3D brick wall 

 Figure.10 shows results of simulations of a steel 5 m long bar impacting 6.4 x 6.4 x 
0.64 m brick wall at 70 m/s. The bar was inclined at 60 degrees. The models described 
above were used for the concrete and the joints between the bricks.   



 
 

 

 
 
 
Figure.10 Numerical mesh at cycle zero and contours of tensile strength for brick wall impacted by a steel 
bar at times 0.0013 s, 0.0183 s and 0.041 s. 
 



Conclusion 

 Simple Common Plane (SCP) contact detection technique is very easy and 

efficient to model all types of contacts (including vertex-to-vertex, edge-to-vertex, 

edge-to-edge). These cases are modeled by face-to-face contacts using a plane 

separating the faces (the Common Plane). 

 Unlike penalty method traditionally used in FE/FD codes, SCP allows advanced 

friction laws to be applied at contact surfaces with the history-dependent 

variables. Such advanced models for the contacts are very important to model 

heavily jointed rocks and engineering structures with multiple joints. 

 In addition to standard stress update used in DEM codes a more advanced quasi-

implicit stress update is proposed to avoid time step limitations for the problems 

with stiff contact law. This method gives the limit of continuum for the very stiff 

contacts without sliding while the time step is controlled by the elements. 

 Parallel SCP algorithm does not provide perfect dynamic load balance for the 

contacts as, for example, the one described in [4], but it is very generic and easy 

to implement. The algorithm is completely symmetric and there is no need to 

specify a master and a slave surface for each time step. Parallelizing the contact 

amounts to copying the coordinates and velocity of the nodes for the ghost faces 

which physically reside on other CPUs. There is no need to send the forces 

calculated at CP to the other CPUs since each Common Plane between the faces 

resided on different CPUs is duplicated on both CPUs and the forces calculated 

need only be distributed to the local faces. 

 If both DEM and FE methods are used to solve the problem, then applying SCP as 

contact detection technique in FE is very convenient since both CP and SCP 

methods use common planes separating interacting entities (blocks, particles, 

faces of the FE mesh etc.). In this perspective SCP can be looked at as an 

extension of the traditional CP method used to include FE. 
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