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Disclaimer 
 

“This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe on privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.” 
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Abstract 
 

Cooling of commercial buildings contributes significantly to the peak demand placed on an elec-
trical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak 
periods at night and weekends. Buildings can respond to these pricing signals by shifting cool-
ing-related thermal loads either by precooling the building’s massive structure or the use of ac-
tive thermal energy storage systems such as ice storage. While these two thermal batteries 
have been engaged separately in the past, this project investigates the merits of harnessing 
both storage media concurrently in the context of predictive optimal control.  
This topical report describes the demonstration of the model-based predictive optimal control for 
active and passive building thermal storage inventory in a test facility in real-time using time-of-
use differentiated electricity prices without demand charges. The laboratory testing findings pre-
sented in this topical report cover the second of three project phases. The novel supervisory 
controller successfully executed a three-step procedure consisting of 1) short-term weather pre-
diction, 2) optimization of control strategy over the next planning horizon using a calibrated 
building model, and 3) post-processing of the optimal strategy to yield a control command for 
the current time step that can be executed in the test facility.  
The primary and secondary building mechanical systems were effectively orchestrated by the 
model-based predictive optimal controller in real-time while observing comfort and operational 
constraints. The findings reveal that when the optimal controller is given imperfect weather fore-
casts and when the building model used for planning control strategies does not match the ac-
tual building perfectly, measured utility costs savings relative to conventional building operation 
can be substantial. This requires that the facility under control lends itself to passive storage 
utilization and the building model includes a realistic plant model.  
The savings associated with passive building thermal storage inventory proved to be small be-
cause the test facility is not an ideal candidate for the investigated control technology. Moreover, 
the facility’s central plant revealed the idiosyncratic behavior that the chiller operation in the ice-
making mode was more energy efficient than in the chilled-water mode. Field experimentation 
(Phase III) is now required in a suitable commercial building with sufficient thermal mass, an ac-
tive TES system, and a climate conducive to passive storage utilization over a longer testing 
period to support the laboratory findings presented in this topical report. 
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1 Introduction 

1.1 Background 
The energy consumption of commercial buildings contributes a substantial 18% or 17.4 out of 
97.4 quadrillion Btu (“quads”) to the total U.S. primary energy consumption (EIA/DOE, 2002). 
Aggravated by a surge in the use of office equipment combined with the associated demand for 
cooling energy, electricity is responsible for 75% of the primary energy consumption in commer-
cial buildings, about 800 million metric tons of carbon emissions per year, and over $65 billion of 
utility cost. Harnessing the efficiency potential in current and future buildings will be instrumental 
in attenuating the growth of energy consumption and electrical demand as well as the nation’s 
dependency on an uninterrupted supply of fossil fuels. This constitutes the motivation for this 
work. 
The equipment and systems providing thermal comfort and indoor air quality consume 42% of 
the total energy used in buildings (A.D. Little, 1999). Energy use and utility cost can be reduced 
by increasing the efficiency of building systems, by distributing thermal energy more efficiently 
and by more closely meeting the needs of building occupants. The energy efficiency of system 
components for heating, ventilating, and air-conditioning (HVAC) has improved considerably 
over the past 20 years (ARI, 1999; American Standard, 1999). 
In contrast to energy conversion equipment, less improvement has been achieved in thermal 
energy distribution, storage and control systems in terms of energy efficiency and peak load re-
duction potential. Advancements are also needed to improve thermal storage systems, control 
systems and systems integration from a whole building perspective while meeting occupant 
comfort and performance requirements (NETL/DOE, 2003). This topical report implements and 
evaluates a novel supervisory real-time control strategy in a test facility in order to tackle several 
of these needed advancements. 
Our approach employs the simultaneous utilization of active and passive building thermal stor-
age inventory under model-based predictive optimal supervisory control. In the definition of this 
article, ‘active’ denotes that thermal storage systems, such as chilled-water or ice storage, re-
quire an additional fluid loop to charge and discharge the storage tank and to deliver cooling to 
the existing chilled water loop. Using building thermal capacitance through nighttime precooling 
is ‘passive’, since it requires no additional heat exchange fluid other than the conditioned air 
stream. The objective function for the model-based predictive controller discussed in this topical 
report is the minimization of building operating costs while observing constraints on occupant 
thermal comfort, indoor environmental quality, and HVAC equipment operation. 

1.2 Review of Past Work 
Cooling of commercial buildings contributes significantly to the peak demand placed on an elec-
trical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak 
periods at night and weekends. Buildings can respond to these pricing signals by shifting cool-
ing-related electrical loads either by precooling the building’s massive structure, by the use of an 
active energy storage system only, or by a combination of both thermal reservoirs. Henze et al. 
(1997) developed a predictive optimal controller for active thermal energy storage (TES) sys-
tems and investigated the potential benefits of optimal control for ice storage systems under 
real-time pricing in order to minimize the cost of operating a central cooling plant. It was found 
that in the presence of complex rate structures, i.e., real-time pricing rates that change on an 
hourly basis, the proposed optimal controller has a significant performance advantage over con-
ventional control strategies while requiring only simple predictors. 
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Braun (2003) surveyed research on passive building thermal storage utilization, i.e., the precool-
ing of a building’s thermal mass during nighttime in order to shift and reduce peak cooling loads 
in commercial buildings. He identified considerable saving potential for operational costs, even 
through the total zone loads may increase. Opportunities for reducing operating expenses are 
due to four effects: reduction in demand costs, use of low cost off-peak electrical energy, re-
duced mechanical cooling resulting from the use of cool nighttime air for ventilation precooling, 
and improved mechanical cooling efficiency due to increased operation at more favorable part-
load and ambient conditions. However, these benefits must be balanced with the increase in the 
total cooling requirement that occurs with the precooling of the thermal mass. Therefore, the 
savings associated with load shifting and demand reduction are very sensitive to utility rates, 
building and plant characteristics, weather conditions, occupancy schedules, operation condi-
tion, the method of control, and the specific application. In general, better opportunities for effec-
tive precooling exist for higher ratios of on-peak to off-peak rates, longer on-peak periods, 
heavy-mass building construction with a small ratio of the external area to the thermal mass, 
and for cooling plants that have a good part-load characteristics for which the best performance 
occurs at about 30% of the design load. 
The combined usage of both active and passive building thermal storage inventory under opti-
mal control has recently been investigated by Henze et al.(2004a) for the reduction of electrical 
utility cost in the context of common time-of-use rate differentials. The objective function used in 
the optimization is the total utility bill including the cost of heating and a time-of-use electricity 
rate without demand charges. The analysis showed that when an optimal controller for com-
bined utilization is given perfect weather forecasts and when the building model used in the 
model-based predictive control perfectly matches the actual building, the utility cost savings are 
significantly greater than either storage, but less than the sum of the individual savings and the 
cooling-on-peak electrical demand can be drastically reduced. 
While Henze et al.(2004a) established the theoretical maximum performance of this novel con-
trol strategy, further research by Henze et al.(2004b) explored how strongly prediction uncer-
tainty in the required short-term weather forecasts affects the controller’s cost saving perform-
ance. The best prediction accuracy was found for a bin model that develops a characteristic 
daily profile from observations collected over the past 30 or 60 days. Assuming that the building 
thermal response is perfectly represented by the building model, i.e., there is no mismatch be-
tween the modeled and actual building behavior, the predictive optimal control of active and 
passive building thermal storage inventory involving weather predictions lead to utility cost sav-
ings that are only marginally inferior compared to a hypothetical perfect predictor that exactly 
anticipates the weather during the next planning horizon. The primary finding is that it takes only 
very simple short-term prediction models to realize almost all of the theoretical potential of this 
storage control technology.   
Liu and Henze (2004) investigated the impact of five categories of building modeling mismatch 
on the performance of model-based predictive optimal control of combined thermal storage us-
ing perfect prediction. It was found that for an internal heat gain dominated commercial building, 
the deviation of building geometry and zoning from the reference building only marginally affects 
the optimal control strategy; reasonable simplifications are acceptable without loss of cost sav-
ing potential. In fact, zoning simplification may be an efficient way to improve the optimizer per-
formance and save computation time. The mass of the internal structure did not strongly affect 
the optimal results; however, it did change the building cooling load profile, which in turn will af-
fect the operation of the active storage (TES) system. Exterior building construction characteris-
tics were found to impact building passive thermal storage capacity. Thus, it is recommended to 
make sure the construction material is well modeled. Furthermore, zone temperature setpoint 
profiles and TES performance are strongly affected by mismatches in internal heat gains, thus 
efforts should be made to keep the internal gain mismatch as small as possible. Efficiency of the 
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building energy system has no direct impact on the building cooling load, but it affects both, 
zone temperature setpoints and active TES operation because of the coupling to the cooling 
equipment. Mismatch in this category may be significant. 
On the background of these findings, a predictive optimal controller for the combined usage of 
active and passive thermal storage that accounts for uncertainty in predictive variables and 
model mismatch was developed and verified in the context of the presented work. Once the su-
pervisory controller was implemented in the laboratory setting, the test facility was controlled by 
the optimizer in real-time, which to the authors’ knowledge has not been done before. This topi-
cal report describes the implementation of the real-time control strategy and evaluates its bene-
fits with respect to HVAC energy consumption and cost reduction. In addition, model accuracy 
and constraint compliance will be examined. The report concludes with a recreation of the ex-
periment in a simulation environment during which previously experienced problems such as the 
interruption of the communication to the building automation system were avoided. 

2 Description of Test Facility 

2.1 General Background on ERS 
The building used in this study to investigate the potential of the optimal controller is the Energy 
Resource Station (ERS); operated by the Iowa Energy Center (IEC). The ERS is a unique dem-
onstration and test facility wherein laboratory-testing capabilities are combined with real building 
characteristics. The ERS is capable of simultaneously testing two full-scale commercial building 
systems side-by-side with identical thermal loading. Located on the campus of the Des Moines 
Area Community College (DMACC) in Ankeny, Iowa; it has a latitude of 41.7° North, a longitude 
of 93.6° West, and an elevation of 286 m above sea level. The facility is orientated for a true 
north/south solar alignment and no surrounding objects and no trees block solar radiation on the 
ERS, except for the north side of the building that has a fenced in mechanical yard with a con-
crete floor.  
The ERS building, a single story structure with a concrete slab-on-grade, has a height of 4.6 m 
and a total floor area of 855 m2, divided into a general area (office space, service rooms, media 
center, two classrooms, etc.), and two sets of identical test rooms, labeled ‘A’ and ‘B’; adjacent 
to the general area. The eight test rooms are organized in pairs with three sets of zones having 
one exterior wall (east, south, and west) and one set that is internal. Figure 1 presents a layout 
or the ERS including the four sets of identical test rooms used for the experiment.  
The opaque exterior envelope of the ERS is composed of several layers of construction materi-
als with a thermal mass outside of the insulation. The percentage of the window area to exterior 
wall area is 15% on the east side, 16% on the west side, 32% on the south, and no windows on 
the north (Price and Smith, 2000). 
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Figure 1: Layout of the test facility, the Energy Resource Station (ERS), Ankeny Iowa. 

2.2 Primary and Secondary HVAC Systems 
The ERS is equipped with a central heating plant consisting of a natural gas-fired boiler and a 
cooling plant comprising three nominal 35 kW air-cooled chillers for both chilled-water and ice-
making modes. The chilled-water loop is filled with 22% propylene glycol water solution. In addi-
tion, the building includes a 440 kWh internal melt ice-on-tube thermal energy storage tank as 
well as pumps and auxiliary equipment needed to provide cooling. District cooling can be pro-
vided by the DMACC campus chilled water plant but was not used in this experiment. Hence, 
several modes of operation between these sources of cooling are possible in order to supply 
chilled water to the air handling units (AHU). The chilled water loop is a primary-secondary flow 
arrangement with dedicated constant-volume chiller pumps and secondary variable-flow distri-
bution pumps in the AHU loop under VFD control. 
The secondary HVAC system consists of three AHUs that condition the building: Test rooms A 
and B are served by two similar single-duct VAV with reheat AHU systems A and B, and the 
general area is served by a similar but larger AHU-1. An overhead air distribution system utiliz-
ing pressure-independent VAV boxes supplies air to each test room using hydronic or 3-stage 
electrical resistance reheat.  
Finally, there is an on-site weather station with measurements of outdoor air dry-bulb tempera-
ture, relative humidity, wind speed and direction, atmospheric pressure, total normal incidence 
solar flux, and global horizontal solar flux. 
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2.3 Investigated Test Rooms 
The experiment was executed in the test rooms A and B, each with a net floor area of 24.8 m2 
and carpeted floor. The ceiling height is 2.6 m and there is a plenum above the suspended ceil-
ing with a height of 1.7 m. Having the same geometry and construction specifications, but being 
thermally isolated from each other; the identical pairs A and B experience the same heating and 
cooling load. The window area of the exterior zones consists of double-pane 6.4 mm clear insu-
lating glass and measures 6.9 m2. During the test, these windows were covered with fully open 
external blinds. Furthermore, to reduce thermal coupling to the general area, the interior win-
dows between the test rooms and the general area were covered with 12.7 mm dry wall paper. 
Following the suggestion of Braun et al. (2002) at the ERS, additional mass was added to the 
interior test rooms A and B in the form of two rows of standard concrete cinder block, 3.05 m 
long and each stacked three layers high. The walls were located near the middle of each interior 
room.  
The rooms are unoccupied; however, false internal heat gains can be introduced using base-
board heaters and lights to simulate the occupancy schedule of a typical building. Test rooms A 
are equipped with 2-stage lighting whereas test rooms B are fitted with dimming electronic bal-
lasts, both with a maximum wattage of 585 W. The baseboard heater at each zone can operate 
at two stages with a maximum output of 1.8 kW (900 W per stage).  
A comfort sensor measuring the air temperature, humidity, and wind speed was placed in the 
middle of the rooms. Conditioned air at a temperature of 13°C was supplied to the test rooms by 
two ceiling mounted diffusers in order to maintain the room temperature within a range of 20°C 
and 24°C during time of occupancy. The interior flow rate throughout the occupied period was 
characterized by a minimum flow of 94 L/s and a maximum flow of 189 L/s. Finally, all test 
rooms were kept looked throughout the period of the experiment in order to avoid disturbance 
and interruptions. These conditions were applied to all eight test rooms.  
The ERS is not a particular good candidate for the use of building thermal mass as documented 
by Braun (2003) due to two reasons: (i) it is a light-weight single-story structure with a high exte-
rior surface area to volume ratio and (ii) significant thermal coupling with the ground, the ambi-
ent and the zones adjacent to the test rooms is present. Furthermore, the test zones are not 
equipped with a representative amount of furniture and the floor is carpeted, which reduces 
thermal coupling to the massive structure. 

2.4 Assumptions for Predictive Optimal Control 
The simulated occupied period extends from 8 a.m. to 5 p.m. each day including weekends. 
During this time, baseboard heaters are applied at one stage (0.9 W) and they are turned off 
during the remaining hours. Furthermore, one stage of lighting (360 W) is employed from 7 a.m. 
to 6 p.m. The applied utility rate structure assumes an on-peak electricity rate of $0.20/kWh 
from 9 a.m. to 7 p.m. and an off-peak electricity rate of $0.05/kWh the remaining hours. Demand 
charges are not levied.  
Of the available equipment, the HVAC system during the test consists of two chillers, namely a 
main and a dedicated precooling chiller, and the ice-based TES system. The main chiller that is 
responsible for charging the TES tank and meeting on-peak cooling loads operates in the 
chilled-water mode with a coefficient-of-performance (COP) of 2.1 and in the ice-making mode 
(charging the TES) with a COP of 2.4. The COPs were validated through repeated tests at the 
ERS. Consequently, meeting cooling loads through the usage of ice storage is more attractive 
from an energy consumption perspective than standard chilled-water operation. 
Initial tests investigating conventional control strategies revealed that charging of the TES sys-
tem takes noticeably more time than estimated by the controller, which was traced back to a 
significantly reduced chiller capacity to only 50% in the ice-making mode. Further, it was deter-
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mined that the ice storage system behaves very nonlinearly below 20% and above 90% state-
of-charge (SOC). Since the model employed in the predictive optimal control assumes a linear 
change in SOC with the charging and discharging rates, the SOC was limited to an available 
range of 25% to 75%, effectively cutting the storage capacity in half to 220 kWh. 
The dedicated precooling chiller with a measured COP of 3.4 is assigned to flush the building 
with cool air during nighttime and, consequently, to precool the building’s massive structure and 
furniture. Both chillers cannot simultaneously supply chilled water to the AHU.  
The outdoor air ventilation is governed by a return air temperature economizer that allows for 
free cooling when the ambient air conditions are favorable. The minimum outdoor intake damper 
is restricted to a position of 45% open for AHU A and 37.5% open for AHU B to ensure 20% of 
ventilation air at design air flow conditions. 
Simulations and experiments in the same facility conducted by Braun et al. (2002) revealed that 
there exists significant thermal coupling between the test rooms and the adjacent general area. 
As a result, there would be significant energy transfer between zones when utilizing different 
zone temperature strategies. Therefore, the decision was made to control the entire facility with 
a uniform schedule for occupancy and a similar control strategy. As a result, the evaluation of 
optimal and conventional control strategies is accomplished by comparing measured results un-
der optimal control and simulated results using conventional control and not by comparing 
measured results from test rooms A under optimal and test rooms B under conventional control. 
The general area was conditioned with 13°C supply air from 7 a.m. to 5 p.m. with a zone tem-
perature setpoint of 22°C. During unoccupied periods, temperatures were allowed to flow. Out-
side air intake was controlled by an economizer, restricting the minimum damper position to 
10%.  
It was verified by ERS personnel that all sensors were sufficiently calibrated and over 750 moni-
toring points at minute-by-minute intervals were recorded during the experiments. 

3 Description of Implemented Predictive Control Strategy 

3.1 Overview 
In this study we employed a sequential approach to model-based control: 1) short-term forecast-
ing, 2) optimization, and 3) post-processing and control command implementation as shown in 
Figure 2. A real-time weather station provides the current weather data to the short-term 
weather predictor. This predictor provides an improved forecast for the next planning horizon to 
the optimal controller, which adjusts the control variables in the model according to  un-
til convergence is reached. The optimal solution is passed to a post-processor that interprets the 
optimal results and turns them into commands understood by the building automation system of 
the facility under control. The building is modeled in TRNSYS (2003), while the general purpose 
technical computing environment Matlab (2000) including the optimization toolbox was used to 
interface with the building simulation program. 

Figure 3
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Figure 2: Real-time predictive optimal control schematic. 

3.2 Prediction  
A 30-day bin predictor model was found to provide the most accurate weather forecasts for a 
range of models tested in previous research by Henze et al. (2004b). The predicted variables 
include ambient air dry-bulb temperature, relative humidity, global solar radiation, and direct 
normal solar radiation. The assumption underlying the prediction procedure is that the actual 
time series will exhibit a behavior similar to a reference pattern, developed by rendering bin es-
timates. For a planning horizon of L = 24 hours, the bin model develops the characteristic profile 
on the basis of observations collected over the past 30 days. The forecast is made by shifting 
the L-hour profile such that the predicted value for the current hour k* coincides with the actual 
measured value by the weather station at the ERS. Hence, the forecast bin values are com-
puted from 

 { } * *
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where d is the number of past days used to compute the bins, and Xt is the observed variable. 
The 24-hour forecast is handed over to the optimal controller that uses these values among 
others to estimate the building cooling load profile for the next L hours.  

3.3 Real-Time Model-Based Predictive Optimal Control 
The optimal controller governing the two sources of thermal energy storage can minimize an 
objective function of choice including total energy consumption, energy cost, occupant discom-
fort, or a combination of these. In this study, the real-time controller was charged to minimize 
operating cost for time-of-use differentiated electricity and fixed-cost natural gas by adjusting 
global zone temperature setpoints TZ,SP for the passive storage and a dimensionless 
charge/discharge rate u for the active storage. 
Optimal control is defined as that control trajectory that minimizes the total monthly utility bill Cm 
for electricity and heating: 
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where re,k is the energy rate for electricity according to the utility tariff in effect for time k,  Km is 
the number of hours in the current month, ∆th is a time increment of one hour, rh is the unit cost 
of heat delivered, and Q  is the heating demand from zone reheat in hour k. ,heat k

To apply fixed-horizon optimal control to an infinite-horizon problem such as the given real-time 
control (it could go on indefinitely), closed-loop optimization (CLO) is employed, i.e., the predic-
tive optimal controller carries out an optimization over a predefined planning horizon L and of 
the generated optimal strategy only the first action is executed. At the next time step the proc-
ess is repeated. The final control strategy of this near-optimal controller over a total horizon of K 
steps is thus composed of K initial control actions of K optimal strategies of horizon L, where L < 
K. By moving the time window of L time steps forward and updating the control strategy after 
each time step, a new forecast is introduced at each time step and yields a control strategy, 
which is different from the strategy found without taking new forecasts into account. Since we 
optimize over a planning horizon of L hours, we can only minimize an approximate cost function 
CL, which allows for the determination of a near-optimal strategy, whose cumulative utility cost 
approaches the desired Jm at the end of the billing period. 
Figure 3

Figure 3: Iterative sequential optimization of utility cost CL 

 illustrates how the minimal utility cost JL over time horizon L is determined. At time zero 
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the previously found optimal zone temperature setpoint profile are employed to determine the 
new optimal zone temperature setpoint profile and optimal utility cost JL. This cycle is repeated 
until the optimal cost JL converges. Typically, convergence is attained after 2 to 3 iterations. 
Previously optimal solutions are stored as starting values for subsequent optimizations to re-
duce execution time. We refer to Henze et al. (2004a) for a detailed description of the model-
based predictive optimal controller for building thermal storage inventory. 
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Dynamic Programming{ } 0
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At each time step k*, the model-based controller derives the following four operational parame-
ters for the active TES system from the optimal charge/discharge rate uk*: charging load for the 
main chiller (Qcharge), discharging load for the active TES system (Qdischarge), remaining cooling 
load for the main chiller (Qmain), and cooling load met by the precooling chiller (Qprecool). Rules in-
corporated in the building model ensure that a) charging and discharging cannot occur simulta-
neously; b) when the main chiller charges the active TES tank, any building cooling load has to 
be met by the precooling chiller; and c) when the TES system is discharged, any remaining 
building cooling load has to be met by the main chiller. 
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3.4 Post-Processing 
A post-processing computer program was developed for the ERS test facility to translate the 
optimal results produced by the model-based controller into commands, which can be under-
stood by the building automation system and executed by the ERS HVAC system. The post-
processing program sketched in Figure 4 sequentially executes the following operations every 
hour: (a) setup of a communication channel between the optimal controller environment and the 
BAS using a proprietary general-purpose communication software, (b) reading the optimal re-
sults from the optimal control and the required values from the BAS, (c) conversion of optimal 
results into control commands, and (d) sending the new control commands to the BAS. 
The following post-processing procedure is executed: First, the room air temperature setpoint is 
sent directly to the BAS. Next, the cooling discharge rate of the TES is accomplished by sending 
the TES leaving water temperature as a setpoint for the TES mixing valve local loop control. 
The leaving water temperature TLW,TES is calculated from ( )discharge , ,p EW TES LW TESc T T= −Q m , 
where flow rate ( m ) and entering water temperature (T ) are read from the BAS.  ,EW TES

During occupancy, the cooling output of the main chiller, operating with a constant cooling out-
put in one of two stages, is accomplished by pulse width modulation (PWM). The PWM algo-
rithm translates the optimal control result Qmain into a chiller stage and minutes of operating time 
during the next hour. The PWM time period was 20 min. Thus, the total chiller operating time is 
distributed over three PWM periods per hour. Operational constraints have also been taken into 
account. For example, there are at least five minutes between two periods of chiller operation in 
order to avoid the chiller cycling too frequently. Moreover, if the calculated main chiller load re-
sults in an operating time less than 5 minutes, than the chiller will operate 5 min. The precooling 
chiller is operated by the existing on-off control algorithm without PWM to maintain the global 
zone temperature setpoint TZ,SP in the building. 
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Figure 4: Post-processing program flow chart. 
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3.5 Control Command Execution 
The building automation system requires five plant modes, which had previously been defined 
for the ERS test facility and had been modified to accommodate the predictive optimal control. A 
plant mode has to be selected before a command from the post-processing program can be 
sent to the HVAC system. The three of the available plant modes used in the context of our ex-
periment were: TESMAKE plant mode which represents charging of the active TES system, 
TESACC plant mode in which the test rooms are conditioned by the main chiller and/or the ac-
tive TES system, and TESACCOFF where the entire HVAC system is turned off. In addition, the 
BAS enables the air-handling unit fans based on the existence of a cooling load on the AHU 
cooling coils. In summary, the post-processing program obtains the optimal results from the 
controller, converts the values into comprehensible commands, selects a plant mode and for-
wards the commands using the communication channel to the BAS. 

4 Description of Conventional Control Strategies 

Before the real-time control experiments were conducted, two additional tests, a reference case 
and a base case test, were carried out. Both tests were required to calibrate the simulation 
model with respect to the building thermal response, the mechanical systems, and the opera-
tional schedules.  shows the system configuration for the reference case and the base 
case. The active TES system is bypassed in the reference case.  

Figure 5

4.1 Reference Case 
The reference case represents the standard case of a cooling system with one sufficiently sized 
chiller (35 kW) which serves the air-handling units (AHU) A and B during occupancy, with night-
time setback during unoccupied periods and with neither active nor passive building thermal 
storage utilization. The test was run under the same schedule of occupancy and temperature 
setpoints: During occupied hours the zone temperature cooling setpoint was 24°C and the heat-
ing setpoint was 20°C, while the space temperature was allowed to float within the range of 15-
30°C during unoccupied periods. 

4.2 Base Case 
In the base case test, the zone temperature setpoints were identical to the reference case test, 
however, the main chiller is downsized to only 25% of its nominal capacity (8.8 kW). During 
those periods when the cooling load exceeds the reduced chiller capacity, the remaining cooling 
is taken from the active TES system. At night the active TES system is recharged with full ca-
pacity of 35 kW to the upper inventory level of 75% state-of-charge. As in the reference case, 
the passive building thermal storage inventory is not utilized. 
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Figure 5: System schematic of ERS HVAC equipment  

 

5 Results 

5.1 Modeling Accuracy 
The real-time optimal control experiment was executed over a period of 5 days (128 hours) from 
midnight on September 13 until 8 a.m. on September 18. In order to verify the experimental re-
sults, the accuracy of the building model must be evaluated. Minute-by-minute measurements 
taken at the test facility from September 14 to September 17, 2003 (subscript ERS) are com-
pared to the optimal results determined by the controller during the real-time control experiment 
(subscript ActPredOpt, actual predictive optimal results). Preliminary tests conducted during 
June and July of 2003 facilitated the calibration the simulation model. As supported by evidence 
provided below, the accuracy of the building model was sufficiently high. Moreover, the post-
processing program correctly translated and transferred the optimal control results and the 
HVAC systems and components were successfully orchestrated. 
The experiment experienced two interruptions due to server crashes that made the communica-
tion channel to the building automation system unavailable on September 16 at 18:00 and on 
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September 17 at 12:00 noon. During these interruptions the BAS returned zero values for all 
properties and deviations between model and measured data necessarily occurred. 
Figure 6

Figure 6: Measured and modeled total AHU cooling loads as well as measured internal heat 
gains [kW].  

 compares the total simulated and measured AHU cooling loads of system B. It can be 
seen that the measured and modeled values are in good agreement. However, there are some 
peak cooling loads which are not represented well by the model-based controller. The AHU 
loads are due to internal heat gains from baseboard heaters and lighting, which were chosen to 
be constant throughout the test days, solar gains, and the required intake of ventilation air. 
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Figure 7 illustrates the measured and modeled charging and discharging performance of the 
active TES system for the September 15. It can be observed that the charging performance is 
accurately modeled; however, the discharge performance is modeled less precisely. Still, the 
discharge trend is captured well by the model used in the predictive optimal controller. While the 
charge/discharge performance appears to be adequately modeled, the profiles of the state-of-
charge do not match well. Differences of up to 12% of active inventory can be observed and are 
attributed to a) the compounded differences in the charge/discharge performance and b) the 
poor accuracy of the inventory sensor (claimed to be ±5%). To eliminate the discrepancy be-
tween the simulated and measured values of state-of-charge, the SOC was measured through-
out the testing period and updated seven times in the simulation environment. This procedure 
implies that the SOC sensor reads inventory levels accurately, which is not the case. Thus, the 
compounded effect of modeling mismatch in the charge/discharge process is eliminated, yet at 
the time the low SOC sensor accuracy is introduced to the optimization environment.  
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Figure 7: Measured and simulated charging and discharging load [kW] and state-of-charge [%]. 

Figure 8

Figure 8: Measured and simulated precooling chiller cooling load [kW]. 

 illustrates the measured and simulated performance of the precooling chiller. Com-
pared to the main chiller cooling profiles (not shown), the modeling accuracy for the precooling 
chiller is inferior. Unlike the active TES system and the main chiller, the precooling chiller was 
not controlled to maintain a particular value of Qprecool, but to maintain a global zone temperature 
setpoint TZ,SP.  
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Does the model-based predictive optimal control comply with the operational constraints im-
posed in the model? Figure 9 shows the ambient air temperature, the average room air tem-
perature, and the upper and lower temperature bounds selected for the operation of the ERS, 
represented by thick lines. During the real-time control experiment, the optimal controller de-
cided on substantial nighttime precooling down to 20°C averaged over all test rooms. Had the 
controller decided to precool the building even lower, a need for heating would have occurred at 
the onset of the occupied period. When the temperatures were allowed to float as in the refer-
ence and base cases, the average test room temperature rises above 26°C during unoccupied 
periods. During occupied periods, the room temperature stayed within the required comfort 
range for all three control strategies investigated in this study. 
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Figure 9: Average test room air temperature and ambient air temperature [°C]. 

The investigation of the active TES system state-of-charge data revealed that the simulated val-
ues remained consistently within the lower and upper bounds of 25% and 75%, respectively, 
while the measured TES inventory falls below the 25% mark due to a nonlinear discharging per-
formance.  
The average COPs of the main and precooling chillers were recalculated based on the data col-
lected during the real-time control test in September of 2003. It was confirmed that the meas-
ured COPs deviated from the values in the building model by no more than ±0.1. 
The schedules for occupancy and the HVAC system as implemented in the building model and 
the building automation system proved to match identically.  

5.2 Energy and Cost Savings Performance 
As mentioned above, changes in energy consumption and utility cost will be expressed relative 
to a simulated reference case or base case using the same building model and the same 
weather data as occurred during the real-time control tests. The performance metric for all 
cases is the utility cost for operating the entire HVAC system over a selected time horizon of 
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four days from September 14-17, 2003. The data for September 13 were not considered to ac-
count for the transition from the uncontrolled to the controlled condition. 

5.2.1 Energy and Cost Savings Performance based on Raw Data  

The electrical utility rate structure includes a time-of-use differentiated energy charges ($/kWh) 
of $0.20/kWh on-peak and $0.05/kWh off-peak; no demand charge is levied. The on-peak pe-
riod is daily from 9 a.m. to 6 p.m. with off-peak encompassing all remaining hours. The building 
is occupied from 8 a.m. to 5 p.m. While the optimizer accounted reheat energy, no reheat was 
required in any of the test periods. The discussion therefore focuses on electrical energy con-
sumption and costs. 
The viewgraphs in this section are shown measurements at the ERS during the real-time-control 
test and simulation results for the reference and base cases for four days. In this time period, 
the outdoor air temperature ranges from 10°C early in the morning to 27°C at 6 p.m. Figure 9 
reveals the increasing trend of daily average ambient air temperature over the course of the 
real-time control experiment. 
In order to evaluate the results of the optimal control strategy with respect to cost and energy 
changes, the following tables and figures provide measured and calculated data for the follow-
ing cases: a) reference case under nighttime setback, b) base case under chiller-priority control 
(labeled Base Case 87%), c) the data measured at the facility (labeled ERS), and d) the simu-
lated data calculated during real-time control (labeled ActPredOpt). Both cases utilizing the ac-
tive TES system, i.e., base and real-time control cases, started with an initial TES state-of-
charge of 30%. 
The original building model assumed a perfect, i.e., loss-free active TES system. This implies 
that 100% of the charging cooling load, Qcharge, is deposited in the storage tank. From meas-
urements it was concluded that only about 87% of the cooling produced by the main chiller dur-
ing the charging process contributes to changes of the active inventory storage, 13% are lost 
due to heat gains in the chilled-water distribution system and thermal transmission through the 
tank skin. For each charging period (5-7 hours per night) during the experiment, the change of 
the ice storage inventory was divided by the cumulative charging load that occurred over the 
same time period. The efficiency value of η = 87% was arrived at by averaging these five ratios.  
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where p denotes the charging period and Hp is the number of hours in charging period p. While 
the building model used for the ActPredOpt case assumed a perfect charging efficiency, the ef-
fect of heat gains and transmission losses on the state-of-charge was accounted for by periodi-
cally updating the SOC used in the simulation with measured SOC values at the test facility. 
For an electrical utility rate structure without demand charges, we can plot daily profiles of 
HVAC utility costs for the main chiller, the precooling chiller, and chilled water pumps. The 
HVAC electrical energy consumption for September 17 is shown in Figure 10. The area under 
each curve represents the total daily operating consumption. It can be seen that the reference 
case incurs the highest on-peak demand, but as a result of nighttime setback does not consume 
any energy during the unoccupied period. The base case created the second highest energy 
demand during the on-peak period. Although the on-peak energy consumption for the base 
case is significantly less than that for the reference case, the on-peak consumption is greater 
than that under optimal control. During the day shown in Figure 10, the building cooling load 
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was moderate and only a small contribution from the active TES system was required in the 
base case. Consequently only four hours of recharging were needed. 
The model-based predictive optimal controller successfully shifted building cooling loads to off-
peak periods and an excellent match between calculated (ActPredOpt) and measured (ERS) 
cooling load data can be observed. 
The simultaneous utilization of active and passive building thermal storage inventory led to 
near-zero cooling-related electrical energy consumption during the on-peak period. The remain-
ing energy consumption during the on-peak period is caused by the chilled water pump operat-
ing continuously. During the off-peak period high values of energy consumption can be ob-
served which are due to precooling of the building structure (passive) and charging of the active 
TES system. It is obvious that on-peak energy consumption is reduced at the expense of in-
creased off-peak energy consumption driven by the energy rate ratio of 4:1. Reducing on-peak 
electrical demand is a side effect of shifting expensive on-peak cooling loads to off-peak periods 
for an optimal controller minimizing electrical energy cost without a demand charge. 
Although the building model was extensively calibrated, the seemingly small differences be-
tween measured and modeled hourly HVAC electrical energy consumption compounded to sig-
nificant differences on a daily basis. 
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Figure 10: HVAC electrical energy consumption [kWh]. 

Table 1 provides the daily utility cost savings achieved during the experimental period. Relative 
to the reference case, measured savings of about 5% in total HVAC utility costs were achieved 
in the ERS, and about 10% of modeled savings (ActPredOpt). Compared to the base case with 
87% charging efficiency, cost increases of about 7% and 1.4% were achieved for the ERS and 
the simulation, respectively. As shown, there are significant variations in the cost changes from 
one day to another relative to the reference and the base cases. This inconsistent pattern was 
caused by a number of reasons discussed in the next section. 
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Table 1: Changes of daily HVAC electrical utility cost of the optimal control strategy compared to 

the Reference Case and the Base Case 87% [%]. 

Table 1

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes relative to Reference Case [%]

ERS -19.7 +11.5 +9.1 -21.2 -5.0
ActPredOpt -32.2 +20.4 +7.1 -34.4 -9.9

Cost changes relative to Base Case 87% [%]

ERS -30.3 +17.3 +32.1 +1.3 +7.0
ActPredOpt -41.1 +26.6 +29.7 -15.6 +1.4  

5.2.2 Corrected Energy and Cost Saving Performance 

Motivation for Correcting the Measured Results – Previous research (Henze et al., 2004a 
and 2004b) revealed that given strong load-shifting incentives, the benefits of the investigated 
predictive optimal control may be substantial. Therefore, we expected moderate daily savings, 
less fluctuation from day to day, and substantial cumulative savings. The promising potential of 
the optimal control strategy revealed in previous simulations may be obtained by the removal of 
erroneous data that occurred during the experiment. The corrected data discussed will be de-
noted by ‘ERScor’ and ‘ActPredOptcor’. 
Description of Experimental Problems – There were two experimental problems encountered 
during the tests: First, invalid data were produced by the building model during two hours of the 
experiment caused by the interruptions of the communication channel. These erroneous data 
were eliminated by interpolating between the valid adjacent data points. 
Second, during three hours suboptimal solutions were found by the optimizer. As a result, main 
and precooling chiller activity occurred for three hours during the on-peak period of September 
16 and drastically increased the electrical energy costs for that day. The precooling chiller activ-
ity can be observed for September 16 at 12 noon and 2 p.m. in . The controller re-
quested the main chiller to charge the TES with a very small charging load (not shown). As a 
result, the precooling chiller had to meet the daytime AHU cooling loads. Why did this happen? 
At any point in time, meeting a cooling load is least expensive by discharging the active TES 
system (only pump energy is incurred), next by using the precooling chiller (COP = 3.4), and 
finally by using the main chiller in chilled-water mode (COP = 2.1). Since both chillers cannot 
operate at the same time, the optimizer decided to charge an insignificant amount in order to be 
able to use the precooling chiller to meet the on-peak cooling loads. We believe that the optimal 
controller was caught in a local minimum during these hours, thus it selected a suboptimal con-
trol strategy. These experimental defects affected both the measured and the simulated raw 
cost data as shown in .  

Figure 8

Elimination of Experimental Defects – In order to fairly assess the potential of the model-
based predictive optimal controller, we manually modified the measured and simulated raw data 
to account for the interruptions and spurious precooling chiller activity. In addition, we repeated 
the experiment in a simulation environment using the same building model, weather data, and 
initial state-of-charge (labeled RecPredOpt), and compared it with the manually modified simu-
lated data (labeled ActPredOptcor). The expectation was that after removing the experimental 
defects from the raw data and repeating the simulation without the problem of local minima, the 
results should match closely. Indeed, a repeated simulation run did not produce the same idio-
syncrasies with respect to the precooling chiller operation as can be seen in . Figure 12
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Figure 11: Simulated precooling chiller load as determined during the real-time experiment (Act-

PredOpt) and during recreated experiment (RecPredOpt) [kW]. 

The recreated experiment determines the cost savings we may have had obtained without inter-
ruptions and local minima. Interestingly, there are minor differences between the results col-
lected for the real-time optimization ActPredOptcor and the recreated optimization RecPredOpt. 
Obviously, the controller does not find exactly the same optimal solutions, which can be attrib-
uted to the convergence criterion of the optimizer. 
Cost Comparison using the Modified Measured Results and the Recreated Simulation – 

 compares the daily savings of the corrected measurements at the ERS and of the cor-
rected real-time simulation with the reference and base cases. It can be seen that the values for 
September 16 and 17 differ greatly from the cost calculation involving the raw data as shown in 

. After the removal of the erroneous data we obtain cost savings of 13% for the ERS 
data compared to the reference case and savings of 2% relative to the base case. The cor-
rected real-time optimal results reveal higher cost savings as well. Cumulative savings of 18% 
are obtained when compared to the reference case and 7% are obtained relative to the base 
case. When comparing the recreated optimal results without local minima complications against 
the reference case, we obtain the same 18% savings as for corrected simulation results. 

Table 2

Table 1

The recreated simulation did not require any updates of the SOC values since it did not occur in 
real-time and actual SOC data was not available. In order for the comparison of the recreated 
optimal and simulated base case to be valid, both have to use the same active TES model. We 
decided to assume a perfectly efficient charging process in the TES system for this comparison. 
The comparison yielded cost savings of about 7%. 
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Table 2: Changes of daily corrected HVAC electrical utility cost of the optimal control strategy 
compared to the Reference Case and the Base Case [%]. 

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes relative to Reference Case [%]
ERScor -19.7 +11.6 -19.0 -22.4 -13.6
ActPredOptcor -32.8 +19.8 -19.6 -34.3 -18.0
RecPredOpt -35.3 +13.2 -18.2 -30.5 -18.2

Cost changes relative to Base Case 87% [%]
ERScor -30.2 +17.4 -1.9 +1.2 -2.2
ActPredOptcor -41.7 +26.0 -2.6 -14.2 -7.2

Cost changes relative to Base Case 100% [%]
RecPredOpt -42.9 +19.0 0 -8.3 -6.6  

5.2.3 Consideration of AHU Fan Power Consumption 

Motivation for Neglecting AHU Fan Operation – Preliminary tests had revealed that the 
global optimization of both active and passive building thermal storage inventory led to prohibi-
tively long calculation times and inferior, i.e., often suboptimal solutions. In response, we 
adopted the iterative sequential optimization approach depicted in . This decision re-
quired the plant models of the passive and active optimization steps are identical. To allow for 
easy plant model calibration, we decided to include a simplified HVAC plant model character-
ized by constant COPs in each mode of operation excluding the operation and energy con-
sumption of the fans. 

Figure 3

The measured data revealed that the fan energy consumption cannot be neglected and that fan 
operation has a significant impact on the decisions of the model-based predictive optimal con-
troller. Therefore, the discussion of energy consumption and cost performance is now extended 
to take into account the fan power consumption and to highlight the differences in the optimal 
control decisions with and without fans. 
Results with AHU Fan Power Consumption – On the basis of measured data, we approxi-
mated the supply and return fan electrical power consumption for AHU A and B with second-
order polynomials and integrated those in the building model. The simulated results, shown in 

 below, present the hourly HVAC electrical demand on September 17 for the reference 
case, the base case, the corrected measured data ERScor, and the repeated optimal results 
RecPredOpt. The energy required by the reference case and the base case increased by the 
energy consumption of the fans during the occupied period.  

Figure 12

Using the new plant model, the optimizer in a recreated experiment decides to make less use of 
the passive building thermal storage inventory, i.e., less precooling during the night and as a 
result saves an impressive 27% and 17% of electrical utility costs relative to the reference and 
base cases, respectively.  
The actual experiment was conducted governed by a model-based predictive optimal controller 
that did not account for AHU fan power consumption. If we compare the measured total HVAC 
electrical energy consumption ERScor with the fan consumption added to the reference and 
base cases using the modified plant model, the savings are reduced from 13.6% to 5.6% for the 
reference case and from 2.2% savings to cost increases of 8.3%. This investigation emphasizes 
that the inclusion of fan power consumption is mandatory for a successful implementation of 
passive thermal storage utilization. The optimal active TES system control strategy was not ma-
terially affected by the inclusion of the AHU fans in the plant model.  
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Figure 12: HVAC electrical demand including fan operation [kW].  

 

Table 3: Changes of daily corrected HVAC electrical utility cost of the optimal control strategy 
compared to the Reference Case and the Base Case including the fan power consumption [%]. 

14-Sep 15-Sep 16-Sep 17-Sep Cumulative

Cost changes compared to the Reference Case [%]
ERScor -7.9 +13.5 -11.4 -13.2 -5.6
RecPredOpt -30.0 -13.9 -26.4 -36.4 -27.3

Cost changes compared to Base Case 87% [%]
ERScor -11.6 +25.4 +7.5 +9.6 +8.3

Cost changes compared to Base Case 100% [%]
RecPredOpt -32.9 -4.9 -10.7 -19.8 -16.7  

 

6 Conclusions and Future Work  

This topical report investigates the demonstration of model-based predictive optimal control for 
active and passive building thermal storage inventory in a test facility in real-time using time-of-
use differentiated electricity prices without demand charges. The novel supervisory controller 
successfully executed a three-step procedure consisting of 1) short-term weather prediction, 2) 
optimization of control strategy over the next planning horizon using a calibrated building model, 
and 3) post-processing of the optimal strategy to yield a control command for the current time 
step that can be executed in the test facility.  
The primary and secondary building mechanical systems consisting of two air cooled chillers, an 
ice-based thermal energy storage system, two identical air handling units and auxiliary equip-
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ment were effectively orchestrated by the model-based predictive optimal controller in real-time 
while observing comfort and operational constraints. The authors believe that this has not been 
accomplished before.  
The findings reveal that when the optimal controller is given imperfect weather forecasts and 
when the building model used for planning control strategies does not match the actual building 
perfectly, measured utility costs savings relative to conventional building operation can be sub-
stantial. This requires that the facility under control lends itself to passive storage utilization and 
the building model includes a realistic plant model. 
The savings associated with passive building thermal storage inventory proved to be small be-
cause the test facility is not an ideal candidate for the investigated control technology: The build-
ing structure is of light-weight construction, the test rooms are unfurnished, and significant ther-
mal coupling exists between controlled test rooms and an uncontrolled adjacent area. Moreover, 
the facility’s central plant revealed the idiosyncratic behavior that the chiller operation in the ice-
making mode was more energy efficient (COP=2.4) than in the chilled-water mode (COP=2.1). 
To aid model calibration, the model used for real-time control employed a constant COP ap-
proach for each chiller and mode of operation and ignored VAV fan operation. The measured 
results show that the plant model must include AHU fan operation and should include part-load 
performance and correction for off-design conditions. 
Field experimentation is now required in a suitable commercial building with sufficient thermal 
mass, an active TES system, and a climate conducive to passive storage utilization over a 
longer testing period to support the laboratory findings presented in this study.  
Currently underway is research that attempts to create an optimal controller for the same control 
application that does not rely on a model description but learns to carry out the best control de-
cisions based on reinforcement it received in response to past actions.  
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9 Nomenclature 

AHU   Air handling unit 
ActPredOpt  Raw actual predictive optimal results during real-time simulation 
ActPredOptcor Corrected predictive optimal results during real-time simulation 
BAS   Building automation system 
Base Case 87% Base case under chiller priority with 87% charging efficiency 
Base Case 100% Base case under chiller priority with 100% charging efficiency 
CHWP   Chilled water pump 
CLO   Closed-loop optimization 
COP   Coefficient-of-performance 
ERS   Energy Resource Station; raw measured data at ERS 
ERScor  Corrected measured data at ERS 
IEC   Iowa Energy Center 
HVAC   Heating, ventilating, and air-conditioning 
PWM   Pulse width modulation 
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RecPredOpt  Repeated predictive optimal results 
SOC   State-of-charge for the inventory in the active thermal storage system [%] 
TES   Active thermal energy storage system 
TESACC  Plant mode: Condition the test rooms 
TESACCOFF  Plant mode: Turn off HVAC system 
TESMAKE  Plant mode: Charge active TES system 
VFD   Variable-flow distribution 
CL   Cost function for horizon L [$] 
Cm   Total monthly utility bill [$] 
Hp   Number of hours in charging period p [-] 
Jm   Optimal total monthly utility bill [$] 
JL   Optimal utility cost for horizon L [$] 
Km   Number of hours in current month [-] 
L   Planning horizon for optimal control [h] 
Qcharge   Charging load for the main chiller [kW] 
Qdischarge  Discharging load for TES system [kW] 
Qheat   Heating demand from zone reheat [kW] 
Qmain   Cooling load for main chiller [kW] 
Qprecool   Cooling load for precooling chiller [kW] 

,EW TEST    Entering water temperature of TES [°C] 

,LW TEST    Leaving water temperature of TES [°C] 

Tz,SP   Global zone temperature setpoint [°C] 

{ }ˆ
tX    Forecasted time series 

{ }tX    Observed time series 

cp   Specific heat capacitance [kJ/kgK] 
d   Number of days [-] 
k*   Current hour [-] 
m    Mass flow rate [kg/s] 
n   Day index [-] 
re,k   Energy rate for electricity [$/kWh] 
rh   Cost of heat delivered [$/kWh] 
t   Time [-] 
u   Charge/Discharge rate [-] 

ht∆    Time increment for one hour [-] 
η    Efficiency value for charging TES [%] 
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Appendix – Additional Tests at the Larson HVAC Laboratory 

10 Description of the Larson HVAC Laboratory 
The Larson Building System Laboratory at the University of Colorado at Boulder shown in 

 is a unique facility in the HVAC industry in that it permits the study of entire HVAC 
systems in a controlled dynamic environment, providing repeatable test conditions that have 
been heretofore unavailable. It is used for educational and research purposes and is designed 
for dynamic testing of complete and full-scale commercial HVAC and building systems. The fa-
cility consists of a full-size commercial HVAC system, four representative commercial building 
zones, a system for producing repeatable and controllable loads on the HVAC system, and so-
phisticated data acquisition and control systems. Activities at the laboratory include evaluation 
and testing of control algorithms and hardware for HVAC components and systems, interactions 
between multiple control functions of HVAC systems, the dynamic interactions between building 
thermal response and HVAC system controls, ventilation control for indoor air quality, and 
HVAC system diagnostics. 

Figure 13

Figure 13: Isometric View of Larson Laboratory at the University of Colorado 
 

The laboratory has been designed for maximum flexibility to encourage a wide variety of re-
search and testing programs. In particular, both the HVAC and control systems in the laboratory 
are re-configurable in that components, subsystems or entire systems can be readily installed, 
tested, and modified. 
The main HVAC system of the laboratory consists of a 12,000 cfm air-handling unit that is con-
nected to four building zones by variable-air-volume (VAV) fan powered mixing boxes. To pro-
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vide cooling to the four zones, a chiller, rated at 265 kW (75 tons) cooling capacity comprised of 
two screw-type compressors, is available within the lab. Continuous capacity control is provided 
down to 10% of rated capacity. This chiller, a 2.2 kW (3 hp) constant-volume pump, and a 668 
kWh (190 ton-hour) ice storage tank are incorporated into a primary loop. A separate constant-
volume 2.2 kW (3 hp) pump circulates water through a secondary loop to the zone simulators 
and the two air-handling units. The chilled water loop contains 25% glycol brine and allows the 
primary loop to operate at temperatures as low as -5°C. The ice storage tank will be used to 
provide chilled water to the air-handling unit.  
The entire lab is controlled using programmable direct digital control (DDC). The DDC system 
uses electronic actuators for damper and valve control, all of which accept standard analog con-
trol signals. The system employs laboratory-grade instrumentation for accurate control.  All the 
control strategies to be tested in this project can be easily programmed using this DDC system. 
The data acquisition can accommodate up to 300 data channels. Data collected include tem-
perature, humidity, pressure, flow rate, fan speed, and electric power consumption. The accu-
racy measurements meet or exceed all relevant ASHRAE/ASTM standards. 

11 Description of the Experiments 
The experiments focus on lab validation of optimal control of active and passive building thermal 
storage inventory in a light-mass building as represented by the Larson HVAC Laboratory at the 
University of Colorado at Boulder. 
Experiments on passive-only, active-only and combined building thermal storage control were 
carried out and the results analyzed. Two electrical utility rates are studied: a strong incentive 
rate and a weak incentive rate. For the strong incentive rate, on-peak and off-peak energy 
charges are 0.20 $/kWh and 0.05 $/kWh respectively and demand charges are 20 $/kW and 5 
$/kW respectively. In the weak incentive rate, on-peak and off-peak energy charges are 0.10 
$/kWh and 0.05 $/kWh respectively and demand charges are 10 $/kW and 5 $/kW respectively. 
The results from experiment and simulation are discussed below. 

11.1 Base Case 
The building is occupied from 8:00-19:00, the on-peak period is 10:00-18:00 and the rest of the 
day is off-peak period. The two zone simulators (ZSIM1, ZSIM2) are conditioned to 75°F for 24 
hours with internal loads schedules of 19 kW and 20 kW for 24 hours respectively. The two full 
size zones (FSZW, FSZE) are conditioned to 75°F during occupied period and allowed to float 
up to 105°F during unoccupied period. The peak internal loads of the two full size zones are 6 
kW each zone. The internal loads are 30% peak load during 8:00-9:00, 12:00-13:00 and 18:00-
19:00 and 50% peak load during 9:00-12:00 and 13:00-18:00. Simulated weather file of summer 
design day in Phoenix, AZ are successfully incorporated in the outside air conditioning station 
(OACS) as illustrated by Figure 14. 
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Figure 14: Simulation and measured outdoor air dry-bulb temperature profiles 

Figure 15

Figure 15: Simulated and measured zone air temperature and chiller power consumption pro-
files under base case control 

 shows the indoor air temperatures, and chiller power consumption profile comparison 
between experiment and simulation results. Excellent agreement between model and laboratory 
performance can be noted. The average error of simulation on chiller power consumption is 
0.6%. 
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11.2 Strong Incentive Utility Rate 
11.2.1 Passive-Only (Nighttime Precooling) 
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Figure 16: Simulated and measured zone air temperature and chiller power consumption pro-

files in passive-only optimal control under strong incentive utility rate 

The optimal passive building thermal storage control suggests precooling the full-size zones to 
18.3°C for 3 hours before occupancy then maintaining zone setpoint of 24°C. In the experiment 
and as expected, it is found that the zone temperature of the full-size zones does not drop to 
18.3°C immediately. It takes about 2 hours to cool the zone to desired precooling temperature. 
Also, after precooling, the zone temperature rise more slowly than the simulation results. In 
general, the difference in chiller power consumption between experiment and simulation are 
within an acceptable range. The chiller consumes more power during 5:00-8:00 due to precool-
ing and cooling energy costs are slightly lower than the base case. 
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11.2.2 Active-Only (Ice Storage) 
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Figure 17: Simulated and measured zone air temperature and TES state-of-charge profiles of 

active-only optimal control under strong incentive utility rate. 
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Figure 18: Simulated and measured chiller power consumption profiles in active-only optimal 

control under strong incentive utility rate 
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From  and , it can be observed that the simulated and measured TES state-
of-charge profiles and chiller power consumption profiles display differences. This is due to the 
difficulty of controlling the TES charging process as accurately as the simulation because of the 
existence of constant speed pump and PID controlled valve as well as the nonlinear heat trans-
fer characteristics of the active storage itself. In the experiment, only the initial and final ice level 
during charging and discharging process is controlled. Although the profiles reveal differences, 
the error of total power consumption and energy cost are 3% and 8%, respectively, and deemed 
as acceptable. 

Figure 17 Figure 18

  

11.2.3 Combined Active and Passive Building Thermal Storage  
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Figure 19: Simulated and measured zone air temperature and TES state-of-charge profiles in 

combined active and passive optimal control under strong incentive utility rate 
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Figure 20: Simulated and measured chiller power consumption profiles in combined active and 

passive optimal control under strong incentive utility rate 

The passive building thermal storage inventory is precooled to 18°C for 3 hours before occu-
pancy and the ice tank is charged to from 1” to 3.4” inches of ice before the beginning of the on-
peak period and discharged to 0.53” during the on-peak time and after that recharged to 1”. The 
error of total chiller power consumption and energy costs are 1% and 3%, respectively. 
 

11.3 Weak Incentive Utility Rate 
11.3.1  Passive-Only (Nighttime Precooling) 
The optimal control of passive building thermal storage under weak rate ratio is the same as 
that of intensive rate ratio in our case. Only the percentage of savings achieved is reduced. The 
error of total power consumption and energy costs are within 1%. 
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Figure 21: Simulated and measured zone air temperature profiles and chiller power consump-

tion in passive-only optimal control under weak incentive utility rate 

 

11.3.2 Active-Only (Ice Storage) 
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Figure 22: Simulated and measured zone air temperature and TES state-of-charge profiles in 

active-only optimal control under weak incentive utility rate 
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Figure 23: Simulated and measured chiller power consumption profiles in active-only optimal 

control under weak incentive utility rate 

The ice tank is charged from 1” to 3.39” of ice level before occupancy and discharged to 0.5” of 
ice level during on-peak time and recharged to 1” in the night. The error of cost savings is within 
1%. 
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11.3.3 Combined Active and Passive Building Thermal Storage  
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Figure 24: Simulated and measured zone air temperature and TES state-of-charge profiles in 

combined-TES optimal control under weak incentive utility rate 
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Figure 25: Simulated and measured chiller power consumption profiles in combined active and 

passive building thermal storage optimal control under weak incentive utility rate 
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11.4 Effect of night floating temperature in full size zones. 
As can be seen from the previous figures, in some of the experiment, the nighttime floating tem-
perature of the full size zones is different from that from simulation. This is mainly due to the fact 
that in some of the experiment, the lights in the full size zones are kept on during the night. In 
the morning, different zone temperature will affect the results of optimization.  
Therefore, simulations were conducted to study the impact of nighttime zone floating tempera-
ture on optimization results. Figure 13 shows the zone temperature profiles and chiller power 
consumptions in two optimal controls with different initial zone temperatures. Table 1 shows the 
comparison of cost savings achieve under high and low initial temperatures. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Figure 26: Zone temperature and chiller power consumption profiles under different nighttime 

floating temperatures for light mass with strong incentive utility rates. 

Table 4: Comparison of Cost Saving Achieved by Optimal Control of Passive TES under High 
and Low Floating Temperature 

 
 

From Figure 26, it can be seen that, by leaving the lights in the full size zones on, the floating 
temperature in the morning before occupancy can be 5°F higher than leaving the lights off. With 
higher starting temperature in the morning, more cooling power is consumed in order to keep 
the zone at a comfort level. But since the building mass is very light, the impact of morning zone 

University of Nebraska – Lincoln and University of Colorado at Boulder Page 35 



Topical Report for Phase II: Laboratory Testing of Cooperative Agreement DE-FC26-01NT41255 
Project Title: “Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory” 
 
floating temperature does not affect the optimal control. In both cases, the optimal control of 
passive TES suggests to cool the zone to 18°C for 3 hours before occupancy. In terms of cost 
savings, both cases save within 0.5% due to the light mass. 
 

12 Summary 
The power consumption and cooling cost savings are summarized below. 
 

Table 5: Comparison of Simulation and Measured Results 

Lab E+ Lab E+
Cooling Energy Use (KWH) 436.41 433.33 436.41 433.33
Cooling Cost ($) 64.01 62.98 40.47 39.89
Cooling Energy Use (KWH) 437.08 434.48 436.53 434.48
Cooling Cost ($) 63.18 62.59 39.94 39.79
Savings -1.31% -0.62% -1.29% -0.25%
Cooling Energy Use (KWH) 483.07 469.41 475.33 468.82
Cooling Cost ($) 34.00 31.44 31.85 31.41
Savings -46.88% -50.08% -21.28% -21.27%
Cooling Energy Use (KWH) 471.97 478.89 471.97 481.33
Cooling Cost ($) 32.61 31.55 31.69 31.68
Savings -49.05% -49.91% -21.70% -20.58%

Active Only

Combined

Rate Ratio 2:1Rate Ratio 4:1

Base Case

Passive Only

 
 
From Table 5 it can be observed that the EnergyPlus simulation is a surprisingly accurate pre-
diction of the experiment. Therefore, actual savings of building energy costs can be expected by 
applying optimal controls from simulation results. However, it can also be concluded that the 
Larson HVAC Laboratory has only marginal passive building thermal storage inventory and is 
therefore not representative of a heavy-mass commercial building. 
 

13 Uncertainty Analysis 
An uncertainty analysis is performed for the active storage (ice-based TES) charg-
ing/discharging heat transfer rate. It is a function of the measured independent parameters, i.e. 
ice tank inlet/out let temperature and ice tank flow rate. 

( )p outlet inletQ A VC T Tρ= −

V

 

where, 

A is a conversion factor, A=6.667e-4 (ft3/gal)(min/hr)(ton-hr/Btu), 

ρbrine is the density of the brine, ρbrine= 65 lbm/ft3, 

Cp is the specific heat of the brine, Cp,brine=0.85 Btu/lbm/°F, 

is the volumetric flow rate of the brine, V =105 gal/min, 

Tinlet is the ice tank inlet temperature, Tinlet = 25°F, 

Toutlet is the ice tank outlet temperature, Toutlet = 30°F. 

Measurement errors for the density and specific heat properties of the brine are neglected. 
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The ice tank flow rate measurement has an absolute precision of 0.3 gal/min and an absolute 
bias of 0.9 gal/min. The temperature measurements have absolute precisions of 0.2°F and ab-
solute biases of 0.3°F. 

Since, 

( )p outlet inletV

Q A C T T
V

θ ρ∂= = −
∂

 

inletT p
inlet

Q A C V
T

θ ρ∂= =−
∂

 

outletT p
outlet

Q A C V
T

θ ρ∂= =
∂

2 2 2 1/ 2[( ) ( ) ( ) ]
inlet inlet outlet outletT T T TV VQB B B Bθ θ θ= × + × + ×

2 2 2 1/ 2[( ) ( ) ( ) ]
inlet inlet outlet outletT T T TV VQS S S Sθ θ θ= × + × + ×

 

 

 

The absolute bias, relative bias, absolute precision and relative precision of heat transfer rate 
can now be calculated. 

The uncertainty is obtained by combining the absolute precision index and the absolute bias 
limit, using the additive (ADD) or the root-sum-square (RSS) models for 99% and 95% of cover-
age respectively. 

( )ADD Q QU B st S= + ×

2 2 1/ 2[ ( ) ]RSS Q QU B st S= + ×

 

 

The student factor, st, is used calculate the precision uncertainty and is based on the number of 
observations per sample, also known as the degrees of freedom. For this case, the number of 
observation was obtained by dividing average time interval (5 minutes) by the time-step of the 
readings (10 seconds). The degree of freedom is calculated by: 

5min 60sec/min 1 29
10sec

v
 = × − =  

 

Therefore, the measured reading is 19.98 ton ±1.7 ton with 95% coverage, with a 8.3% of rela-
tive uncertainty. 
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