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The goal of this project  is to implement and study various techniques
for  the construction  of Algebraic  Multigrid Methods  (AMG)  for the
solution  of  positive  definite   linear  systems  arising  from  the
discretizations    of   elliptic   partial    differential   equations
(PDEs). Both  theoretical as well  as practical implementation  of the
methods that we have developed  are based on compatible relaxation and
energy minimization.   The results that we have  obtained are reported
in  several publications  resulting from  the  subcontract (references
[1]-[7]).
In  [1] we  have proposed  an adaptive  algebraic multigrid  that uses
compatible  relaxation technique  to adaptively  construct the  set of
coarse variables.  The nonzero  supports for the coarse-space basis is
then determined  by approximation  of the so-called  "ideal" two-level
interpolation  operator   that  gives  maximal   error  reduction  per
iteration.   This approximation  uses coarse  grid basis,  obtained by
minimizing  a modified  Frobenius norm  of the  coarse-level operator.
Our  algorithm maintains multigrid-like  optimality, without  the need
for parameter tuning.   We have shown the efficacy  and the robustness
of our approach on several test problems.
In a joint work with Vassilevski [2] we have designed an algorithm for
simultaneous  approximation  of several  near  null space  components,
which allows  for more aggressive  coarsening, and can be  applied not
only  to  second  order  PDEs,  but  also to  higher  order  (such  as
discretizations  of biharmonic  equation) to  produce  highly accurate
interpolation operators and hence efficient multilevel methods.
We  have  also   studied  optimal  preconditioners  for  discontinuous
Galerkin (DG)  methods in  [3].  The DG  methods have  many attractive
features, such  as being locally  conservative and in many  cases more
accurate that the conventional  conforming methods. A drawback is that
the number of  unknowns in the resulting discrete  system of equations
is much  larger than the number  of unknowns for  a conforming method.
We have  developed a unified  approach for preconditioning  DG methods
with  the  simplest   possible  discretizations,  such  as  piece-wise
constant  elements  and conforming  piece-wise  linear elements.   The
family of preconditioners, that we have proposed and analyzed is based
on  two level approach  and leads  to a  significant reduction  of the
problem size.   Moreover, our approach  leads to coarse  grid problems
that correspond to conforming methods, thus making possible the use of
already developed efficient multilevel methods for their solution.
We  have also  worked on  the iterative  methods for  singular, nearly
singular  and semidefinite linear  systems ([4]  and [6]).   The known
analysis  and convergence  results of  such methods  has  been largely
based  on the  sufficient conditions  known as  P-regularity  (or weak
regularity) of the corresponding matrix splittings. We have introduced
new, more  refined conditions that  are not only sufficient,  but also
necessary  for energy  norm convergence.   These  conditions basically
amount to assuming that the error  is damped in a subspace (related to
the pseudo-inverse of the approximating matrix), and that the range of
the original  matrix is  contained in the  range of  the approximating
one. Such  assumptions are naturally true for  most iterative methods,
including multigrid  and domain decomposition methods. In  [6] we have
carried over these results to  the case of nearly singular systems and
we  have shown how  the techniques  developed can  be utilized  in the
analysis of iterative methods  for linear systems corresponding to the
augmented Lagrangian methods applied  to PDEs discretized by mixed and
hybrid finite element methods.
In [5] we  proposed a new method for the  efficient solution of linear
systems arising in discretizations of  second order elliptic PDEs by a
generalized  finite element  method  (GFEM).  This  has  been an  open
question for some time (last 5-6 years, since GFEM gained popularity),
and we  were able to deliver  solution to it and  in particular relate



GFEM discretizations  for scalar  equations to the  discretizations of
systems of  PDE.  The efficient  preconditioner that we  propose, uses
auxiliary (fictitious) space techniques  and an additive BPX (Bramble,
Pasciak  and Xu~1988)  preconditioner  for the  problems in  auxiliary
space.
The  work on Helmholtz  equation [7]  can be  viewed as  a preliminary
study towards targeting more  complicated problems, such as indefinite
Maxwell  equations.   The  exact  controllability  framework  (Due  R.
Glowinski and J.  Lions) is  based on recasting the Helmholtz equation
in  its  original   form  (periodic  solutions  in  time   of  a  wave
equation). Such solutions are  found by minimizing a convex functional
using a  continuous version of the Conjugate  Gradient (CG) algorithm.
On every  CG iteration it is  required to solve a  scalar second order
PDE (like Laplace  equation). The new technique, proposed  by us is to
use approximate solution instead,  provided by few algebraic multigrid
V-cycle iterations. Same procedure carries over to the solution of the
indefinite Maxwell equations, and our goal is to further implement the
inexact CG  and the controllability methods to  the indefinite Maxwell
equation for wide range of wave numbers.
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