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INTRODUCTION 

 
Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material 

in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and 
propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly 
corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation 
of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have 
been recognized for some time [Latanison 1985].  Iron-based corrosion-resistant, amorphous-metal coatings under 
development may prove important for maritime applications [Farmer et al. 2005].  

 
Such materials could also be used to coat the entire outer surface of containers for the transportation and long-

term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to 
environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be 
possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby 
enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic 
coatings have also been investigated for such applications [Haslam et al. 2005]. 

 
This report focuses on the corrosion resistance of a yttrium-containing amorphous metal, SAM1651. SAM1651 

has a glass transition temperature of ~584°C, a recrystallization temperature of ~653°C, and a melting point of 
~1121°C. The measured critical cooling rate for SAM1651 is ≤ 80 K per second, respectively. The yttrium addition 
to SAM1651 enhances glass formation, as reported by Guo and Poon [2003]. The corrosion behavior of SAM1651 
was compared with nickel-based Alloy 22 in electrochemical polarization measurements performed in several highly 
concentrated chloride solutions. 

 
 

EXPERIMENTS 
 
Corrosion tests were performed on as-received SAM1651 vacuum arc-melted drop cast ingots. The ingots were 

cast into cylindrical molds to form long rods with a nominal diameter of 4-5 millimeters and a length of ~75 
millimeters.  The nominal composition of SAM1651 material is listed in Table 1. Two SAM1651 ingots, identified 
as #0005 and #19643 were mounted in an epoxy rod that exposes the ingot in cross section (4-5 mm diameter) for 
electrochemical testing. The epoxy-mounted specimens were ground with abrasive papers and given a 600-grit 
silicon carbide finish.  

 
A temperature-controlled, borosilicate glass (Pyrex) cell was used for the electrochemical tests. This five-port 

cell had a working electrode (the test specimen), a reference electrode, and a counter electrode. A standard silver 
silver-chloride electrode, filled with near-saturation potassium chloride solution, was used as the reference, and 
communicated with the test solution via a Luggin probe placed in close proximity to the working electrode to 
minimize Ohmic losses. Numerical corrections for the reference electrode junction potential have been estimated, 
and have been found to be insignificant (Farmer et al. 2000a). The Luggin probe is equipped with a water-cooled 
jacket to keep the reference electrode at ambient temperature, thereby maintaining an accurate potential 
measurement.  A water-cooled condenser was inserted into the vessel to prevent the loss of volatile species from the 
electrolyte.  The solution was deaerated using a bubbled nitrogen gas purge through a fifth port (see Figure 1). 

 
Each electrochemical test includes a potentiodynamic polarization measurement after a 24-hour immersion in 

test solutions. A scan rate of 0.167 mV/s (or 600 mV/hr) was used in the potentiodynamic scans. The test solutions 
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included 3.5 m NaCl, 6 m NaCl, 5 M CaCl2, and seawater from Half Moon Bay, California. All tests were 
conducted at 90ºC.  

 
The Alloy 22 test data was generated on 5/8 inch diameter disc specimens. The composition of Alloy 22 is also 

listed in Table 1. 
 
 

RESULTS AND CONCLUSIONS 
 

Figure 2 shows the polarization behavior of SAM 1651 ingot #19643 in seawater at 90°C, 3.5 molal NaCl 
at 90°C, and 5M CaCl2 at 105°C. SAM1651 has demonstrated excellent corrosion resistance based on the results of 
these polarization measurements. 

 
In Figure 3, the polarization behavior of SAM1651 is compared to Alloy 22 in 5M CaCl2 at 105ºC. 

SAM1651 shows higher breakdown potential than Alloy 22, an indication of better resistance to localized corrosion. 
Figure 4 also shows that SAM1651 has a comparable corrosion resistance to Alloy 22 in 6m NaCl solutions at 
temperatures near the electrolyte boiling point.  

 
Based on preliminary test results, SAM1651 demonstrates a promising corrosion resistance that is 

comparable to that of Alloy 22, the preferred material for the outer barrier of nuclear waste storage containers.  
Additional tests have been planned to fully characterize the corrosion performance of SAM1651 in a range of 
environments.  Future tests will assess the corrosion behavior of SAM1651 thermal spray coatings on various metal 
substrates. 
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Table 1. Composition of SAM1651 and Alloy 22 
 Fe  (%) Cr  (%) Mo (%) C   (%) Y (%) B (%) Ni  (%) Co (%) W  (%) 
SAM1651 48.0 15.0 14.0 15.0 2.0 6.0    
Alloy 22 3.65 21.23 13.37 0.003   55.29 1.7 2.93 
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Figure 1. Electrochemical test apparatus.

Corrosion Resistance of SAM1651 Ingot, Melt# 19643 

-0.600

-0.400

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

Current Density (A/cm2)

Po
te

nt
ia

l (
V 

vs
 A

g/
A

gC
l)

5M CaCl2 @105oC

3.5m NaCl 
@90oC

Seawater @90oC

Figure 2. Electrochemical polarization behavior of SAM1651 material in various chloride solutions. 
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Figure 3. Comparison of Polarization Behavior Between SAM1651 Ingots and Alloy 22 Disc in 5M CaCl2
Solution at 105oC 
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Figure 4. Comparison of polarization behavior between SAM1651 ingots and Alloy 22 disc, in 6m NaCl solutions
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