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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned 

rights. Reference herein to any specific commercial product, process, or service by trade 

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency 

thereof. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof.  

 

ABSTRACT 

Hydrogen production from coal gasification can be enhanced by driving the equilibrium 

limited Water Gas Shift reaction forward by incessantly removing the CO2 by-product via the 

carbonation of calcium oxide. This project uses the high-reactivity mesoporous precipitated 

calcium carbonate sorbent for removing the CO2 product to enhance H2 production. 

Preliminary experiments demonstrate the show the superior performance of the PCC sorbent 

over other naturally occurring calcium sorbents. It was observed that the CO2 released during 

the in-situ calcination causes the deactivation of the iron oxide WGS catalyst by changing the 

active phase of the catalyst from magnetite (F3O4). Detailed understanding of the iron oxide 

phase diagram helped in developing a catalyst pretreatment procedure using a H2/H2O 

system. Intermediate catalyst pretreatment helps prevent its deactivation by reducing the 

catalyst back to its active magnetite (Fe3O4) form. Multicyclic runs which consist of 

combined WGS/carbonation reaction followed by in-situ calcination with a subsequent 

catalyst pretreatment procedure sustains the catalytic activity and prevents deactivation. The 

water gas shift reaction was studied at different temperatures, different steam to carbon 

monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0 - 300 psig. 

The CO conversion was found to have an optimal value with increasing pressure, S/C ratio 

and temperatures. The combined water gas shift and carbonation reaction was investigated at 

650 C, S/C ratio of 3:1and at different pressures of 0-300 psig. 
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EXECUTIVE SUMMARY 
 
The performance of the high temperature shift (HTS) and calcium oxide system to produce 
hydrogen deteriorates over multiple WGS-carbonation and calcination cycles. This is due to 
the deactivation of the HTS catalyst (iron oxide) by the CO2 gas that is evolved during the 
calcination phase. Hence, it is imperative to understand the HTS catalyst composition 
through an iron oxide phase diagram. Iron oxide occurs in three different phases: Hematite 
(Fe2O3), Magnetite (Fe3O4) and Wustite (FeO). The active phase of the HTS catalyst is 
Magnetite (Fe3O4). However, in the presence of an oxidizing atmosphere, like pure CO2, the 
Magnetite phase gets oxidized to Hematite (Fe2O3). This is evident from the iron oxide phase 
diagram for CO-CO2 system as illustrated in Figure 2. Thus, a pretreatment procedure was 
developed which reduces the oxidized form to the required phase. This step consists of 
treating the oxidized catalyst to a 20% H2 in 80% H2O stream at 600 oC which reduces the 
Hematite (Fe2O3) form to Magnetite (Fe3O4) form. This fact was confirmed by X-ray 
diffraction analyses of the HTS catalyst before and after the pretreatment procedure. The 
HTS catalyst as obtained contains comprises of Fe2O3 (hematite) phase. The catalyst when 
subsequently subjected to the pretreatment procedure changes its phase to the active 
magnetite (Fe3O4).  Multicyclic runs which consist of combined WGS/carbonation reaction 
followed by in-situ calcination with a subsequent catalyst pretreatment procedure sustains the 
catalytic activity and prevents deactivation. 

  
The water gas shift reaction was investigated at different temperatures ranging from 450 – 
750oC, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total 
pressures ranging from 0 - 300 psig. These experiments were conducted as base line 
experiments to determine the optimum conditions for maximum WGSR catalytic activity at 
different temperatures and pressures. The catalyst used for these tests was the high 
temperature shift catalyst consisting of iron oxide on chromia support procured from Sud 
Chemie. It was found that the CO conversion increases with increasing temperature up to a 
critical temperature (550-650 oC) beyond which it begins decreasing monotonically. This 
optimum temperature was one at which both the kinetics and the reaction equilibrium 
favored the formation of the products. It was also found that with an increase in the S/C ratio 
and pressure there was an increase in the CO conversion. Besides this, the optimum 
temperature decreases with an increase in the both the pressure and the S/C ratio. At high 
pressures the temperature dependence on CO conversion decreases and the optimum 
temperature remains constant with an increase in the S/C ratio. The partial pressure ratios of 
the products to the reactants were computed for each case of S/C ratio and on comparison 
with the equilibrium values were found to lie well within the equilibrium partial pressure 
ratios (equilibrium constants). With an increase in the temperature and pressure the partial 
pressure ratios were found to approach equilibrium more closely but with an increase in the 
S/C ratio they moved away from equilibrium. 
 
After gaining a deep insight into the trends exhibited by the water gas shift reaction at 
various conditions and obtaining the optimum conditions for maximum CO conversion the 
combined water gas shift and carbonation reaction was investigated at high pressures. In 
order to enhance the purity of the hydrogen produced from the water gas shift reaction our 
proprietary calcium based sorbent (PCC) was used insitu to remove the carbon dioxide from 
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the product gas and thereby further enhance the water gas shift reaction. The combined 
reactions were studied at 650 C and an S/C ratio of 3:1 at various pressures ranging from 0 to 
300 psig. It was found that the CO conversion for the combined reactions increases with an 
increase in the total pressure resulting in an increase in the purity of the hydrogen produced. 
At 0 psig a 95.6 % hydrogen stream is produced for the first 265 seconds while at 150 psig 
99.7% pure hydrogen stream is obtained for the first 1168 seconds and at 300 psig a 99.8% 
pure hydrogen stream is produced for the first 1477 seconds. Hence the CO conversion 
increased with an increase in the pressure resulting in the production of high purity hydrogen 
at high pressures. 
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INTRODUCTION 

 
The water gas shift reaction (WGSR) plays a major role in increasing the hydrogen 

production from fossil fuels. However, the enhanced hydrogen production is limited by 

thermodynamic constraint posed by the equilibrium limitation of the WGSR. However, this 

constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions 

to enhance H2 production by incessantly driving the equilibrium-limited WGSR forward and 

by in-situ CO2 removal from the product gas mixture. This process can effectively and 

economically produce a pure H2 stream by coal gasification with integrated capture of CO2 

emissions, for its subsequent sequestration. The reaction schemes involved are as follows: 

WGSR: CO + H2O <=> CO2 + H2   (1) 

Carbonation Reaction: CaO + CO2 ���� CaCO3   (2) 

Calcination Reaction: CaCO3  ���� CaO + CO2 (3) 

While various calcium oxide precursors were tested for CO2 capture, naturally occurring 

limestones were unable to react completely due to pore pluggage and pore-mouth closure 

(Gupta and Fan, 2002). However, the highly reactive mesoporous precipitated calcium 

carbonate (PCC) particles, synthesized by a novel wet precipitation technique using surface 

modifiers, can achieve up to 70 wt% capture during carbonation. Life cycle testing of the 

sorbent over multiple cycles of carbonation-calcination reactions showed that PCC sorbent 

attains a capture capacity of 40-36 wt% over 50-100 cycles, which is significantly higher 

than most of the other high temperature sorbents reported in literature (Iyer et al., 2004). In 

contrast, naturally occurring limestone (LC) shows poor performance. 

The enhanced water gas shift reaction for H2 production with in-situ carbonation was 

studied using High Temperature Iron Oxide Shift (HTS) catalyst and calcium sorbents. 

Experimental evidence clearly shows that the PCC sorbent demonstrates superior 

performance over that of naturally occurring limestone sorbents. Gas composition analyses 

show the formation of pure hydrogen stream during the initial part of the breakthrough curve, 

thus demonstrating the synthesis of pure hydrogen. To date, in this project, the reactions were 

investigated over reaction temperatures ranging from 500-750 oC at ambient pressures. The 

current focus is to conduct these experiments at high pressures varying from 1-20 atm. In 

addition the effects of varying the steam to carbon monoxide ratios is also investigated. The 
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incessant removal of CO2 from the water gas shift reaction not only enhances the hydrogen 

production process but it also reduces the requirement for excess steam to drive the WGSR 

forward. Thus, operating at conditions involving near-stoichiometric steam requirements 

augments the H2S removal by CaO. 

 

WGS iron oxide catalyst: phase diagram and deactivation 

It is evident from previous reports (Annual report, Sept 2004) that the performance of 

the HTS-CaO system deteriorates over multiple WGS-carbonation and calcination cycles. 

This is due to the deactivation of the HTS catalyst by the CO2 gas that is evolved during the 

calcination phase. In our previous report (Semi-Annual Technical Progress report, March 

2005) we had designed a novel multi-fixed bed reactor system which avoids the contact of 

CO2 with the WGS catalyst system during the calcination phase. Hence in this quarter, a 

novel approach to understand the WGS catalyst phases and its deactivation was undertaken. 

It has been suggested in literature that exposing the commercial iron oxide/chromium 

oxide catalyst to high operating temperatures leads to a decrease in the kinetics of the high 

temperature shift catalyst (Bohlbro, 1969; Newsome, 1980).  The deactivation of the catalyst 

is a result from different phenomena occurring during the operation of the commercial 

catalyst under the water-gas shift conditions.  Keiski and Salmi (1992) found that operating 

close to industrial temperature of 575-723 K led to a decrease in catalytic activity due to a 

sintering process.  The deactivation of the catalyst was most active during the first 150 hours 

and the decay of the catalyst was linked to a decrease of the surface area and to an increase of 

the mean pore size of the catalyst. 

The commercial catalyst of iron oxide/chromium oxide is a catalyst that can undergo 

bulk phase conditions when exposed to different atmospheres.  The active phase of the 

catalyst is magnetite (Fe3O4).  However, during the calcination step of the WGS-carbonation 

and calcination process, pure CO2 is released from the calcium carbonate and the water gas 

shift catalyst is exposed to an oxidizing atmosphere of 100% CO2 at 700°C.  According to 

the thermodynamics of iron oxide under various gas compositions and temperatures, the iron 

oxide catalyst is oxidized from magnetite to hematite (Fe2O3), an oxidized form of iron 

oxide. Since the active bulk phase of the catalyst is magnetite, the iron oxide catalyst needs to 

be reduced from hematite to magnetite.  According to the thermodynamic plot of iron oxide 
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in a hydrogen-steam system, iron oxide becomes magnetite when exposed to a reducing 

atmosphere of 20% H2 and 80% H2O at 600°C.   

Rethwisch et al. (1985) studied the water-gas shift reaction at 660 K on both 

unsupported magnetite and magnetite particles supported on graphitic materials.  They 

found that exposing the catalyst to a 15% CO/85% CO2 gas mixture at 660 K for 22 hours 

could restore high catalytic activity, but no significant increases were found in a 40% 

H2/60% H2O gas mixture for 22 hours.  The CO/CO2 treatment step resulted in a 200-300% 

increase in activity through a water-gas shift condition of 64% H2O, 32% CO, and 4% CO2.   

 

High Pressure Hydrogen Production 

To obtain high purity H2, the WGS reaction is generally carried out in two stages (Gerhartz, 

1993; Bohlbro, 1969):  (1) high temperature shift (250-500 oC) using iron catalysts and (2) 

low temperature shift (210-270 oC) using copper-based catalysts. Copper based catalysts are 

extremely intolerant to small quantities of sulfur (< 0.1ppm) and hence the fuel gases need to 

be desulfurized upstream of the WGS reactor. A high steam:CO ratio is required to enhance 

CO conversion and the consequent hydrogen production. The steam to CO ratio at 550 oC 

can be as high as 50 in a single-stage operation or 7.5 for a more expensive dual-stage 

process to obtain 99.5 % pure H2 (Newsome, 1980). For example, to lower the CO content of 

the typical fuel gas from 45 % (inlet) to 3% (outlet) a total steam addition of 1.18 kg/m3 of 

the gas is required, at a total pressure of 60 bars and 410 oC (Gerhartz, 1993). While higher 

temperature enhances the kinetics of the WGSR, thermodynamics adversely affects the 

hydrogen production due to the equilibrium limitation of the WGSR with the H2 yield falling 

with rising temperature. 

Enhancing the Water gas Shift Reaction and Hydrogen Purification 

An effective technique to shift the WGSR to the right for enhanced hydrogen 

generation has been to remove hydrogen from the reaction mixture. This premise has lead to 

the development of hydrogen separation membranes. However, membranes cannot 

completely remove hydrogen from the mixture and there is also the effect of a considerable 

pressure drop across them (Roark, et al 2002). In addition, any remaining hydrogen in the 

main stream would dilute CO2 and would lead to poor process economics. 
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The other option is to remove the CO2 from the reaction gas mixture. Various 

solvents such as amines, Selexol, Rectisol etc have been used to scrub the CO2 from the 

WGS reaction gas mixture (Steigel and Ramezan, 2006) between two stages. However, these 

solvents operate at ambient temperatures and consequently this method involves severe 

energy penalties due to cooling and reheating of the reaction gas mixture. Hence, high 

temperature CO2 membranes were developed (US DOE, 2005) which operate in the same 

temperature range as that of the WGSR. Thus the development of these membranes has led to 

the concept of membrane reactors. However, the use of these membranes leads to the 

development of a pressure drop and the costs associates with these membranes make the 

overall process expensive.  

Calcium Assisted Hydrogen production 

 There are several processes that enhance hydrogen production using limestone 

sorbents such as the ZECA process and the HyPr-RING Process (Lin et al., 2002; Ziock et 

al., 2001). However, these processes operate at very high pressures (12-100 MPa) to produce 

H2, which is not economically viable. On the other hand processes such as HyPr-RING result 

in the gasification of coal with in-situ CO2 capture using CaO/Ca(OH)2 systems (Lin et al., 

2005). However, these systems operate at very high pressures (70 bar) and require excess 

steam and produce only 91% pure hydrogen. In addition, there have been several reports on 

sorption enhanced hydrogen production by coupling SMR and in-situ CO2 capture using a 

sorbent (Hufton et al., 1999; Akiti 2004; Balasubramanian et al., 1999; Lopez Ortiz and 

Harrison, 2001). Calcium oxide assisted steam methane reforming (SMR) was attempted in 

earlier studies (Balasubramanian et al., 1999; Lopez Ortiz and Harrison, 2001). They detailed 

the performance of a single-step sorption-enhanced process using a Ni-based catalyst to 

produce hydrogen. However they also mixed dolomite-CaO powder with the Ni-based 

catalyst to separate CO2 and enhance H2 concentration to 97%.  

Our proposed process under consideration involves removing CO2 from the gas 

mixture by reacting it with CaO (carbonation), which can be conducted at high operating 

pressures. Albeit, higher pressures and temperatures lead to thermodynamic equilibrium, the 

constant removal of CO2 drives the reaction forward, resulting in enhanced kinetics and 

improved H2 yield. 

 



 12

EXPERIMENTAL 

Modification of integral fixed bed reactor system for high-pressure operation 

The existing reactor setup (described earlier in Annual report, Sept 2005) was modified to 

handle high pressures of up to 20 atmospheres. A back-pressure regulator procured from 

Swagelok (KPB series) was installed in the setup to build pressure within the reactor. This 

back pressure regulator is capable of building pressures of upto 68.9 atm (1000 psig). The 

valve seat material is made of PEEK which is corrosion resistant to acidic hydrogen sulfide 

vapors, which makes it capable of conducting H2S experiments. As shown in Figure 1 below, 

the inlet of the backpressure regulator is connected to the reactor rod and the outlet is 

connected to a heat exchanger. Since the entire section of the equipment setup upstream of 

the backpressure regulator will be exposed to high pressures various components were 

replaced to make the setup capable of handling pressures of as high as 20 atms. Flow meters 

previously used to adjust the flow rates of the reactant gases were replaced by mass flow 

controllers procured from Brooks Instruments (model 5850E). Teflon pipes used for carrying 

the reactant gases to the reactor and the water from the pump to the steam generation unit 

were replaced by flexible stainless steel tubes. The reactant gases from the cylinder are made 

to flow through the steel tubes to the mass flow controllers where their flow rates are 

accurately metered. The mass flow controllers can handle a pressure of about 21 atms. From 

the mass flow controllers the reactant gases flow through a steel tube to the steam generating 

unit. The steam generating unit is maintained at a temperature of 200 oC and contains a 

packing of quartz chips which provide a large surface area of contact between the reactant 

gases and the water. The steam generating unit not only facilitates the complete evaporation 

on the water being pumped into the steam generating unit but it also serves to preheat the 

reactant gases entering the reactor. The reactor has been provided with a pressure gauge and 

a thermocouple to monitor the temperature and pressure within. The reactant gases leaving 

the reactor enter the back pressure regulator which builds pressure by regulating the flow rate 

of the gases flowing through it. The pressure regulator is very sensitive and the pressure 

within the reactor can be changed quickly without any fluctuations by just turning the knob. 

The back pressure regulator is also capable of maintaining a constant pressure for a long 

period of time thereby increasing the accuracy of the experiments conducted.  
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Figure 1: Modified integral fixed-bed reactor setup for conducting high pressure WGS and 
carbonation reactions 

 
Reactor Setup troubleshooting and shakedown 

Initial problems were encountered during the catalyst and the catalyst and sorbent runs while 

conducting high pressure experiments. The pressure in the reactor could not be built beyond 

100psig. Occasionally, in a few experiments huge fluctuations in the gas flow were also 

obtained. These problems were traced back to the same cause wherein the powder in the 

reactor rod was being blown out into reactor and into the tubes connected to the reactor. Thi 

was due to the backpressure developed in the reactor rod. The pressure could not be built in 

the reactor due to the sorbent powder clogging the orifice of the pressure regulator, 

preventing the regulator to be completely closed. Also, the powder that had entered the tube 

connecting the steam generating unit to the reactor began collecting there and reducing the 

cross section of the tube causing a huge localized pressure drop. This pressure drop caused 

the condensation of the steam entering the reactor which results in the formation of water 

droplets thereby leading to large fluctuations in the flow rate of the gases. This problem was 
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solved by restricting the flow of the powder from the reactor tube by placing a small amount 

of quartz wool in the form of a thin layer over the powder bed. This method of preventing the 

entrainment of the powder along with regular cleaning and maintenance of the reactor solved 

both the problems mentioned above. 

 

High Pressure Water Gas Shift Reaction Testing 

The water gas shift reaction was conducted using the high temperature shift (HTS) catalyst 

(iron oxide on chromia) obtained from Süd-Chemie. These experiments were conducted as 

base line experiments to determine the optimum conditions for maximum WGSR catalytic 

activity at different temperatures and pressures. Catalyst fines were used in a fixed bed 

reactor setup for all the experiments. The total flow rate of the gases through the reactor was 

maintained a constant at 725 sccm for all the experiments and the concentration of carbon 

monoxide in the reaction mixture was maintained at 10.3 %. 0.25 g of the catalyst was loaded 

into the reactor and the pressure, temperature and gas flow rates were adjusted for each run. 

The steam free gas compositions at the outlet of the reactor were monitored continuously 

using the CO, CO2 and H2 gas analyzer system described earlier (Annual Technical Progress 

Report, September 2005). The reactions were conducted at different temperatures ranging 

from 450 – 750oC, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different 

total pressures ranging from 0 - 300 psig. 

 

Simultaneous WGS and carbonation at High Pressures 

In this quarter, the combined water gas shift and carbonation reaction was conducted using 

the same experimental setup described earlier. A sorbent (calcium oxide) to catalyst ratio of 

10:1 was used for all the experiments conducted. The combined water gas shift and 

carbonation reaction experiments were conducted at 650°C with an S/C ratio of 3:1 at various 

pressures. 650°C was chosen as the optimum temperature for the first set of experiments as 

carbonation occurs at a rapid rate at this temperature and the water gas shift reaction gives a 

conversion of 0.8028 at 0 psig, 0.8138 at 150 psig and 0.8221at 300 psig. 5 g of PCC sorbent 

is mixed with .25 g of HTS catalyst and packed into the reactor rod. The PCC is calcined in-

situ at 700C in a stream of nitrogen until the carbon dioxide analyzer confirms the absence of 

CO2 in the outlet stream. The catalyst is then pretreated in an atmosphere of steam and 
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hydrogen to convert it to the magnetite phase, which is the active form for the water gas shift 

reaction. The combined reaction is then performed at 650 C in the presence of 10 % of CO 

and 30% steam, the rest of the reaction mixture consisting of nitrogen. This being an 

unsteady state experiment the data collection is started exactly when the carbon monoxide 

and steam are allowed to flow into the reactor and the time taken for the gases to reach the 

analyzers is accounted for by the incorporation of the residence time calculation.  

 

RESULTS AND DISCUSSIONS 

WGS iron oxide catalyst deactivation, phase transformation, and pre-treatment, 

It is imperative to understand the HTS catalyst composition through an iron oxide phase 

diagram (Figures 2 and 3). Iron oxide occurs in three different phases: Hematite (Fe2O3), 

Magnetite (Fe3O4) and Wustite (FeO). The active phase of the HTS catalyst is Magnetite 

(Fe3O4). However, in the presence of an oxidizing atmosphere, like pure CO2, the Magnetite 

phase gets oxidized to Hematite (Fe2O3). This is evident from the iron oxide phase diagram 

for CO-CO2 system as illustrated in Figure 2. Thus, a pretreatment procedure was 

developed which reduces the oxidized form to the required phase. This step consists of 

treating the oxidized catalyst to a 20% H2 in 80% H2O stream at 600 oC which reduces the 

Hematite (Fe2O3) form to Magnetite (Fe3O4) form. This is clear from Figure 3. This fact 

was confirmed by X-ray diffraction analyses of the HTS catalyst before and after the 

pretreatment procedure. The HTS catalyst as obtained contains comprises of Fe2O3 

(hematite) phase as shown in Figure 4 (a). The catalyst is subsequently subjected to the 

pretreatment procedure described earlier which changes its phase to the active magnetite 

(Fe3O4) form as shown in Figure 4 (b).   

  



 16

 
 

Figure 2: Equilibrium phase diagram for iron oxide system for various CO-CO2 gas 
compositions and temperatures (adapted from Ross, 1980) 

 

 
Figure 3: Equilibrium phase diagram for iron oxide systems for various H2-H2O gas 

compositions and temperatures (adapted from Ross, 1980) 
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(b) after pretreatment (magnetite)  

 
Figure 4: X-ray diffraction patters of the high temperature shift (HTS) iron oxide catalyst 
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 Combined WGS-carbonation reactions over multiple reaction-regeneration cycles, 

which include intermediate catalyst activation after every cycle, were performed using PCC-

HTS system. Typically about 1.77 g of PCC-CaO was loaded in the reactor and the 

temperature was ramped to 700° in flowing N2 to ensure the calcination of calcium carbonate 

to calcium oxide. After completion of the calcination, the reactor was cooled down to room 

temperature and 0.25 g of HTS catalyst was mixed into the reactor.  The reaction temperature 

was then raised to 600°C and the catalyst pretreatment gas mixture consisting of a steam to 

H2 ratio of 4:1 in N2 for one hour.  This pretreatment step activates the catalyst by reducing 

the HTS catalyst from Fe2O3 (hematite) to Fe3O4 (magnetite). The reaction gas mixture of 

10.3% CO and 31% H2O, and the balance being 5.0 grade N2 was then sent into the reactor. 

The total gas flow-rate was maintained at 0.725 slpm and the steam/CO ratio was set at ~3. 

After the calcium oxide sorbent reaches its maximum loading capacity and the system 

reaches steady state and the reactor temperature was subsequently ramped to 700° C in 

flowing N2 to effect the calcination of the carbonated sorbent. Subsequent to the calcination 

step the catalyst pretreatment is performed and the combined WGS-carbonation reaction is 

then conducted in the flowing reaction gas mixture. Thus, the sequence of operation is (a) 

combined WGS-carbonation reaction, (b) catalyst pretreatment, (c) calcination. This three 

step procedure was repeated for five continuous cycles.  

 The details of the CO conversion breakthrough curve for all the 5 cycles are depicted 

in Figure 5. The system gives 100% conversion for 90 seconds through the first cycle and the 

sorbent reached its breakthrough loading at 1091 seconds (18.2 min).  Beyond this the CO 

conversion of 80 % corresponds to that obtained with only the catalyst at 600° C.  For the 

second reaction cycle the system gave almost 100% conversion for 64 seconds and the 

sorbent reached its breakthrough loading at 787 seconds (13.1 min).  The final CO 

conversion for the second cycle was 80 %.  The third reaction cycle resulted in almost 100% 

conversion for 79 seconds and the sorbent reached its breakthrough in 818 seconds.  The 

final CO conversion for the third cycle was 78%. In the fourth cycle the system did not 

achieve 100% CO conversion and the sorbent reached its breakthrough in 891 seconds. The 

final CO conversion for the fourth cycle was 69%. The fifth reaction cycle also did not result 

in 100% CO conversion and the time for the sorbent to reach its maximum loading capacity 

was 719 seconds.  The final CO conversion for the fifth cycle was 69%. Thus the final steady 
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state CO conversion of the system, after it has reached the breakthrough, varies from 80% to 

69% over five cycles. This depicts a drop in the catalyst activity of only 11% while the 

catalyst is exposed to 5 cycles. This is in sharp contrast to the significant drop in the catalyst 

activity when the catalyst pretreatment was not conducted. This can be observed by the drop 

in the catalytic activity from 80% in the first cycle to 40% in the second cycle as illustrated in 

Figure 5. Thus, the intermediate catalyst pretreatment helps prevent catalyst deactivation by 

reducing the catalyst to its active magnetite (Fe3O4) form. 
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Figure 5: Breakthrough curve depicting the CO conversion for PCC-HTS catalyst system for 

five cycles (T = 600 oC, 10.3% CO, 31% H2O, Total flow = 0.725 slpm) 
 
High Pressure Water Gas Shift Reaction Testing 

Figure 1 shows the CO conversion profiles for increasing reaction temperatures as well as the 

S/C ratios at ambient pressures.  The CO conversion increases with increasing temperature 

up to a critical temperature (550-650 oC) beyond which it begins decreasing monotonically. It 

can be seen from Figure 1 that at 0 psig and a S/C ratio of 3: 1 the conversion increases from 

45.8 % at 450C to 83.2 % at 600oC. It is well known that the rate of the reaction increases as 

temperature increases.  Beyond 600 oC the conversion decreases and at 800 C it is 69.4%. 

This is observed due to the opposing trends of the reaction kinetics and thermodynamic 
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equilibrium with increasing temperature. As the temperature increases the reaction rate 

increases while the equilibrium constant decreases. Thus at lower temperatures although the 

equilibrium constant is high the reaction rate is very low and at high temperatures the 

reaction is very fast but the equilibrium constant is very low.  Consequently maximum 

conversion is reached at an optimum temperature at which both the kinetics and the reaction 

equilibrium are favorable. From Figure 1 it can be seen that the conversion increases with an 

increase in the S/C ratio. At a temperature of 650oC the conversion is 63.5% for a S/C ratio 

of 1:1 while it is 71.6% for 2:1 and 80.28% for 3:1. This is in accordance with the Le 

Chatelier’s principle where, as the reactant composition increases the equilibrium will be 

shifted in the forward direction and will favor the formation of the products. It can also be 

seen from Figure 6 that as the S/C ratio increases the temperature at which maximum 

conversion is reached decreases. While for 1:1 the maximum conversion is reached at 650oC 

for 3:1 it is reached at 550oC. This can be explained based on the previous trends. As the 

steam concentration is increased the equilibrium is shifted in the forward direction and hence 

the maximum conversion that can be obtained according to thermodynamics is achieved at a 

lower temperature. As the temperature increases beyond this point the conversion remains 

almost the same until thermodynamics dictates a lowering in the conversion at high 

temperatures. 

Temperature (oC)

400 500 600 700 800 900

C
on

ve
rs

io
n

0.0

0.2

0.4

0.6

0.8

1.0

3:1 
2:1 
1:1 

 
Figure 6: Effect of reaction temperature on CO conversions for various steam: CO ratios at 0 

 psig (0.25g HTS, Total flow = 0.725 slpm) 
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The water gas shift reaction conducted at 150 psig follows the same trend as the 0 psig 

experiments as evident from Figure 7 below. The CO conversion trend shows the presence of 

an optimal value for varying temperature. For a steam: CO ratio of 1:1 the conversion is 46.2 

% at 450C reaches a maximum at 550 C with a conversion of 69.2 % and then decreases to 

62.7 % at 650oC. At 550C a conversion of 69.2 % is reached for a S/C ratio of 1:1, 84.2 % 

for 2:1, and 86.3% for 3:1. On comparing Figure 6 with Figure 7 it is evident that at any 

temperature the conversion is always higher at 150 psig when compared to 0 psig. Also the 

curves for conversion are flatter at 150 psig when compared to 0 psig, which shows that the 

temperature dependence on the conversion decreases with an increase in the pressure.  
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Figure 7: Effect of reaction temperature on CO conversions for various steam: CO ratios at 

150 psig (0.25g HTS, Total flow = 0.725 slpm) 
 

The effect of reaction temperatures and S/C ratios on CO conversion at 300 psig follows 

exactly the same trend as that for 150 psig and 0 psig. In addition, at any temperature the 

conversion at 300 psig is always greater than at 150 psig or 0 psig. For a temperature range 

of 450 C to 750 C the conversion varies over a smaller range for 300 psig when compared to 

either 150 psig or 0 psig showing that the dependence of conversion on temperature 

decreases with an increase in the total reaction pressure. 
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Figure 8: Effect of reaction temperature on CO conversions for various steam: CO ratios at  

 300 psig (0.25g HTS, Total flow = 0.725 slpm) 
 
From Figure 9 it can be seen that for a S/C ratio of 1:1, the conversion increases with an 

increase in the pressure. At 500oC the conversion is 0.3890 for 0 psig, 0.6506 for 150 psig 

and 0.7411 for 300 psig. As the total pressure increases there is an increase in the partial 

pressure of the reactants that results in an increase in the overall rate of the reaction. From 

Figure 9 it can also be seen that the maximum conversion is reached at lower temperatures as 

the pressure increases. At 0 psig 600oC gives the maximum conversion, at 150 psig 550oC 

gives maximum conversion and at 300 psig a temperature lower than 500 C gives maximum 

conversion. This is because as the pressure increases the rate of the reaction increases and 

hence maximum conversion is reached at lower temperatures. 
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Figure 9: Effect of reaction temperature on CO conversions for various pressures  
 (S/C ratio = 1:1; Total flow = 0.725 slpm) 

 
 

When a steam to CO ratio of 2:1 is used the conversion with respect to temperature 

and pressure varies in a manner similar to a steam to CO ratio of 1:1. On comparing the 

Figure 5 and Figure 6 it can be seen that for all temperatures the conversion is always higher 

for a steam to CO ratio of 2:1. At 0 psig maximum conversion is achieved at a temperature of 

650 C while at 300 psig it is achieved at a temperature of 550oC.  

When a S/C ratio of 3:1 is used the conversion with respect to temperature and 

pressure varies similar to earlier cases of 1:1 and 2:1. On comparing Figures 9-11 it can be 

seen that for all temperatures the CO conversion is always higher for a S/C ratio of 3:1. At 0 

psig maximum conversion is achieved at a temperature of 600º C while at 150 psig it is 

achieved at a temperature of 550ºC and at 300 psig it is at a temperature lower than 500ºC. 
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Figure 10: Effect of reaction temperature on CO conversions for various pressures  
 (S/C ratio = 2:1; Total flow = 0.725 slpm) 
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 Figure 11: Effect of reaction temperature on CO conversions for various pressures  
 (S/C ratio = 3:1; Total flow = 0.725 slpm) 
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Figure 12 depicts the variation in the optimal reaction temperature for maximum CO 

conversion with increasing total pressure and S/C ratio. It can be seen that maximum 

conversion is achieved at lower temperatures as the pressure increases. For a S/C ratio of 3:1, 

at a pressure of 0 psig maximum conversion is achieved at 600C while at 300 psig it is 500 

C. This is due to the fact that with increase in the total pressure there is an increase in the rate 

of reaction and hence higher conversion can be achieved at lower temperatures. Besides, at 

lower pressures increasing the S/C ratio reduces the optimal temperature for maximum CO 

conversion. At higher pressures the S/C ratio does not affect the optimal reaction temperature 

that remains the same for all the ratios. 
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Figure 12: Variation in the optimal temperature with respect to pressure at various S/C ratios 
 

The partial pressure ratios of the products to the reactants were computed for each case of 

S/C ratio and were compared with the equilibrium values obtained from HSC Chemistry v 

5.0 (Outokumpu Research Oy, Finland).  The observed partial pressure ratio (Kobs) was 

computed from the experimental data by obtaining the ratio of the partial pressures of the 

products and the reactants as per the eqn given below: 

PH2
PCO2

PCOPH2O

Kobs = 
 

As shown in Figures 13-15 it was found that each of these values of the observed 

ratios (Kobs) was within the theoretical equilibrium value predicted by thermodynamics. From 
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Figure 13 it can be seen that for a S/C ratio of 1:1 the partial pressure ratio increases with an 

increase in the temperature till it approaches equilibrium and then decreases along the 

equilibrium curve. Besides, as the pressure increases the curves for the partial pressure ratios 

approach equilibrium more closely and this can be explained by the increase in the rate of the 

reaction at higher pressures.  

From Figures 14-15 it is observed that when S/C ratios of 2:1 and 3:1 are used the 

exact same trend is observed. A comparison of Figures 13-15 yields that with an increase in 

the S/C ratios the system moves away from equilibrium. This is justified as an increase in 

one of the reactants will lead to a lowering in the partial pressure ratio (Kobs) and hence the 

deviation from equilibrium. 
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Figure 13: Effect of temperature on the partial pressure ratio of the products to the reactants 
 for various pressures (S/C ratio = 1:1; Total flow = 0.725 slpm) 
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Figure 14: Effect of temperature on the partial pressure ratio of the products to the reactants 

 for various pressures (S/C ratio = 2:1; Total flow = 0.725 slpm) 
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Figure 15: Effect of temperature on the partial pressure ratio of the products to the reactants 
for various pressures (S/C ratio = 3:1; Total flow = 0.725 slpm) 
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Determination of the residence of the gases through the reactor setup 

The residence time of the gases through the entire reactor setup was determined for three 

different pressures of 0 psig, 150 psig and 300 psig. The residence time was determined by 

monitoring the time required for the gases to reach the analyzers. This was obtained by 

flowing CO through the reactor and measuring the time taken for it to reach the analyzer. 

This test was done at all three pressures. For 0 psig, the residence time was found to be 107 

secs, for 150psig it was 300 secs and for 300 psig it was 470 secs. This residence time 

calculation is very essential while analyzing the data for unsteady state runs in the presence 

of the sorbent. This residence time for the gases is subtracted from the continuous data 

obtained through the analyzer based system to give the actual conversion and gas 

composition data.  

 

Simultaneous WGS and Carbonation at High Pressures 

Figures 16-18 illustrate the breakthrough curves for CO conversions with varying total 

pressure (0-300 psig) and a S/C ratio of 3:1. From Figure 16 it can be seen that at 0 psig a 

maximum conversion of 96% is obtained for the first 265 seconds after which there is a drop 

in the conversion due to the consumption of the sorbent which constitutes the breakthrough 

region of the curve and finally the conversion drops down to about 80% which determines 

the steady state catalytic activity. From Figure 17 it can be seen that at 150 psig a maximum 

conversion of 99.78% is obtained for the first 1168 seconds. During this initial pre break 

through phase both the carbonation and the water gas shift reaction are active and hence the 

conversion obtained is very high. During the breakthrough phase the conversion for the 

carbonation reaction decreases due to the progressing consumption of the sorbent which 

leads to a decrease in the conversion for the water gas shift reaction.  In the post break 

through phase the sorbent has been completely consumed and hence the CO conversion is 

solely due to the water gas shift reaction. As seen in Figure 18 at 300 psig a maximum 

conversion of 99.88% is obtained for the first 1477 seconds after which the conversion in the 

post break through region remains steady at 86%.  
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Figure 16: Break through curve for CO conversion at 650C, 0psig and S/C ratio=3:1  
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Figure 17: Break through curve for CO conversion at 650C, 150 psig and S/C ratio=3:1  
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Figure 18: Break through curve for CO conversion at 650C, 300 psig and S/C ratio=3:1  
 

Figure 19 compares the H2 gas production breakthrough curves for increasing pressures at 

650oC and S/C ratio of 3:1. From Figure 19 it can be seen that the H2 gas purity obtained 

from the outlet of reactor increases with an increase in the total pressure. At 0 psig a 95.6 % 

hydrogen stream is produced while at 150 psig 99.7% pure hydrogen stream is obtained for 

the first 1168 seconds and at 300 psig a 99.8% pure hydrogen stream is produced for the first 

1477 seconds. 
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Figure 19: Effect of pressure of the hydrogen gas composition (Temperature=650°C, S/C 

ratio=3:1) 
 

Figure 20 illustrates the fact that the time for which a pure H2 stream is produced increases 

with an increase in the pressure. At 150 psig pure hydrogen is produced for 1167 seconds 

while at 300 psig pure hydrogen is produced for 1477 seconds.  It can also be seen from the 

curve that an increase in the pressure from 0 to 150 psig results in a steeper increase in the 

time for which pure hydrogen is produced than when the pressure is increased for 150 psig to 

300 psig. Hence it is evident that any further increase in the pressure will increase the time of 

pure hydrogen production by only a small amount.  
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Figure 20: Effect of pressure on the time for which hydrogen production approached 100% 

purity 
 
 

CONCLUSIONS 

It was observed that the CO2 released during the in-situ calcination causes the deactivation of 

the iron oxide WGS catalyst by changing the active phase of the catalyst from magnetite 

(F3O4). Intermediate catalyst pretreatment helps prevent its deactivation by reducing the 

catalyst back to its active magnetite (Fe3O4) form. Multicyclic runs, which consist of 

combined WGS/carbonation reaction followed by in-situ calcination with a subsequent 

catalyst pretreatment procedure sustains the catalytic activity and prevents deactivation. The 

water gas shift reaction was studied at different temperatures, different steam to carbon 

monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0 - 300 psig. 

The CO conversion was found to increase with pressure, S/C ratio and temperature upto an 

optimum temperature. The partial pressure ratios of the products to the reactants were 

computed and found to lie within the equilibrium values. The combined water gas shift and 

carbonation reaction was investigated at 650 C, S/C ratio of 3:1and at different pressures of 

0-300 psig. At 0 psig a 95.6 % hydrogen stream is produced for the first 265 seconds while at 

150 psig 99.7% pure hydrogen stream is obtained for the first 1168 seconds and at 300 psig a 
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99.8% pure hydrogen stream is produced for the first 1477 seconds. Hence the CO 

conversion increased with an increase in the pressure resulting in the production of high 

purity hydrogen at high pressures. 

 
Current Status of the Project and Future Approach 

The reactor setup has been suitably modified and high pressure WGSR has been 

conducted for various temperature, pressure and S/C ratios. Future work will involve a more 

detailed investigation of the combined water gas shift and carbonation reaction at various S/C 

ratios (3-1), temperatures (550oC -700oC) and pressures (0-300 psig). The reactor setup will 

be also modified to conduct studies that will include hydrogen sulfide (H2S) removal during 

the production of hydrogen through the combined water gas shift and carbonation reactions. 

 

Journal Papers and Patent Applications 

This project has resulted in following journal paper and patent application submissions: 

• Sakadjian B. S. Iyer M.V., Gupta H., and Fan L.-S. “Kinetics and Structural 
Characterization of Calcium-based Sorbents under Sub-atmospheric Conditions for 
High-Temperature CO2 capture Process” Ind. Eng. Chem. Res., (under review). 

• Fan, Liang-Shih; Gupta, Himanshu; and Iyer, Mahesh V. “Separation of Carbon Dioxide 
(CO2) from Gas Mixtures by Calcium Based Reaction Separation (Cars-CO2) Process”. 
United States Patent Application No. 11/255,099 filed on Oct 20 2005 (Continuation in 
Parts). 

• Fan, Liang-Shih; Gupta, Himanshu; and Iyer, Mahesh V. “Regeneration of Calcium 
Sulfide to Mesoporous Calcium Carbonate using Ionic Dispersants and Selective 
Reclamation of Unreacted Calcium from Calcium-containing Solid Mixtures to 
Maximize Calcium Conversion and Prevent Recycling of Inerts” United States Patent 
Application No. 60/694,702 filed in June 2005. 
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