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Introduction

  The optimum detector for a known signal in white Gaussian background noise is the matched fil-
ter, also known as a correlation detector [Van Trees, 1968].  Correlation detectors offer exquisite 
sensitivity (high probability of detection at a fixed false alarm rate), but require perfect knowledge 
of the signal.  The sensitivity of correlation detectors is increased by the availability of multichan-
nel data, something common in seismic applications due to the prevalence of three-component 
stations and arrays.  

  When the signal is imperfectly known, an extension of the correlation detector, the subspace 
detector, may be able to capture much of the performance of a matched filter [Harris, 2006].  In 
order to apply a subspace detector, the signal to be detected must be known to lie in a signal sub-
space of dimension , which is defined by a set of  linearly-independent basis waveforms.  
The basis is constructed to span the range of signals anticipated to be emitted by a source of inter-
est.

  Correlation detectors operate by computing a running correlation coefficient between a template
waveform (the signal to be detected) and the data from a window sliding continuously along a data
stream.  The template waveform and the continuous data stream may be multichannel, as would be
true for a three-component seismic station or an array.  In such cases, the appropriate correlation
operation computes the individual correlations channel-for-channel and sums the result (Figure 1).
Both the waveform matching that occurs when a target signal is present and the cross-channel
stacking  provide processing gain.  For a three-component station processing gain occurs from
matching the time-history of the signals and their polarization structure.

  The projection operation that is at the heart of the subspace detector can be expensive to compute 
if implemented in a straightforward manner, i.e. with direct-form convolutions.  The purpose of 
this report is to indicate how the projection can be computed efficiently for continuous multichan-
nel seismic data.

 The speed of the calculation is significant as it may become desirable to deploy subspace detec-
tors numbering in the thousands.   One application contemplated for these detectors is as screens 
against signals from repeating sources such as mines or aftershocks of large earthquakes. With 
many tens of stations and potentially hundreds of sources to screen, efficient implementations are 
desirable.  Speed, of course, can be achieved by procuring faster computers or special-purpose 
hardware.  The approach we examine here is the development of two efficient algorithms that can 
make the calculations run faster on any machine. 

  In the first section, we describe the subspace detector as we use it for the detection of repeating 
seismic events, defining terms and the parameterization used in succeeding sections.  This section 
also reviews how the correlation computations central to the matched filter and subspace detec-
tors can be implemented as a collection of convolution operations.  Convolution algorithms using 
fast Fourier transforms, such as the overlap-add and overlap-save methods, have long been known 
as efficient implementations of discrete-time finite-impulse-response filters [e.g. Oppenheim and 
Schafer, 1975].  These may be extended in a straightforward manner to implement multichannel 
correlation detectors.    

d 1≥ d
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  In the second section, we describe how multichannel data can be multiplexed to compute the 
required convolutions with a single pair of FFT operations instead of a pair for each channel.  This 
approach increases speed approximately twofold.

  Seismic data, almost invariably, are oversampled.  This characteristic provides an opportunity 
for increased efficiency by decimating the data prior to performing the correlation calculations.  
In the third section, we describe a bandpass transformation of the data that allows a more aggres-
sive decimation of the data without significant loss of fidelity in the correlation calculation.  The 
transformation computes a complex-analytic representation for the template waveforms and the 
multichannel data, followed by a demodulation for both to base-band (i.e. a single band around 
zero frequency).  This approach provides a factor of two to four increase in speed depending on 
the details of data sampling rate and the desired pass band of the correlation calculation.

  The approaches described in the last two sections can be used simultaneously to compound effi-
ciencies.
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Formulation of the Detection Problem and Convolution Implementation

  Our objective is to detect the occurrence of signals of a particular class in a noisy (multichannel) 
data stream.  The data may be observations of a single seismic trace, a multichannel waveform 
from a three-component station or a multichannel waveform from an array or network.  Data pre-
processing may consist of filtering the data into a preferred detection passband followed by deci-
mation to remove dead bandwidth (a high frequency band with zero energy).  We consider 
discrete-time data streams , with n an integer time index.  The streams are the 

digitized representations of bandpass analog signals  sampled every  seconds.  The chan-

nel index i = 1, 2, ..., NC with NC the total number of data channel streams.

  
  For what follows, it frequently will be convenient to pack the  individual streams into a sin-

gle channel-sequential multiplexed stream:

By convention, when referring to single-channel signals we will use the symbol  and when 

referring to the corresponding multiplexed signals, we will use the symbol .

  Detectors usually are conceived to implement a binary hypothesis test on the presence or 
absence of a signal in a data observation (detection) window [Van Trees, 1968].  The test chooses 
between the null hypothesis H0, that noise only is present, and the alternative hypothesis H1, that 
both signal and noise are present (Figure 1).  Under several possible criteria, the detection rule is a 
likelihood ratio test that compares the probability that the observed data  are due to signal 
and noise to the probability that they are due to noise alone:

The data vector  is a finite segment of the continuous multiplexed stream of equation 1 (Fig-

ure 3) beginning at sample  in the individual channel signals:

n= ,...,

i=1,...,
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Figure 1  The detection problem is usually formulated for a window sliding along a continuous
data stream.  At each window position, a binary hypothesis test is conducted, testing whether the
data in the window consist of noise alone or signal and noise superimposed.  In a subspace detec-
tor, the signal is modeled as the sum of weighted basis functions.  The weights are considered de-
terministic, but unknown and must be estimated for each position of the window.

H0: noise only

H1: signal + noise

detection window

=
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The superscript  denotes the transpose operation.  Corresponding to the multiplexed data vector 

, we also define the collection of data vectors for individual channels :

Defining the duration of the observation window as  samples for each of the individual chan-

nels , the total number of samples comprising  is .

  In this discussion, the probability model for the data is multivariate Gaussian.  The data consist 
of noise alone or signal with additive noise:

The noise  is assumed to be zero-mean, and temporally and spatially uncorrelated (white) 

with unknown power level (i.e. unknown variance ).  In this discussion, we make the simplify-
ing assumption that the noise power is the same on all channels.  The signal is assumed to be 
deterministic, but dependent upon a vector of unknown parameters , and is specified as an 
unknown linear combination of basis waveforms, collectively called the representation:

The d columns of the  representation matrices  constitute the waveform basis for chan-

nel  in sampled form.  

  This signal model assumes that the source can produce  independently scalable waveforms, as 
might be the case, for example, with the six independent components of a source moment tensor.  
Each of the independent components of the source would produce a collection of waveforms over 
the set of observing channels that would scale up or down in unison.  Hence, the coefficients  
are not a function of the channel, but common to all channels.  The columns of the representation 
matrices  however do represent the particular waveforms that each independent source compo-

nent (e.g. Green’s function component) will express on the individual observing channels.

(4)

              under hypothesis 

  under hypothesis 
(5)

(6)
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  Under these assumptions, the probability model for the data under the alternative hypothesis 
(signal present) is:

and the model under the null hypothesis (no signal present) is:

  Because there are unknown parameters in the probability densities under each hypothesis, the 
likelihood ratio test of equation (2) must be modified to use definite parameter values.  A reason-
able choice for the parameter values is their maximum likelihood estimates given the available 
data.  The likelihood ratio test that results is referred to as the Generalized Likelihood Ratio Test 
(GLRT) [Van Trees, 1968]:

The GLRT usually gives good performance in the detectors that implement it.  

  It is simpler to evaluate the log likelihood ratio:

(7)

(8)

 declare 

 declare 

(9)
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Performing the indicated maximizations (see Appendix A), the result is:

Interpretation

  Equation (11) has a simple interpretation in terms of a multichannel correlation operation.  Con-
sidering first the simple case of a single template waveform (i.e. ), the representation 

matrices each have a single column .  The key calculation of equation (11), then, is the summa-

tion:

which is a sum of correlation calculations between the observed waveform on the th channel and 
the single basis waveform of the representation for that channel:

Here we have referred to the definition of  found in equation (4).  Similarly, the representa-

tion vectors  are defined by:

The operation expressed in equation (13) is displayed graphically in Figure 2.  As a function of 
the time index , the quantity in parentheses in (13) is a correlation calculation between signals 

defined by  and .  The objective of a correlation detector is to use a previously-observed tem-

plate waveform  to detect later occurrences of the same or similar waveforms in .  When 

more than one channel of data are available, equation (13) tells us that the appropriate detection 
operation is to sum the correlations across all channels of data.  As shown in the figure, process-
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Figure 2  Detection of a known multichannel signal in uncorrelated noise is optimized by an op-
eration that stacks correlations across channels. This operation is demonstrated here for three-
component observations of two nearly-identical mining events by the ELKO broadband station.
At left are the paired waveforms for the two events for the vertical, north and east channels, re-
spectively.  Note that the signals for the two events are highly similar on any one channel, but the
signals for either event on the three channels are dissimilar.  The corresponding cross-correlations
of waveforms for the event pairs on each channel are shown at right.  They, too, are dissimilar,
but have aligned maxima.  Consequently, the sum of the channel-wise correlations develops pro-
cessing gain as the correlation maxima add coherently.
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ing gain is obtained because the correlation peaks are aligned across channels.  Alignment occurs 
because the details of the template signals across channels match the corresponding details of a 
similar signal (if one is present).  In an array signal, for example, the time delays among channels 
induced by wave propagation across the array are exactly matched by two signals from the same 
source.  Similarly, in the three-component case, the polarization structure among the vertical, 
north and east channels is matched for similar signals.

Efficient (Convolution) Implementation

  Continuing our discussion of the simple ( ) correlation case, the key to efficient evaluation 
of the correlation calculation is to realize that the correlation is required continuously, and that it 
is efficient to calculate it for blocks of data (length  samples) for a large number of values 

of  simultaneously.  With the change of variables , the correlation of equation 

(13) can be written as a convolution:

where  is the time-reversed version of the template corresponding to the 

 data channel, and  is a shifted version of the  channel of the input 

data stream.

  Equation (15) can be implemented readily with discrete-time Fourier transforms and the Fast 
Fourier Transform (FFT) algorithm [Oppenheim and Schafer, 1975] using the overlap-save or 
overlap-add methods (see Appendix B for a brief summary of the overlap-add approach).   The 
procedure involves:
1. breaking the data streams  into successive, non-overlapping blocks of length , 

2. computing  discrete Fourier transforms (DFTs) of the blocks, 

3. multiplying the block transforms by the DFT of , 

4. computing the inverse DFTs of the transform products, and 
5. piecing the convolved blocks back into a continuous filtered stream.  

Since the DFT of  is used over and over, it need be computed only once and stored.  The 

incremental cost (per block of input data) of the convolution of equation (15) consists of one for-
ward DFT, the product and one inverse DFT per channel of data.  The cost of computing equation 
(15) per block of input data over all channels, in a straightforward fashion, is, therefore,  

DFTs of length at least .

Multiple Templates:  the Subspace Detector
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  In the event that multiple ( ) templates define the detector representation, each of the represena-

tion matrices has  columns:

and each column  is defined by individual elements , n = 0,...,NT -1 as in equation (14) 

by:

The log likelihood function (equation 11) is complicated in this case, requiring a set of  convolu-
tions of the type expressed in equation (15) to be calculated.  This complexity motivates the 
change in representation described in the next section.
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Efficient Multichannel Convolution

  The log likelihood ratio of equation (11) can be substantially simplified if the structure of the 
data stream and detection templates are recast from collections of individual channels to single 
multiplexed sequences in channel-sequential form (equations 1 and 3).  In addition, an efficient 
algorithm can be devised for implementing the correlations indicated in equations (11) and (13) 
when multiplexed forms of the data streams and templates are used.  The basic idea is to correlate 
the multiplexed template directly with the multiplexed data stream, instead of computing the sum 
of the individual channel correlations as in equation (13).  With the appropriate decimation of the 
multiplexed correlation (implemented as an aliasing operation in the frequency domain), roughly 
a factor of two savings in computation is possible.

  The signal model of equation (6) can be recast more simply as:

The representation matrix  consists of  column vectors:  

which are multiplexed column vectors from the corresponding single-channel representation 

matrices .  For example, the  jth column of  is:

The elements  of the multiplexed template  can be represented in terms of the elements 

of the single-channel templates  by:

Without loss of generality,  can be made orthonormal: 

where  is the  identity matrix.  Figure 3 depicts the organization of the data and the tem-
plate in channel-sequential multiplexed form, and, in particular, demonstrates that the single-
channel elements of the template and data can be made to correspond in the multiplexed forms.
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Figure 3  To simplify mathematical expressions and to support an efficient correlation algorithm,
it is convenient to reformat multichannel data and signal-matching templates into channel-se-
quential multiplexed form.  The example above shows a portion of a three-component data stream
with vertical, north and east (z,n,e) channels and a corresponding three-component template in
the upper part of the diagram.  In a correlation-matching operation, the template effectively over-
lays the data in the detection window.  The product of data and template samples from corre-
sponding channels (z with z, n with n and e with e) is formed and the resulting products are
summed to form the correlation value, as in Figure 1.  In the bottom part of the diagram, the same
sum of products can be formed by a simple dot product of data and template when reordered into
single channel-sequential multiplexed vectors or streams.

Data
Streams

uz[0]

un[0]

ue[0]

uz[1]

un[1]

ue[1]

uz[2]

un[2]

ue[2]

uz[3]

un[3]

ue[3]

Multichannel
Template

xz[n]

xn[n]

xe[n]

xz[n+1]

xn[n+1]

xe[n+1]

xz[n+2]

xn[n+2]

xe[n+2]

xz[n+3]

xn[n+3]

xe[n+3]

xz[n+4]

xn[n+4]

xe[n+4]

xz[n+5]

xn[n+5]

xe[n+5]

xz[n+6]

xn[n+6]

xe[n+6]

xz[n+7]

xn[n+7]

xe[n+7]

xz[n+8]

xn[n+8]

xe[n+8] . . .

. . .

. . .xz[n-1]

xn[n-1]

xe[n-1]. . .

. . .

. . .

Multiplexed Stream x[n]

Multiplexed
Template

uz[0] un[0] ue[0] uz[1] un[1] ue[1] uz[2] un[2] ue[2] uz[3] un[3] ue[3]

Detection Window x[n]

xz[n] xn[n] xe[n] xz[n+1] xn[n+1] xe[n+1] xz[n+2] xn[n+2] xe[n+2]xz[n-1] xn[n-1] xe[n-1] xz[n+3] xn[n+3] xe[n+3] . . .. . . xz[n+4]

Detection Window



14

  Under these assumptions, the probability density for the observed data is 

under the null hypothesis (no signal present) and

under the alternative hypothesis (signal present).  The data vector  is as defined in equation 
(3).

  Using the multiplexed representation, the log generalized likelihood ratio of equation (10) 
assumes the form [Harris, 2006]:

which is considerably simpler than equation (11).   The vector  is the least-squares estimate 

of the signal in the detection window, and is obtained by projecting the data in the detection win-
dow into the subspace defined by  (see Figure 4).  The quantity  is the ratio of the energy 
in the projected data to the energy in the original data.  It is a positive quantity with values ranging 
between 0 and 1.  It closely resembles the square of a correlation coefficient (it is exactly that for 
the case , i.e. the correlation detector).  This quantity  is the sufficient statistic for the 
subspace detector, and is the quantity that we seek to calculate efficiently.

  The key quantities requiring efficient evaluation are the numerator  and the denomi-

nator  of the sufficient statistic.  Because the representation matrix  is orthonormal, 

the numerator can be written as  where  is the least-

squares estimate of the signal coefficient vector  defined in equations (6) and (16) under the 

assumption of uncorrelated noise.  We examine the calculation of  in detail first.
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Figure 4  The subspace detector operates by projecting the (possibly multichannel) data in a de-
tection window (treated as a vector ) into a subspace spanned by the columns of the subspace
representation matrix .  The ratio of the squared norm of the projected vector to the squared
norm of the original data vector is the detection statistic.  This statistic resembles a correlation
coefficient in that it ranges between 0 and 1 and measures the linear dependence between the data
and the set of vectors comprising the subspace representation.  This statistic is computed contin-
uously as the data window slides down the continuous data stream one sample at a time.  When
the statistic exceeds a predefined threshold value, a detection is declared.
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  Vector  is a  vector with individual elements  that are the inner products between 

the columns of  and the multiplexed data vector :

By reference to equations (3) and (20), this expression can be rewritten as the double sum:

Similarly, by reference to equations (1) and (21), (27) can be expressed in terms of the multi-
plexed template and data stream:

With the change of variables , this expression can be simplified to:

and interpreted as the correlation between the multiplexed template and multiplexed data stream 
sampled at integer multiples of .  Here, the multiplexed template and data stream are being 

treated as normal scalar time series.  Only every  sample of the correlation function between 

these two time series produces a legitimate value equal to the sum of correlations expressed in 
equation (13).

  The basic concept is illustrated in Figure 5, which shows that the convolution between multi-
plexed data streams produces legitimate summed correlation samples at offsets corresponding to 
integer multiples of  .  The trick is to compute just those samples and not the others corre-

sponding to products between mismatched channels.  This outcome is achieved by recognizing 
that a decimated version (decimated by a factor of ) of the correlation between multiplexed 

template and multiplexed data stream is required.

  Decimation in time corresponds to an aliasing operation in the frequency domain (see Appendix 
C).  Consequently, the overlap-add algorithm must be modified to incorporate an aliasing opera-
tion in the frequency domain.  The computational savings arises from the fact that although a 
length  forward FFT of the multiplexed data must be computed to calculate 
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â
j

n[ ] u
j( )

T
x n[ ]=

â
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Figure 5  Direct correlation of a multiplexed data stream with a multiplexed template results in a
sequence that has valid correlations every  samples.  The example above depicts correlation
between a channel-sequential multiplexed three-component data stream and a corresponding
multiplexed three-sample (  multiplexed template.  In the cross-correlation sequence at
the bottom of the figure, a valid multichannel correlation appears every third sample.  The trick
behind efficient evaluation of the valid samples is to realize that a decimated version of the mul-
tichannel correlation sequence is desired.  This objective is accomplished by aliasing in the fre-
quency domain.
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the frequency domain product of data and template, only a length  inverse FFT is 

required to compute the time-domain samples of the correlation function.

  The steps in the overlap-add algorithm for a single data block consist of:
1. Filtering and decimating the data as a preprocessing step.
2. Reading a buffer of  samples for each of the  channels of the data stream, and multi-

plexing them into a single length  channel-sequential multiplexed sequence.

3. Padding the sequence with zeros to  points and computing it’s 

 length DFT.  The DFT actually can be larger than this length with suitable 

zero-padding, but must be an integer multiple of  to support the aliasing operation.

4. Multiplying the DFT of the multiplexed data by the DFT of the multiplexed template.  The 
template DFT need be computed only once and stored, since it is used repeatedly.

5. Aliasing the product DFT by a factor of , resulting in an aliased DFT of length 

.

6. Computing the inverse of the aliased product DFT, overlapping with the previous block calcu-
lation and adding the results.

  The complete calculation of the numerator of  in equation (25) sums the power in the corre-
lation stacks over all templates:

The structure for performing this computation for all  of the templates is shown in Figure 6.  The 
algorithm decreases the computational cost by a factor of approximately

The logarithm is taken with respect to base 2 if radix-2 FFTs are used in the calculation.  As the 
number of channels increases, this factor tends to 1/2, assuming , as is usually the 

case.
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Figure 6  The multichannel correlation algorithm doubles the speed of subspace detection statis-
tic calculations.  The data from  channels are filtered into the detection passband, decimated
to eliminate dead bandwidth, then multiplexed into a single channel-sequential multiplexed data
stream.  A block of the multiplexed data is transformed with an FFT and the resulting DFT is mul-
tiplied by the DFTs of each of the  similarly multiplexed templates.  These frequency-domain
products are each aliased by a factor equal to the number of channels and a smaller inverse FFT
is used to calculate the resulting correlations between the templates and the data.  The appropriate
overlap-add calculations are performed to synthesize the continuous correlations from the constit-
uent block calculations, then squared and added to form the numerator of the detection statistic.
A similar calculation on the square of the multiplexed signal is performed to generate the denom-
inator of the detection statistic (labeled envelope calculation).
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Denominator calculation

  The denominator  of the sufficient statistic (equation 25) also can be evaluated effi-
ciently using a multiplexed overlap-add type algorithm as indicated in the bottom of Figure 6 
(labeled envelope calculation).  The denominator is a running sum of squares of the filtered data 
stream.  The sum is performed over the time interval defined by the detection window:  

Simplifying:

where we have made the change of variables .  The essential insight for an effi-

cient implementation is that the running sum of squares on the multiplexed data sequence can be 
implemented as a convolution with a “boxcar” function , i.e. a constant sequence consisting 

of  successive ones.  In equation (23), the sum describes a correlation operation, but with 

a change of variables similar to that used in equation (15), it can be implemented as a convolution.

  As in the case of the multiplexed convolution to evaluate the numerator term, this calculation is 
evaluated only at integer multiples of .  This calculation also corresponds to a decimation 

which can be implemented efficiently (as in Figure 6) with aliasing in the frequency domain.
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Bandpass Transformation to Maximize Decimation

  Another technique for improving computational efficiency, usually more effective than the mul-
tichannel convolution method of the last section,  is aggressive waveform decimation following a 
bandpass transformation.  This technique can be used in conjunction with the multichannel con-
volution technique to compound efficiencies.

  As remarked earlier, it usually is the case that seismic data are oversampled.    Oversampling is 
pronounced when the data are filtered with a bandpass filter prior to correlation detection.  Band-
pass filtering is a preprocessing step used to exclude portions of the signal spectrum where the 
signal-to-noise ratio is low, or to limit the signal to a (typically low-frequency) band where the 
correlations among signals from proximate events are high.

  As depicted in Figure 7 for a single channel of data, there can be significant dead bandwidth (i.e. 
frequency bands with no signal energy) following bandpass filtering.  One simple approach to 
removing some of the dead bandwidth is to decimate the data, i.e. to construct a new data 

sequence from the original sequence by retaining only every Rth sample of the original:

The top line of Figure 7 depicts the result of decimation by a factor of two, which eliminates the 
upper half of the available bandwidth.  In this depiction, the decimation operation still leaves a 
significant amount of dead bandwidth, particularly around d.c. (zero Hertz).

  A more sophisticated approach, allowing greater elimination of dead bandwidth, is to transform 
the data to retain only a single sideband of the signal’s Fourier transform then to demodulate this 
sideband to baseband (d.c.) prior to decimation.  This alternative is shown in the lower part of Fig-
ure 7.  The resulting data sequence is complex, in fact a demodulated complex analytic represen-
tation of the original sequence.  The process consists of the following steps for an original signal 

 which has been bandpass filtered around center frequency :

1. Demodulate the signal (shift it downward in frequency by ):

2. Filter the demodulated signal with a lowpass filter to eliminate the lower (negative-frequency) 
sideband:

3. Decimate the data:
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Figure 7   The most significant efficiency improvement is achieved by decimating the data prior
to performing the correlation calculation.  Often decimation at a modest rate is possible with the
simple decimation as depicted in the top of this figure.  The figure at upper left shows a bandpass
spectrum for a signal which does not occupy all of the available data bandwidth, a common oc-
currence with seismic data.  The available digital band ranges from  to  (the folding frequen-
cies) Hertz.  The spectrum at upper right results when the data are simply decimated by a factor
of 2.  A more complex data transformation, shown in the middle and lower parts of the figure,
allows more aggressive decimation.  The transformation consists of three steps:  a complex de-
modulation to move the positive-frequency sideband to baseband, a lowpass filter operation to
eliminate the negative-frequency sideband, and a decimation operation to fill the available fre-
quency band with positive-frequency sideband.  The transformation results in complex sequenc-
es;  the spectra that correspond to complex sequences are shown in red and those that correspond
to real sequences are shown in black.
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Here  is the impulse response of a lowpass filter, which, in practice, we implement with 

a Butterworth IIR filter.

  Of course, both the template and the continuous data stream must be transformed in identical 
preprocessing steps for the correlation calculation to be unaltered by the transformation.  That the 
correlation calculation carried out upon the baseband complex analytic versions of the signals is 
equivalent to the calculation on the original real signals is demonstrated in Appendix D.

  The virtue of this more complicated approach is that it is possible to choose a much larger deci-
mation factor  than would be the case with simple decimation.  How large a factor can be deter-

mined approximately by the bandwidth  of the data and the center frequency (assuming the 

positive sideband has support only in the frequency range ).  In the simple decimation case, 

the largest feasible decimation factor is , where the symbol  means “largest 

integer less than”.  For the bandpass transformation case, the largest possible decimation factor is 
.  The ratio between them is roughly .  In the case of data filtered into the 2 to 

4 Hertz band, this ratio is approximately 4.  Because the signals that result from the bandpass 
transformation are complex instead of real, the number of calculations required for all operations 
(FFTs, etc.) upon them double.  Consequently, the gain in processing speed for our example is 
more like a factor of 2.  The processing speed gain becomes more favorable to the bandpass trans-
formation the larger is the center frequency of the data with respect to its bandwidth.

  In practice we find that very aggressive decimation can result in the peak of the detection statis-
tic being poorly sampled when a signal is present.  The net result can be a significant attenuation 
of the peak correlation value.  Nonetheless, it is possible to achieve significant increases in speed 
by implementing this strategy and making judicious choices in the decimation rate.

  The processing structure depicted in Figure 6 must be modified to account for the complex 
demodulation operation and the fact that many of the partial correlation results have to be carried 
as complex sequences.  The resulting modifications to the multichannel convolution operation are 
shown in Figure 8, which demonstrates how both ideas described in this report can be combined 
to increase efficiency.

hlp n k–[ ]
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2fb
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Figure 8  Structure for computing the subspace detection statistic using the bandpass transforma-
tion and multichannel convolution techniques.  This processing structure often is a factor of 4 or
more efficient than straightforward decimation and convolution with the overlap-save algorithm.
The portion of the calculation that is carried out with complex sequences is shown in red;  that
carried out with real sequences is shown in black.
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Appendix A  Evaluation of the Log Likelihood Ratio

Evaluation of the log likelihood ratio of equation (10):

can be done independently for the numerator and denominator separately.  Taking the numerator 
portion first (see equation 7):

The partial derivatives of this expression with respect to the unknown parameters ( i.e. the partial 
derivative with respect to  and the gradient with respect to ) are set to zero:

Simplifying these equations leads to:

  Substituting the expression for  in (A.4) into (A.2) and simplifying:
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The denominator portion of the log likelihood ratio is:

 This portion is maximized by setting the derivative of this expression with respect to  to zero:

The maximizing value of  is:

Inserting (A.8) into (A.6) and simplifying:

  Assembling all the pieces into (A.1):
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Inserting the expression for  in (A.4) into (A.10) and simplifying, we obtain the desired 
result:

which can be recast in a normalized form:
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Appendix B  Overlap-Add Implementation of Convolutions

The convolution operation of equation (15) describes the essential quantities to be evaluated in 
correlation and subspace detectors:

For simplicity in this discussion, we drop the superscripts and subscripts and examine the evalua-
tion of the basic convolution operation: 

It is efficient to calculate  in blocks of  values simultaneously using discrete Fourier 

transforms implemented with Fast Fourier Transform (FFT) algorithms.  To do so, the data  

are acquired in blocks of length :

where k = ..., -1, 0, 1, ... .

  It is conceptually useful to represent the blocks with a gating operation:

Each signal  representing a block is non-zero only in the finite interval defining the block 
and zero elsewhere.  The continuous data stream can be reconstructed from the blocks with the 
infinite sum:
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Figure B1  Example of the overlap-add algorithm used to convolve a template waveform with a
continuous data stream.  The stream is broken into successive non-overlapping blocks and each
of these is convolved with the template.  The resulting convolved blocks are overlapped and
summed to form the desired continuous convolution.
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Figure B2  A simple shift-register simplifies the overlap-add operation.  The data from one block
are loaded into an array and convolved with the template to form an  sample partial
result.  When the last  points of the previous calculation are added to the first  points
of the current calculation,  valid samples result, which can be loaded into a buffer containing
the continuous output (convolved) stream.  It is convenient to maintain the current resulting cal-
culation in a shift register and shift the contents  samples to the left (zero-padding) to set up
the calculation of the next block convolution.

template

block 1

block 2

convolved block 1

convolved block 2

convolved stream

overlap

portion

shift left by N
B

samples

+

shift register

N
B
valid samples

NB NT 1–+
NT 1– NT 1–

NB

NB



32

By inserting (B.5) into (B.2), the convolution of the continuous stream can be written in terms of 
the sum of convolutions of the individual blocks:

  Figure B1 illustrates the process of convolving the length-  data blocks with the length-  

template ( ).  The resulting convolved blocks are sequences of length .  The con-

volutions may be performed by computing DFTs of the data blocks, multiplying these by the DFT 
of the template and computing inverse DFTs of the products.  To avoid aliasing the resulting con-
volutions, the DFTs must be at least  samples long [Oppenheim and Shafer, 1975].  

  Successive convolved blocks overlap by  points, and are summed to form  continu-

ously.  In each convolved block, the first and last  points are not correct samples of the 

final convolved stream, but rather partial results that need to be added to the last  points of 

the prior convolved block and the first  points of the next convolved block respectively.  A 

conceptually simple approach to implementing this algorithm maintains a shift register that saves 
the final  points of each block convolution and shifts them  to the left to be added to the 

first  of the next block convolution, as shown in figure B2.

(B.6)a n[ ] a
k

n[ ]
k ∞–=

∞

∑=

a
k

n[ ] v l[ ]y
k

n l–[ ]
l 0=

N
T

1–

∑=

NB NT

v l[ ] NB NT 1–+

NB NT 1–+

NT 1– a n[ ]

NT 1–

NT 1–

NT 1–

NT 1– NB

NT 1–



33

Appendix C  Decimation in Time by Aliasing in the Frequency Domain

  The multichannel convolution algorithm depends upon the following simple result, a proof of 
which is presented here for convenience.

  The decimated sequence   can be obtained as the inverse length  

Discrete Fourier Transform (DFT) of an aliased version  of the DFT  of the original 

length  sequence .  

In the application of this result to the multichannel convolution algorithm .

Proof

  The Discrete Fourier Transform (DFT)   of length  of a sequence  is defined by:

and the corresponding inverse DFT by:

The decimated sequence can be represented in terms of  by substituting  into equa-

tion B.3:
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Simplifying:

which is the desired result.
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Appendix D  Equivalence of Correlation Calculations Under Bandpass Trans-
formation

  The key calculations in correlation and subspace detectors involve inner products between tem-
plates and data in either unmultiplexed (equation 13) or multiplexed (equation 29) versions of the 
algorithms.  These inner products are normalized by calculations of the signal energy in the detec-
tion window, which themselves are inner products of the data with itself.  In this appendix we 
establish the equivalence the inner products on the original templates and data and their complex 
analytic counterparts obtained from the bandpass transformation.  This assertion follows from a 
relation between inner products of two signals in the time and frequency domains:

Here, the symbol  refers to the conjugate operation.  In this relation, the frequency domain 
quantities are the Discrete-Time Fourier Transform (DTFT) of the respective signals.  The DTFT 
is defined by the pair:

  A real signal has a conjugate-symmetric DTFT:

Consequently, a real bandpass signal centered around frequency  can be written as a sum of 

two sidebands (see Figure 7):

related to a complex baseband signal  centered on zero frequency.  

    (D.1)

  

  

(D.2)

  (D.3)

  (D.4)

u′ n[ ]x n[ ]
n
∑ 1

2π
------ U′ Ω( )X Ω( ) Ωd

π–

π

∫=

′

X Ω( ) x n[ ]e
iΩn–

n
∑=

x n[ ] 1
2π
------ X Ω( )e

iΩn Ωd
π–

π

∫=

X Ω( ) X′ Ω–( )=

Ωc

X Ω( ) Xb Ω Ωc–( ) Xb′ Ω– Ωc–( )+=

Xb Ω( )
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Since the sidebands are disjoint, the inner product D.1 of two bandpass signals occupying the 
same bands can be written as:

With the change of variables  in the first integral on the right and  in 

the second integral,

  By applying the bandpass transformation to the original real template  and data , we 

are constructing complex baseband signals  (from the template) and   (from the data 

stream) that correspond to  and : respectively

Here,  refers to the lowpass filtering operation used to eliminate the negative-frequency 

sideband of the original signals (see Figure 7).  The complex versions of the detection algorithms 
compute the inner products

From equation (D.6) it is apparent that the inner products are equivalent:

                                        

(D.5)

(D.6)

(D.7)

    (D.8)

    (D.9)

1
2π
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π
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π
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1
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π

∫
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π
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π
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2Re
1
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