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Abstract 

We propose a new method for simulation study of the nonlinear 
interaction of a single bunch and accelerator vacuum chamber elements. 
We numerically solve the Fokker-Planck time-domain equation for the 
phase-space distribution function. Original implicit finite-difference 
scheme is used. The method is very stable and free of the "numerical" 
diffusion, distortion, or modulation. We introduce quasi-Green function to 
describe the wake field potentials of bunches of any shape. This allows to 
get high definition resolution of the bunch particle distribution. We 
present results and comparison for different kind of instabilities.  
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I. INTRODUCTION 

The main effect, which determines the stability of the beam in a storage ring, is 

electromagnetic interaction of the beam particles with vacuum chamber elements. We 

describe this interaction by the wake potentials of all vacuum elements in the ring. Phase-

space distribution function effectively describes the motion of particles in the bunch. This 

function is the solution of the Fokker-Planck equation1. We designed an effective 

numerical algorithm to solve this non-linear equation together with wake field potentials. 

First results of application of this method to the TESLA storage ring were presented at 

the TESLA Meeting2 in 1998 and next year at the Workshop on Linear Colliders3 LC’99. 

Results for saw-tooth instability for resonator wake potential were presented at 

EPAC’20004. 

 

II. WAKE FUNCTION AND QUASI-GREEN FUNCTION   

We describe wake potential )(sW  as convolution of charge density distribution 

)(sρ  and wake function )(sw   

 ( ) ( ') ( ') '
s

W s w s s s dsρ
−∞

= −∫  (1) 

There are only few known analytical expressions for the wake (or Green) function5. 

Green function is the wake potential of a point charge for a particular accelerator 

element. Direct numerical solution of the Maxwell equations gives wake potentials only 

for finite length bunches. There are some methods6,7 which use wake potential of a short 

Gaussian bunch as an approximate Green function. Naturally, application of these 

methods is limited by the minimum bunch length available in the wake field calculations. 
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We suggest a new method for the wake potential calculation. We introduce a new wake 

function ),(~~ ssww q= , which has an additional distance parameter qs . We define this 

function as a "quasi-Green function". With this function we calculate directly (analogue 

to the formula (1)) the approximation  )(~ sW  of the wake potential  

 
0

( ) ( , ') ( ') 'q qW s w s s s s s dsρ
∞

= + −∫  (2) 

From the expression (2) one can see that the quasi Green function becomes real Green 

function, when the distance parameter takes zero value 

 ( , ) ( ) when 0q qw s s w s s→ →  (3) 

Quasi-Green function approaches the bunch wake potential (shifted in distance by qs ), 

when the distance parameter is larger that the bunch length 

 ( , ) ( ) ( ) when q q q qw s s W s s W s s s σ→ − ≈ −  (4) 

So the distance parameter of the quasi-Green function determines the quality of the 

approximation of the real Green function: smaller parameter – better approximation. 

Expression (4) gives the simple way for the evaluation of quasi-Green function from the 

known wake potential. We can find quasi-Green from the requirement of the minimum 

difference between potentials )(~ sW  and )(sW . For this purpose we vary quasi-green 

function to give minimum value of the functional: 
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2
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min ( ) ( , ') ( ') '
q

s

q q
w s s

W s w s s s s s ds dsρ
∞   − + −  

   
∫ ∫  (5) 

at the optimum value of the distance parameter qs ,which is determined by the quality, and 

resolution of the given wake potential )(sW . If the quality of the wake is good (small 
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numerical noise, good agreement with principle of causality) the parameter may be very 

small. For wake potentials, calculated using code “NOVO”8, the value of the distance 

parameter is usually in the region of 3-5 bunch length. For the wake potentials, calculated 

by the well known codes like ABCI and MAFIA the optimum value of the distance 

parameter is considerably larger. 

We will demonstrate the efficiency of the method (5) on the example of 

reconstruction of the wake potentials for a “long” cavity in the vacuum chamber (Fig. 1). 

To make comparison, we first calculated wake potentials )(sW  (using code NOVO) for 

the different bunch lengths: 0.5, 1.0, 2.9 and 20 mm. Then we solved numerically the 

problem (5) for the wake potential of 1.0 mm bunch and found quasi-Green 

function ( , )qw s s . Finally, we reconstructed the wake potential )(~ sW for 1.0 mm bunch 

(same bunch length) with the help of the derived quasi-Green function using formula (2). 

Both wake potentials are shown in Fig.1: primary wake potential is presented by a red 

solid line and reconstructed wake potential is shown by light blue circles. One can see 

perfect agreement. 

 

Figure 1: Primary wake potential (red solid line) of a “long” cavity for 1.0 mm bunch and 

reconstructed wake potential (light blue circles). Green line shoes bunch shape. 
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We also reconstructed the wake potentials of bunches of 2.0 mm and 20 mm length using 

derived quasi-Green function. The results are presented in Fig.2 (left and right plot). One 

can note very good agreement between calculated and reconstructed wake potentials for 

different bunch lengths. 

 

Figure 2: Calculated (solid red line) and reconstructed (light blue circles) wake potentials of 2.0 mm 

and 20 mm bunch. Green line shows bunch shape. 

 

To find the high frequency limit of the derived quasi-Green function we have 

reconstructed the wake potential for the bunch of two time’s smaller length (0.5 mm). We 

get good agreement (Fig.4) again. So the presented method allows to reconstruct the 

wake potential of shorter bunches than we use for evaluation of the quasi-Green function. 

The frequency limit is determined by the derived quasi Green function. One can see that 

quasi-Green function (presented in Fig. 3 by blue solid line) has approximately the shape 

of the wake potential of 0.5 mm bunch, but shifted by distance parameter. In this case 

quasi-Green unction allows reconstructing the wake potentials of two times shorter 

bunches.  
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Figure 3: Real (solid red line) and reconstructed (light blue circles) wake potentials of 0.5 mm bunch. 

Quasi-Green function is shown by blue solid line. Bunch shape is shown by green line. 

 

III. FOKKER-PLANCK EQUATION 

To study the effect of the wake fields on the longitudinal beam dynamics in a 

storage ring we use the solutions of the Fokker-Planck equation for the phase-space 

distribution function ),,( pxtψψ =   of momentum and coordinate 

 x p p
t x p p p
ψ ψ ψ λ ψ ψ

 ∂ ∂ ∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 

 (6) 

Time derivatives of the canonical coordinates are:  
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∫
∞

∞−

= dppxtxt ),,(),( ψρ  

Wake potential is: 

')',(~)',(),( dxxxxxwxtxtW
qxx

qq −+= ∫
+

∞−

ρ  

The coordinate and momentum are normalized by natural (zero-current) value of the 

bunch length 0σ  and momentum spread 0p . Time is measured in synchrotron periods. So 

for the description of the ring we need only: 

• natural bunch length 0σ  

• bunch charge eN   

• RF voltage rfV   

• RF frequency rfω  

• synchrotron frequency sf  

• damping time dampτ  

• quasi-Green function for wake potential calculation 

 

 

IV. NUMERICAL METHOD 

For the solution of the Fokker-Planck equation (6) we use the numerical method, 

based on the two step implicit finite-difference approximation of fourth order:  
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Fourier analysis shows that this implicit scheme gives perfect dispersion relation between 

frequency pω  and wave vector pk  in the phase space for any normalized momentum p  (or 

force F )  
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When 1≤∆xk p   we have exact relation pp pk=ω , even for critical wave number (of mesh 

size) 2/π=∆xkp we still have good relation pp pk
π

ω 3
= . It means that our scheme does 

not produce any numerical diffusion, distortion or modulation. Equations (7) contain 

three diagonal matrixes, so we can use round-trip algorithm for each time step. For 

boundary conditions, we use the case when no new particles come to the defined 

region };{ maxmaxminmin pxpx  
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V. THE ALGORITHM CHECK 

We have checked the algorithm for the case of a resonator wake function 

 

2
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= −
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We use dimensionless intensity parameter I  for description of the ring and resonator 

wake amplitude rW  

 
0

r
rf rf

eNcI W
V ω σ

=  (9) 

In the first example we take high-frequency wake field ( 1000,1000,250 === IQkσ ) 

and simulate damped synchrotron oscillations to the stable steady-state solution of 

Haissinski equation9 
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 Two plots in Fig. 4 show the result. We chose initial bunch length to be two times lager 

than natural bunch length. Left plot shows the bunch distribution after the first 

synchrotron period. Right plot shows the bunch distribution after four damping times. In 

this example, the damping time is equal to 100 synchrotron periods. In each picture the 

upper curves show the emittance (red line), bunch length (violet line) and energy spread 

(green) in time (in synchrotron periods). We can see that approximately after two 

damping times the bunch distribution comes to the stable state. Left graphic on each plot 

shows the energy distribution and right - the particle distribution together with cavity RF 
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voltage plus wake potential. Dotted lines show Haissinski solution. At the bottom of each 

plot, one can see the phase distribution function (left plot) and its colored projection 

(right plot). This test has shown that our algorithm works very well for steady state 

solutions, described by Haissinski equation. 

 

Figure 4: Bunch shape after the first synchrotron period (left plot) and steady state distribution after 

four damping times (right plot). 

 

We also check algorithm for very unstable regime – saw-tooth instability. For 

this, we made comparison with the results of R. Baartman and M. D’Yachkov multi-

particle tracking simulations10. They studied diffusion saw-tooth instability that happens 

for low-frequency wake field. We chose the following frequency 0 0.5kσ =  and wake 

field parameters: 1, 30Q I= =  for comparison. When we applied these parameters to our 

algorithm, we found very good agreement with their results, with they showed in figure 1 

and figure 4 in their paper 10. Corresponding plots for this very interesting instability 

from our simulations are shown in Fig. 5. 
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Figure 5: Diffusion saw-tooth instability in four time snap-shots.  

 

VI. APPLICATION 

We carried out instability study for the large frequency band of resonator wake 

field for different Q-number: 1 and 1000. Fig. 6 shows instability threshold as a function 

of frequency. Green line shows the value of intensity parameter, when”classical” 

microwave instability started. Red line with triangles and violet line with rhombs show 

the threshold for saw-tooth instability. Blue solid line with circles shows analytical 

estimation for threshold: 2
0 )(8.1 σkIthr ≈ . We got this analytical quadratic behavior 
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assuming that instability begins when the energy spread from the wake field becomes 

comparable to the RF focusing. We have found the coefficient for this relation from our 

simulations.  

  

Figure 6: Single bunch instability thresholds for resonator wake field. 

 

We found out that high frequency wake fields ( 0 12kσ > ) produce mainly saw-tooth 

instability. Fig. 7 shows an example of such instability.  

 

Figure 7: Bunch distribution during blow-up of high frequency saw-tooth instability (left plot). 

Bunch center trajectory on the phase plane (right). 
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It is interesting to note that the bunch center changes its orbit during the blow-up period 

in a quantum-like way: jumps from one orbit to another (right plot in Fig. 7).  

The high efficiency of this algorithm allows detecting even a very weak 

instability. We take the steady-state solution of the Haissinski equation as initial 

condition for the bunch distribution and watch the bunch dynamics in time. One can 

presume that the bunch distribution is stable if it does not change in time. However, there 

is some weak instability, which blows up only after some period and nobody knows how 

long we have to wait for instability. However, we can easily find the instability, if we 

calculate the bunch power loss (energy loss of the bunch during one turn in the ring) 

dxxtxtWt ∫
∞

∞−

= ),(),()( ρκ
 

 

Figure 8: Weak instability. Bunch length (left plot), momentum spread (middle plot) and bunch 

energy loss (right plot) as functions of time. 

 

Fig. 8 presents the example of the weak instability for the parameters: 

0 12.5, 1000, 73k Q Iσ = = = . The bunch blows up only after 200 synchrotron periods 
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and the change of the momentum spread and the bunch length is very small (~ 0.2-0.3 

%). Bunch energy loss also increases at the blow up point; however, we can clearly see 

the instability development many periods before, starting after 70 synchrotron periods.  

As a practical application of this algorithm, we show the results of the instability 

study for the Super-ACO machine. We use the impedance model suggested by G. 

Flynn11. Main effect comes from sixteen circular pumping chambers, located between 

elliptical beam pipes. We assume that the pumping chambers can be described as “long” 

cavities, which we showed before in Fig. 1. The action of these chambers is so strong, 

that saw-tooth instability happens at the bunch current of 20 mA. Left plot in Fig. 9 

shows the bunch distribution for this kind of instability. It is interesting to note that the 

bunch length and momentum spread have small amplitude of oscillations. 

 

Figure 9: Saw-tooth instability for the bunch current of 20 mA (left plot). Right plot shows bunch 

centre trajectory on the phase plane. 

Another application shows that eight small bellows (Fig. 10) can explain bursts of 

coherent radiation (left plot in Fig. 11) in VUV machine12, because of micro bunching in 

saw-tooth instability (right plot in Fig. 11). 
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Figure 10: NSLS-VUV bellows shape (pink line) and wake potential of 1 mm bunch (red line). Black 

line shows bunch distribution. 

 

 

Figure 11. Left plot: Bunch length (blue line) and bunch energy loss (red line) as functions of time in 

saw-tooth instability. Right plot: Bunch distribution during a bust of wake field radiation. 

 

Single bunch dynamics study for the PEP-II low energy ring (LER) showed that 

instability level is very high – more than 24 mA per bunch. This result was achieved for 
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the wake potential that has been developed by S. Heifets13. Bunch lengthening and saw-

tooth instability above threshold current in LER are shown in Fig. 12. 

 

Figure 12: Bunch lengthening in the PEP-II LER (left plot). Right plot shows saw-tooth instability 

above threshold current. 

 

The last example of application of the algorithm is devoted to the single bunch 

instability study for the NLC damping ring. 

 

Figure 13. Left plot: Wake potential and bunch shape of 2mm bunch. Right plot: Instability in 

DNLC at 20 mA bunch current. 



 17

Wake potential has been developed by C.-K. Ng14. The wake potential of 2 mm bunch is 

shown in the left plot in Fig. 13. Signs of instability begin to occur at approximately 20 

mA per bunch, a factor of 8 greater than the charge for which the ring is being designed. 

Right plot in Fig. 13 shows the single bunch instability at the bunch current of 20 mA. 

This instability has features of microwave instability. 
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