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Abstract

A technique published in SAND Report 2006-1789 Model Reduction of Systems with Lo-
calized Nonlinearities is illustrated in two problems of finite element structural dynamics.
That technique, called here the Method of Locally Discontinuous Basis Vectors(LDBV),
was devised to address the peculiar difficulties of model reduction of systems having spa-
tially localized nonlinearities. It’s illustration here is on two problems of different geomet-
ric and dynamic complexity, but each containing localized interface nonlinearities repre-
sented by constitutive models for bolted joint behavior.

As illustrated on simple problems in the earlier SAND report, the LDBV Method not only
affords reduction in size of the nonlinear systems of equations that must be solved, but it
also facilitates the use of much larger time steps on problems of joint macro-slip than would
be possible otherwise. These benefits are more dramatic for the larger problems illustrated
here.

The work of both the original SAND report and this one were funded by the LDRD program
at Sandia National Laboratories.
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Finite Element Calculations
Illustrating a Method of Model
Reduction for the Dynamics of

Structures with Localized
Nonlinearities

Chapter 1

Introduction

Though the weapons program has access to massively parallel computers and has finite
element code that can employ many processors simultaneously, the resulting numerical
predictions often are difficult to interpret physically. Additionally, when one incorporates
nonlinear joint models in the structural models and considers loads that bring the joints
to macro-slip, very high frequency responses are elicited from the model and the system
response becomes so nonlinear that extremely small time-steps become necessary. The
resulting requirement on computing resources can become intractable.

Though it would be natural to pursue model reduction strategies, conventional Galerkin
model reduction using basis vectors natural to the reference linear system converge very
slowly in these problems [7]. The difficulty was eventually isolated to a Gibb’s type phe-
nomena having to do with stiffness nonlinearity of the joint.

A solution was proposed in Reference [7] augmenting the original basis vectors with ones
having local discontinuities at the joint. This method of Locally Discontinuous Basis Vec-
tors (LDBV) was shown to accelerate greatly the convergence of a Galerkin model reduc-
tion on small (toy) problems. The benefits of that technique demonstrated on those smaller
problems were

• The low- to mid-frequency dynamics of complex jointed structures can be modeled
with relatively few degrees of freedom.

• In problems of micro-slip, the generalized degrees of freedom associated with the
locally discontinuous basis vectors remain small relative to those obtained from the
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reference linear system. This facilitates the qualitative discussion of structural dy-
namics in terms of linear eigen modes - a feature very helpful in understanding sys-
tem dynamics.

That formulation has very natural application in finite element analysis of the transient
dynamics of jointed structures and the purpose the work reported here is to explore such
applications.
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Chapter 2

The Method of Locally Discontinuous
Basis Vectors

The first natural step in model reduction of a structure containing local nonlinearities would
be to employ a Galerkin procedure using as basis functions the eigen modes of a reference
linear system (obtained by linearizing the nonlinear system about zero load.) In problems
containing stiffness nonlinearities, such model reductions may converge very slowly in the
sense of requiring very large sets of basis functions to approximate the behavior of the full
nonlinear systems.

The difficulty with the above straight-forward approach can be understood by considering
the structure’s response to very large impulses. The resulting free vibrations will involve
large deformations at the joints and the stiffness nonlinearities will result in configurations
that are not easily represented as linear combinations of eigen modes of the reference linear
system. In fact, in [7] proper orthogonal decomposition (POD) [4] was used to demonstrate
that, even when the eigen modes of the reference linear system are continuous, the POD
modes derived from the nonlinear response can be discontinuous at the joints. This demon-
strates the need for basis functions other than eigen modes of the reference linear system.

One can compare the convergence difficulties in this problem to those of trying to represent
a curve having a discontinuity with a Fourier series. A very large number of sine and cosine
terms are required to obtain an even approximately adequate representation - a feature of
Gibbs phenomena. Just as a Fourier series approximation is facilitated by augmenting
the orthogonal polynomials by a function with a discontinuity at the appropriate location,
model reduction of structures with localized nonlinearities is facilitated by including basis
vectors with an appropriate discontinuity at the location of the nonlinearity.

In [7] two classes of basis functions with discontinuities were examined. Those classes
appeared to manifest identical benefits in terms of model reduction and convergence, but
one was much easier to implement. It is that more convenient class of basis vectors that
was employed in this study.
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Those basis functions are found by a statics solution on the reference linear system where
equal and opposite loads are applied at the location of the joint and co-linear with the joint
displacement. The resulting deformation field, which is the solution of the statics problem
on the reference linear system, is used to augment the basis vectors obtained by eigen-
analysis of the reference linear system. These basis functions, apparently identical to basis
vectors employed by Milman and Chu ([2], [5]) in their optimization of linear structural
dampers, are referred to in the following as joint modes.

It should be noted that in the problems being addressed here, the joint kinematics have
been simplified by the “whole joint” approximation([6]), where all nodes on each side of
the joint interface are slaved to one representative node. The joint kinematics are now
described by the relative motion of those two representative nodes.
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Chapter 3

Transient Analysis of Structures
Containing Mechanical Joints

3.1 Application to a Simple Structure with Two Joints

We consider a structure represented by the finite element mesh shown in Figure 3.1. The
structure contains two joints at locations indicated in the figure. Each joint is capable of
deformation in only the indicated x direction. This system contains 722 nodes or 2166
total degrees of freedom; however, due to boundary and MPC constraints the model pos-
sesses only 1803 active degrees of freedom. We consider the analysis of this 1803 degree
of freedom model to be the full order system. Dimensions, material properties, and joint
properties are specified in Appendix A. The joint model is one discussed in Reference [6],
manifesting hysteretic loss that roughly follows a power-law dependence on force ampli-
tude and macro-slip at high load.

The chosen loading for this simulation is a uniform traction in the y direction on the free
side of the structure as noted in Figure 3.1 modulated by a triangular pulse of 1e-4 second
duration, a normalized version of which is shown in Figure 3.2. Cases of two very different
load amplitude were examined. In each case, three analyses were performed:

1. Transient analysis of the full nonlinear finite element model. This will be our truth
model.

2. Transient analysis of a nonlinear Galerkin model using twenty eigen modes of the
reference linear system. In the following, we refer to these analyses of the modally
truncated system as the reference model reduction.

3. Transient analysis of a nonlinear reduced model using eighteen eigen modes of the
reference linear system and one joint mode appropriate for each of the two system
joints. (The first eighteen eigen modes of the reference linear system include all

11



Figure 3.1. Mesh for Two Joint Structure.

those with frequencies below 20 kHz. See Figures 3.3 and 3.4 for plots of all eigen
frequencies and a close up of the first 30 eigen frequencies, respectively). In the fol-
lowing, we refer to this LDBV analysis as the augmented model reduction.
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Figure 3.2. Normalized Force Input. A triangular pulse input is
applied to the free side of the structure.
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Figure 3.3. Natural Frequencies of Full Order System. The nat-
ural frequencies of the full order system are plotted to show the
modal density for the model being studied.
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Figure 3.4. Natural Frequencies of Full Order System. The nat-
ural frequencies for the first 30 modes are plotted here. The first
20 modes include frequency content up to 20 kHz.
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3.1.1 Case of Very Small Loading

The amplitude of the triangular impulse traction was set at a low value (100 lb f
in2 ) such that

very little nonlinearity is manifest in the structure.

To evaluate the reference reduced system, we compare the histories of kinetic energy and
joint force with those of the truth model. The kinetic energy of the reference reduced
system along with that of the truth model is plotted in the upper portion of Figure 3.5 and
the difference between the two is plotted in the lower portion of Figure 3.5. The force of the
upper joint predicted by the reference reduced system along with that of the truth model is
plotted in the upper portion of Figure 3.6 and the difference between them is plotted in the
lower portion of Figure 3.6. Due to the symmetry of the geometry and loading condition,
the joint force history for the second joint is identical to that of the first modulo a sign
difference. Unless otherwise noted, energy is presented with units of in-lbf and force is
presented with units of lbf throughout this report.

In the above analysis, the maximum error in kinetic energy is about 0.25% and the maxi-
mum error in joint force is about 1%. The quality of agreement should not be surprising
since it is only the first mode ( 672 Hz) that is excited and there is very little nonlinearity
to couple this mode with higher modes.

Similarly, to evaluate the augmented reduced system, we compare the histories of kinetic
energy and joint force with those of the truth model. The kinetic energy of the augmented
reduced system along with that of the truth model is plotted in the upper portion of Fig-
ure 3.7 and the difference between the two is plotted in the lower portion of Figure 3.7. The
force of the upper joint predicted by the augmented reduced system along with that of the
truth model is plotted in the upper portion of Figure 3.8 and the difference between them is
plotted in the lower portion of Figure 3.8.

In the above analysis, the maximum error in kinetic energy is about 0.063% and the maxi-
mum error in joint force is about 0.5%. Though these results are slightly better than those
of the reference reduced system, the nonlinearity of this minutely excited structure is too
small to require the benefits of the joint modes.

It should be observed that point-wise comparison of history variables is an extremely strin-
gent test of model reduction because accumulated phase errors can result in very large error
in point-to-point comparison.
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Figure 3.5. The Kinetic Energy is plotted versus time for the case
of small loads in the micro-slip regime for the case of a model
truncated with the 20 lowest frequency eigen modes – the reference
reduced model.
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Figure 3.6. The Force history of joint one is plotted for the case
of small loads in the micro-slip regime for the case of a model
truncated with the 20 lowest frequency eigen modes – the reference
reduced model.
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Figure 3.7. The Kinetic Energy is plotted versus time for the case
of small loads in the micro-slip regime for the case of a model
truncated with the 18 lowest frequency eigen modes augmented
with 2 joint modes – the augmented reduced model.
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Figure 3.8. The Force history of joint one is plotted for the case
of small loads in the micro-slip regime for the case of a model
truncated with the 18 lowest frequency eigen modes augmented
with 2 joint modes – the augmented reduced model.
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3.1.2 Case of Large Loading

Here the amplitude of the triangular impulse traction was set at a sufficiently large value
(1000 lb f

in2 ) to drive the joints into macro-slip. We use the reference reduced model and the
augmented reduced model employed in the previous section.

For the reference reduced model, the kinetic energy histories and the error with respect to
the truth model are plotted in Figure 3.9. The joint force histories and its error with respect
to the truth model are plotted in Figure 3.10. Here we see substantially more error than
was the case when low loads were applied: 5% error in kinetic energy and 7% error in joint
force. This deficiency is expected for reasons discussed above.

Similar plots are made for the predictions of the augmented reduced model (LDBV anal-
ysis). The kinetic energy history and the error with respect to the truth model are plotted
in Figure 3.11. The joint force and its error with respect to the truth model are plotted in
Figure 3.12. We see substantially less error than was the case with the reference reduced
model: 0.05% error in kinetic energy and 0.7% error in joint force. We also note that the
character of the joint force errors for the augmented reduced model are zero mean Gaussian
type errors for both the small and large loading cases, which indicates that the discontinu-
ous basis vectors (joint modes) generally capture the correct physics of the joint response
for all load levels experienced. Thus, we see that for small and large load, joint modes offer
significant improvement in accuracy, especially in capturing the nature of the response near
the joints.

The timing summary for the full and reduced order systems solved in Matlab are given in
Table 3.1. As can be seen, the solution to the augmented reduced order system, having
20 degrees of freedom, is much faster than that of the full order system with 1803 degrees
of freedom, especially for loads which excite macro-slip. In this case, not only does each
iteration of the full model require solving much larger systems of equations, but the full
system requires more iterations to converge in each time step.

Table 3.1. Timing Summary for Two Joint Structure Nonlinear
Model Reduction.

Full System(sec) Reduced System(sec)
1803 DOF 20 DOF

Nominal Load 426.5 0.4
10x Nominal 2281.2 0.4
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Figure 3.9. The Kinetic Energy is plotted versus time for the case
of loads in the macro-slip regime for the case of a model truncated
with the 20 lowest frequency eigen modes – the reference reduced
model.
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Figure 3.10. The Force history of joint one is plotted for the case
of loads in the macro-slip regime for the case of a model truncated
with the 20 lowest frequency eigen modes – the reference reduced
model.
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Figure 3.11. The Kinetic Energy is plotted versus time for the
case of loads in the macro-slip regime for the case of a model
truncated with the 18 lowest frequency eigen modes augmented
with 2 joint modes – the augmented reduced model.
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modes – the augmented reduced model.
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3.2 Application to a Three-Legged Mock AF&F Structure
with Component Mode Synthesis of Linear Degrees of
Freedom

In Reference [7] a mode of application was outlined for reduced order modeling of large
structures with local nonlinearities. The strategy employed Component Mode Synthesis
(CMS) and was outlined as follows.

Consider a structure B consisting of a number of substructures Bk with joint models con-
necting some of the interface degrees of freedom. The kinematics of each substructure is
characterized by the values of interface degrees of freedom

{

uk,n
}

and modal degrees of
freedom

{

φk,n
}

. The development of the reduced order model proceeds much as discussed
earlier in this report:

• eigen analysis is performed on the linearized component mode representation for B .

• the joint vectors are calculated by placing self equilibrating loads on nodes on the
interfaces between substructures and performing system level statics solutions.

• the numerical results are in terms of vectors whose support is the whole structure.

These basis vectors are used in a reduced order Galerkin formulation for the nonlinear
transient dynamics of the structure. The number of elastic eigen modes and joint modes
necessary for application to a particular problem can be estimated in a manner similar to
that employed in modal truncation of linear systems. In the simplest implementation, one
employs all elastic modes corresponding to frequencies below an appropriately chosen cut-
off frequency and one uses a joint mode for each joint degree of freedom.

3.2.1 The Three-Legged Structure

The above strategy is employed to study the transient dynamics of the three-legged structure
indicated in the photograph of Figure 3.13 and the finite element mesh of Figure 3.14. Each
leg is connected to the upper section by a bolted joint oriented approximately 45o radially
outward from the vertical.

The study reported here grew out of an earlier one whose objective was to improve non-
linear response prediction in existing structural dynamics models [3]. A focus of the study
was bolted joints modeled using Iwan constitutive models. This study revealed that 3D
high-fidelity transient simulations as well as Component Mode Synthesis (CMS) analysis
based on the high-fidelity model tend to produce a large amount of hashy high frequency
response when a joint modeled with an Iwan element goes into macro-slip. Indeed, this
behavior was seen in the experimental tests, though to a much lesser extent. A CMS model
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Figure 3.13. Test Photo of Mock AF&F Structure .

was created to mitigate this effect as observed in the 3D high-fidelity model, yet the high
frequency hash persisted. Stiffness proportional damping and filtering were used to reduce
the high frequency content of the response and predictions closer to the experimentally
measured accelerations were achieved.

The full system solution suffered the related deficiencies that the desired low frequency
behavior was obscured by high amplitude “hash” and very small time steps were necessary
for the nonlinear solver to converge. Examination of simpler problems indicates that the
high frequency hash resulting as joints move into macro slip is mathematically correct,
manifesting the response of high frequency modes to a discontinuous change in the tangent
stiffness. The CMS approach can suffer the same deficiencies because including enough
subsystem modes to invest the structure with appropriate static compliances also invests it
with high frequency resonances.

The method of Locally Discontinuous Basis Vectors (LDBV) is demonstrated on this prob-
lem using parameters employed in the earlier study. Joints are represented by a four param-
eter Iwan model for the two principal directions in the slip plane and by a very stiff spring
in the direction normal to the slip plane for each leg. Parameters for the joints and material
parameters are itemized in the Appendix of this report. The acceleration history shown in
Figure 3.15 was applied to the base of the structure and acceleration was measured on the
270o leg. Of the responses of nine specimens (all sampled at 20 kHz), the acceleration
shown in Figure 3.16 is typical.

22



Figure 3.14. FEM Model of Mock AF&F Structure.
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Figure 3.15. The base excitation for the axial input case is a
shaped sine wave. The peak acceleration for this case is 50g,
which is sufficient to excite macro-slip in the joints.
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3.2.2 Simulation Results

In evaluating this application of the LDBV method, we compare four calculations:

1. The predictions of the full nonlinear finite element model (206,343 active degrees of
freedom) solved using Salinas [1]. We call this the Full Salinas model.

2. The predictions of a nonlinear CMS model. In this application the kinematics of the
upper substructure is represented by its first 30 eigen modes and 27 interface degrees
of freedom while the lower substructure is represented by its first 30 eigen modes
and 30 interface degrees of freedom. Each of the three bolted joints (one on each
leg) are represented by two Iwan elements (one for each principal axis in the slip
plane) and one linear spring in the direction normal to the slip plane. The lower
section is attached to ground by constraints applied to all nodes around the holes of
the attachment bolts. This model, referred to as the CMS model, has 117 degrees of
freedom.

3. The predictions of a model based on only the fifteen lowest frequency eigen modes
of the reference linear system. In this case the reference linear system is the CMS
model where the joints are represented by springs of stiffness equal to the tangent
stiffness of the joints at zero load. We call this modally truncated CMS model the
reference reduced model.

4. The predictions of the LDBV method using nine eigen modes of the reference linear
system augmented with six joint modes. Again, the reference linear system is the
CMS model where the joints are represented by springs of stiffness equal to the
tangent stiffness of the joints at zero load. These eigen modes are sufficient to capture
the resonances of the linear system to 2000 Hz (See Figure 3.17). The joint modes
are deduced from the CMS system in the manner outlined above. We refer to this
LDBV analysis of the CMS model as the augmented reduced model.
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Figure 3.18 shows the experimental acceleration and those of three analyses including the
Full Salinas, CMS, and augmented reduced model. We see that the full finite element
nonlinear analysis prediction is so hashy as to obscure the responses at the frequencies
that dominate the experimental results. The CMS model predictions are a little less hashy,
but the desired aspects of the response are still obscured by hash. The predictions of the
augmented reduced model are closest to the experimental accelerations, though there are
some systematic differences that can be ascribed to limitations of the joint model.
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Figure 3.18. Measured acceleration plotted with predictions of
Full Salinas model, CMS model, and augmented reduced model.

Figure 3.19 shows a closeup of the CMS model response along with the augmented reduced
system both from Figure 3.18 for the time between 2 and 4 micro-seconds. This plot shows
in detail the high frequency hash associated with the CMS model predictions. A natural
remedy for the suppression of this high frequency hash is a reduction in the time step size.
This exercise was performed by dividing the step size by ten, and indeed it was found that
the high frequency response was suppressed in the CMS model predictions. On the other
hand, as shown in Figure 3.19, the high frequency hash is suppressed by augmenting the
basis of eigen modes with joint modes with the added benefits of being solved at much
larger time steps with fewer degrees of freedom.

Figure 3.20 shows the test data plotted with the reference reduced model (the modally
truncated CMS model) and the augmented reduced model predictions. The plot shows
that without joint modes, the reference reduced model does not predict any of the hashy
response that is observed in the experiment. On the other hand, the reduced model with
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Figure 3.19. Closeup showing CMS model response and aug-
mented reduced model response.

joint modes (augmented reduced model) are closer to the experimental acclerations. It is
noted that the inclusion of joint modes in the basis results in a better prediction of the
dissipation in the joints. While the reference reduced model appears to act as a low-pass
filter in removing high frequency response, the augmented reduced model can be described
best as applying a “low-pass physics” cutoff to the model in allowing some of the high
frequency reponse.

Figure 3.21 shows the predicted forces in the local x and y directions for the 270o leg.
These results show that the augmented reduced model is capable of predicting the macro-
slip behavior of the force in the joint as also observed in the Full Salinas and CMS models,
while the reference reduced model is not. Joint modes are clearly very valuable in capturing
the proper forces in the joints which is very important to the overall system response. The
forces in the local y direction for the 270o lege are small as a result of the loading direction;
therefore, we can consider using only the three joint modes corresponding to the dominant
response direction of each leg. In fact, this exercise has been performed and the effect
of replacing these three joint modes with the next three lowest frequency eigen modes is
minimal. Although one may, in some cases, find an advantage in ignoring some joint modes
in favor of eigen modes, in general it is desirable to include a joint mode for each joint in the
model in order that proper response due to those joints is predicted for a different loading
condition which may tend to excite those degrees of freedom.
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Figure 3.20. Measured acceleration plotted with reduced order
model predictions.

29



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01−600

−400

−200

0

200

400

600
In−plane Joint Forces for 270 Degree Leg

X−
co

m
po

ne
nt

 

 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

−20

−10

0

10

20

Y−
co

m
po

ne
nt

Time (sec)

 

 

Full Salinas
CMS Model
Reference Reduced
Augmented Reduced

Figure 3.21. In-plane joint forces for the 270 Degree Leg. The
augmented reduced model captures the macro-slip behavior of the
joint as do the Full Salinas and CMS model. The reference reduced
model using only eigen modes does not capture the macro-slip be-
havior.
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Table 3.2 compares the compute times for all analyses. The full nonlinear finite element
analysis was performed using the Salinas finite element method in parallel mode. This
run required approximately 4 hours of CPU time using 10 processors. The nonlinear CMS
analysis was performed in Matlab using subsystem matrices computed earlier in Salinas.
The LDBV analysis was also performed in Matlab using the Matlab formatted CMS model
subsystem matrices. We see a vast improvement in compute time from the full finite el-
ement analysis to the nonlinear CMS and a further 74% improvement from the nonlinear
CMS to the augmented reduced model (LDBV). The reference reduced model runs faster
because fewer iterations are needed on some time steps. The time step size for the CMS
and both reduced order CMS models is the same for these runs. However, the plot of Fig-
ure 3.20 shows that high frequency hash associated with joint macro-slip in the Full Salinas
and CMS models is not evoked in the reduced system.

Table 3.2. Timing Summary for Mock AF&F Structure Nonlin-
ear Reduced Models.

Model No. DOF CPU Time (sec)
CMS 117 36.3

Reference Reduced 15 2.8
Augmented Reduced 15 9.3

Full Salinas 206,343 40 hours (approximate)
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Chapter 4

Conclusions

The advantages demonstrated for the Locally Discontinuous Basis Vector method in prob-
lems of structures with local nonlinearities in terms of reduction in model size and in terms
of accuracy for simple problems appear to be retained when the technique is exercised in
a finite element context. It is the high frequency artifacts that prevent nonlinear solvers of
the full system model from converging except at very small time steps. The suppression
of those responses in the LDBV method makes possible calculation of correct responses in
the regimes of interest using far fewer degrees of freedom and much longer time steps than
is possible in either the full system model or the nonlinear CMS model.

It should be mentioned that the success of this method in suppressing spurious high fre-
quency hash associated with transition into macro-slip would not be seen in problems that
contained significant rate dependence. Still the problems of structural dynamics generally
have localized nonlinearities of the sort treated here.

There is an additional strategy that could be employed to reduce further the system sizes
associated with the LDBV method. One could employ the LDBV method over short times
and identify those elastic eigen modes among the basis vectors for which the corresponding
generalized accelerations are not excited. The set of basis vectors could then be reduced
appropriately and the simulations run over long times. Of course, this presumes that the
excitations seen over that longer time interval are very similar to those seen over the short
time interval during which the generalized accelerations were scrutinized. This approach
has not been explored.

The efficiencies demonstrated here were all associated with scalar calculations. The next
major challenge in the development of this technique will be its implementation in the
context of massively parallel computation.
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Appendix A

Two Joint Structure Material and Joint
Properties

Table A.1 lists the exterior dimensions and material properties for the simple structure
containing two joints.

Table A.1. Dimensions and Isotropic Material Properties for Two
Joint Structure.

Parameter Value
X dimension 6 inches
Y dimension 3 inches
Z dimension 1 inch

E 2.8572e7 psi
ν 0.28
ρ 0.289 lb f

in3

The joint parameters used for each of the two joints are given in Table A.2. These param-
eters correspond to a slip force (FS) of 720 lbf and a tangent stiffness (KT ) at zero load of
5.0e5 lb f/in.

Table A.2. Joint Parameters for Two Joint Structure.

Parameter Value
R 9.50519e4
S 3.64864e5

φmax 1.8586e-3
χ -0.8
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Appendix B

Mock AF&F Structure Joint Properties

The joint parameters used for each of the joints of the mock AF&F structure are given in
Table B.1. These parameters correspond to a slip force (FS) of 541.2 lbf and a tangent
stiffness (KT ) at zero load of 8.55e6 lb f/in.

Table B.1. Joint Parameters for mock AF&F Structure.

Parameter Value
R 5.5050e6
S 2.1097e6

φmax 1.75e-4
χ -0.82
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