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Abstract
We study transverse coupled-bunch instabilities driven by the resistive-wall impedance in the
NLC Main Damping Rings. We compar e the growth rates of the different modes predicted by a
simple theory using a simplified lattice model with the results of a detailed simulation that
includes variation of the beta functions and the actual fill structure of the machine. We find
that the results of the analytical calculations are in reasonable agreement with the simulations.
We include a simple model of a bunch-by-bunch feedback system in the simulation to show that
the instabilities can be damped by a feedback system having parameters that are realistic, and
possibly conservative. The noise level on the feedback system pick-up must be low, to avoid
driving random bunch-to-bunch jitter above the specified limit of 10% of the vertical beam size.
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1 Introduction

Coupled-bunch instabilities in electron storage rings can be drivengberkorder modes
(HOMs) in the RF cavities, and by resistive-wall wake fielddie RF cavities in the NLC
Main Damping Rings (MDRs) are based on the PEP-II designs afnigther-order modes are
highly damped; however the narrow chamber aperture means thatistigeasall wake fields
are relatively strong, and dominate over the cavity HOMs in driving beam ingtabilit

The short bunch separation (1.4 ns) and high average current (700 mA) Nib.Gh&lain
Damping Rings means that coupled-bunch instabilities are to be eapasgenerally, coupled-
bunch instabilities in high-current storage rings are damped using -by#mimch feedback
systems; the ability to prevent the growth of coupled-bunch instabitiépends on the growth
rates and on the bandwidth of the instability spectrum. In this notajimvéo characterize
these quantities for coupled-bunch instabilities driven by resistileaste fields in the NLC
Main Damping Rings. We also consider some appropriate pararfaterdeedback system
designed to maintain stability in the beam.

Coupled-bunch instabilities are of concern in the damping rings becatrsetafht tolerances
on beam jitter, set by the performance of downstream systentbe \rertical plane, the jitter
specification is a maximum of 10% of the vertical beam size;viertical emittance of the
extracted beam is around 5 pm, so the maximum allowable bunch-to-bunchl yiger is of
the order 0.5 pum. This means that the feedback system will ne®a/¢osufficiently low
noise, so as not to introduce beam jitter of this level. The unusual ohayeeration of the
damping rings compared with conventional storage rings may alsopgaeczilar demands on
the feedback system. In a storage ring where the beam id &toldeng periods (as in a third
generation synchrotron light source), if the feedback system istimgecrrectly then the
amplitudes of the coupled-bunch modes are kept at a very low level, afedhback system
uses very little power. In the NLC damping rings, fresh bunch teamsnjected at a rate of
120 Hz; since the bunches in the incoming trains will have largeviease jitter, the feedback
system must be capable of responding to the continual demands placed on it.

As a first step to understanding in detail the requirements fobuheh-by-bunch feedback
system in the NLC Main Damping Rings, we consider the coupled-buntbilitees driven
by resistive-wall wake fields. We begin by reviewing the stahtlaeory, and applying it to
the case of the MDRs. The theory makes a number of simplifyppgosimations. In
particular, variations of the beta functions around the lattice ateated, and a “uniform fill”
(i.e. every RF bucket is filled with the same amount of chasggysumed. To try and improve
the model, we have developed a simulation code that allows trackingilbplen bunches
through a lattice with a realistic variation of beta functionslugiog synchrotron radiation
damping and wake fields. Any fill pattern of bunches in the ring caspeeified. The
simulation also allows a simple model of a feedback systemdeaibe the simulation code,
and present results applied to the NLC Main Damping Rings, using the specifietidithpa



2 Estimates of Growth Rates from Analytical Formula

2.1 Theory of Coupled-Bunch Instabilities

Here, we briefly revisit the standard theory of coupled-bunch ingtebjlipaying careful
attention to the approximations that are used to solve the equatiordiof,nand determine
the growth rates of unstable modes. We follow the treatment given by Chao [1].

The equations of motion for the bunches in the accelerator are:
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yn(t) is the transverse displacement of tite bunch at snapshot tinte ay is the betatron
frequency)N is the number of particles per bunchijs the classical radius of the electrons

the speed of lightyis the relativistic factor\y(2) is the transverse wake functidd; is the
total number of bunches in the ring. The summation kvepresents a sum over many turns
of the ring. It is assumed that the ring is uniformly filled, itet bunches with equal charge
occur at perfectly regular intervals throughout the ring. Thus foD, 7 represents that time
interval between bunam and bunch passing a given point in the ring. The indexing is such
that bunches with largerare ahead of bunches with smatierCausality requires that:

W,(2)=0 for z>0

To understand some of the essential propertieeeotlynamics described by equation (1), let
us consider a somewhat simpler system, namely,ironéhich the equations of motion are
given by:
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This is simply a set of coupled harmonic oscillaidhe feature that is missing in this system
compared to the system in (1) is the time retandabietween the position of one oscillator and
its effect on another. The eigenstates of thisegysare determined by the eigenvectors and

eigenvalues of the matrix with componeaggs. If the (th eigenvector has componerﬁﬁ’),
and theuth eigenvalue isv’, then the motion of theth bunch when the system is in theh
eigenstate is given by:

Valt) = e
The meaning of an eigenstate is that if the paostiof the oscillators are given by the
components of the corresponding eigenvector at gmartecular time, then the positions of the
oscillators are given by treame eigenvector at all later times, with an approgriglhase angle.
In general, the state of the system will be desdriby some mixture of eigenstates. However,
the amplitudes of the different eigenstates rensaimstant in time. In general the eigenstates
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will not be Fourier modes. However, if the coupling idisigntly weak that the matrig.n, is
nearly diagonal, then the eigenstates wiltlose to Fourier modes, i.e. we can write:

G ~ g27im/m
n

Now let us return to the real system of intereatnaly, that described by equation (1). The
fact that the coupling is retarded in time makeglifilerence to the fundamental property that
the system will have a set of eigenstates, correfipg to the eigenvectors and eigenvalues of
the coupling matrix. Since the coupling matria@t exactly diagonal, the eigenmodes will, in

general, not be Fourier modes. However, to fincbavenient solution to equation (1), we

assume that the coupling is weak enough that tieneiodes can be approximated by Fourier
modes. In other words, we make the ansatz thaluéian to equation (1) can be written:

Yolt) = e e™! @)

We proceed to substitute this solution into equiei; this shall produce for us an expression
for the mode frequencf,, in terms of known quantities. The limitation &id procedure is
that since (2) is not an exact solution, it doetsaoorectly describe the evolution of the system
with time, but only gives an “instantaneous” pietwf the dynamics. In physical terms, if we
start with the system in a single Fourier modenthe some later time a number of other
Fourier modes will appear to have become mixed linthe Fourier modes are close to the
eigenmodes of the system, then the mixing will &ielyf slow; in the case that the Fourier
modes happen to be exact eigenmodes, then no nvxlingccur.

The result of substituting the ansatz (2) intogfaations of motion (1) is [1]:

. MNr,c <
Q,~w;==i—— > 7. [a) +(pM +,u)a)] 3)
B B 0
g 2/T5 Wy p

whereZ(a) is the transverse impedance (the Fourier tramsfarthe wake function), andy
is the revolution frequency. The real and imaginaerts of the right hand side give us the
growth rate and coherent frequency shift of the enatisome instant of time; the solution is
not valid over extended periods.

The resistive-wall impedance is given by [2]:
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where C is the machine circumferenchb;is the radius of the circular beam pipz;is the
conductivity of the material of the beam pipe, #mel skin depthy, is given by:
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Keeping only the leading term in the summation fr(8) we find that an estimate for the
growth rate for the mode with the fastest growtke driven by the resistive-wall impedance is:

5§<in =



1 MNre®  sgrla,)
I b*yeo, T 2700, \/‘Aﬂ‘ ®)

The betatron tune igg = Ng +Ag, whereNg is the nearest integer tg¢ andAg lies between -%2
and +%.

2.2 Application to the NLC Main Damping Rings

It is straightforward to use the resistive-wall alance (4) and the formula (3) for the
frequency shift to calculate the growth rates ef different transverse modes in the NLC Main
Damping Rings. The lattice is described in refeegf8]; the relevant parameters are given in
Table 1.

Table 1
Parameters of the NLC Main Damping Rings.
Beam energy 1.98 GeV
Lattice circumference 3.0x10" cm
C
Mean beam pipe radius(l:gj'b—l3 ds 0.734 cn?
0
Beam pipe conductivity (aluminum)  3.2x10" s*
Bunch charge 7.5x20
Harmonic number 714
Fill pattern 3x192 bunches
Horizontal tune 21.150
Vertical tune 10.347
Horizontal damping time 3.63 ms
Vertical damping time 4.08 ms

Equation (3) assumes a uniform distribution of et around the ring. The NLC Main
Damping Rings will be operated with 3 bunch traeach train consists of 192 bunches with a
1.4 ns bunch separation. The 66 ns gaps betweehutich trains allow for the rise and fall
time of the injection/extraction kickers. We caraka estimates of the coupled-bunch
instability growth rates assuming that the ringurgformly filled with 714 bunches at the
nominal 1.4 ns separation, but using two diffesgroximations for the bunch charge:
1. We assume that the ring is completely filledhwiitunches with the nominal bunch
charge. This should lead to an overestimate ofjtbeth rates.
2. We reduce the bunch charge to give the samage@urrent that will be in the ring in
its usual operating mode. This may give some wstienate of the growth rates.
In practice, the second approximation reduces thent) rates by 20% compared to the first
approximation, since 80% of the ring will be filled normal operation. The growth rates
using both approximations are shown in Figure Iigootal modes) and Figure 2 (vertical
modes).
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Figure 1

Growth rates of horizontal coupled-bunch modesha NLC Main Damping Rings. The
ring is assumed to be uniformly filled with 714 lohes. Red points show the growth rates
assuming the nominal bunch charge. Blue pointsvsth@ growth rates with the bunch
charged reduced to give the same average curreheapecified fill, with 3 trains of 192
bunches. Modes with negative growth rates are ddrhy the resistive-wall impedance.
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Figure 2

Growth rates of vertical coupled-bunch modes inNh€ Main Damping Rings. The ring

is assumed to be uniformly filled with 714 buncheRed points show the growth rates
assuming the nominal bunch charge. Blue pointsvsih@ growth rates with the bunch
charged reduced to give the same average curreheagpecified fill, with 3 trains of 192

bunches. Modes with negative growth rates are ddrby the resistive-wall impedance.



The larger horizontal tune means that the horizagrtavth rates are smaller than the vertical,
the larger integer part of the tune dominates diverfact that the fractional part of the tune is
smaller in the horizontal plane - see equation {#)e fact that the fractional part of the tune is
below the half-integer means that in both casesntbst strongly coupled modes aemped
rather than antidamped.

Some characteristics of the instability are giverTable 2. The highest growth rate expected
is in the vertical plane, with a growth rate betweel m& and 1.4 ms. The bandwidth
required of a feedback system to damp the unstabtes is:
_ A,

2

For the horizontal modes, this is 150 kHz; for tleetical modes, this is 350 kHz. Note that
radiation damping should damp the modes with grawaths below the synchrotron radiation
damping rate.

Table 2

Af

Growth rates from the resistive-wall impedancehi NLC Main Damping Rings.

Horizontal modes| Vertical modes
Mode number with fastest growth rate 692 703
Maximum growth rate, specified bunch charge 0.58 ms 1.4 m$
Maximum growth rate, specified average current g7 1.1 m§"

3 Estimates of Growth Rates from Simulation

Instead of using analytical formulae, the equatiohmotion (1) can be solved by simulation.
This allows a more detail model of the system, esiacnumber of approximations needed to
find an analytical solution are avoided. We hav@tan a simple tracking code to model
coupled-bunch instabilities in storage rings. Paeticular advantages that this provides over
the analytical approach are as follows:

* The correct lattice functions are used, with vasiabf beta functions around the ring.

* The local beam pipe radius is used, rather thaawvarage around the ring.

* No assumption is made of the form of the solutmthe equations of motion. Instead,

the exact evolution of the betatron amplitude wiitine is found for each bunch.

* Any fill pattern may be studied; it is not necegdarassume a uniform fill.

» Effects such as radiation damping and decoherearcée included directly.
The main disadvantage of the simulation is thatai take a long time (up to 24 hours) to
produce results. Most of the processing time &lus keeping track of and applying the wake
field at each point in the lattice.

3.1 Outline of the Simulation Code
Here we briefly outline the physical models usethmsimulation code.

The lattice is modeled as a set of discrete slidessociated with each slice are: the horizontal
and vertical Twiss parameters; the betatron phdgange to the next slice; a wake function; a
“history table” recording bunches as they passutjnothe slice. Specifically, the history table



records the charge, transverse offset (found frioenbietatron action and phase), and time at
which the bunch passes through the slice. Forcaurate model, the number of slices should
be small compared to the betatron wavelength.

The beam is modeled as a set of individual bunch&ssociated with each bunch are: the
bunch charge; the position in the lattice; horiabnd vertical betatron actions and phases.
Tracking bunches through the lattice without waletdé is straightforward (and very fast).
Bunches are initially distributed through the letwith the required fill pattern. At each time
step, the position of each bunch in the latticedsanced to the next lattice slice, and the
betatron phase is advanced accordingly. If thecesfof radiation (or decoherence) are to be
included, the betatron action is decremented bgpgmopriate amount.

Tracking with wake fields requires little extra WorThe transverse offset of each bunch and
its charge is recorded in the history table of esalite as it passes through the slice. In
addition, the history table and wake function oftealice is used to calculate the transverse
kick on the bunch from the wake field. To limitetlsize of each history table, an entry is
deleted once its contribution to the kick becomess Ithan a certain fraction of the largest
contribution to the kick. The appropriate cut-offin be determined by reducing the cut-off
until further reduction leads to no significant oge in results. If the cut-off is very small,
then a large amount of processor time is requicedalculate the wake field kick on each
bunch.

The output of the code consists of a table recgrthie transverse position of each bunch after
each turn (or fixed number of turns) around thg.rin

3.2 Simulation Results — Uniform Fill

To use the simulation code to model the NLC Maimpang Rings, we divided the lattice into
714 slices, so that the distance between the stm@esponds to the distance between bunches.
The distance between the slices is then 0.42 nghaikiroughly the same as the minimum beta
function, and smaller than the mean beta functichra horizontally, and 7 m vertically.

The wake function at each slice is given @&t 0) by:

vvl(z)%JUZMAs

whereAs is the distance between slices, dnid the local beam-pipe radius at the slice. The
cut-off of the wake-field history table is set &94, i.e. the record of a bunch passing through
the slice is deleted, once the contribution ofwlade field from that bunch is less than 10% of
the largest contribution of a bunch to the wakklfie

To benchmark the code, we considered first a umifdf, of 714 bunches with a bunch charge
of 7.5x10° particles. Since the vertical growth rates aremiaster than the horizontal, we
tracked and applied wake fields only in the vettmlane. Initially, the bunches had a uniform
random distribution of betatron phase, and a gansdistribution of betatron action, with the
rms normalized action equal to 50 um. This reprsstne specified limit on the injection jitter
in the NLC Main Damping Rings. The beam was trddke 4000 turns (corresponding to 4.0



ms). The results are shown in Figure 3, whereethergence of the unstable modes is clearly
apparent. To identify the modes present in thecbuposition, we constructed a list with
elements:

Yo =y/23,€"

whereJ, is the betatron action ardj is the betatron phase of théh bunch, and performed a
Fourier analysis of the list.
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Results of tracking a uniform fill in the NLC MDRith initial rms normalized vertical action 50 prheft plots:
initial conditions. Right plots: after 4000 tur(® ms). The top plots show the vertical co-ordenéilack line)
and momentum (red points) of each bunch. The boftots show the amplitudes of the Fourier modea in
“snapshot” of the vertical offsets.

To determine the growth rates, we fit an expomaé¢rturve to each mode amplitude as a
function of time. Some examples are shown in FEgur In most cases, the exponential fit to
the mode is reasonably good; however, some modew significant variation. This is
expected, since the Fourier modes are not eigersnodthe system — see the discussion in
Section 2.1. Nonetheless, if we compare the groatis of the different modes obtained in
this way with the estimates from equation (3) (beeturbation theory result), the agreement is
reasonably good. The comparison is shown in Fi§urenote that the red line in this figure is
the same as the red points in Figure 2. Thengmfisant scatter in the points representing the
simulation results; this is because the Fourier @sadb not really evolve exponentially with
time. There is some evidence of mode mixing inapearent spread of the peak in the growth-
rate curve.
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Evolution of selected mode amplitudes with timdadg points show tracking data, red lines show expdtial fits.
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Figure 5

Growth rates of various modes in a uniformly filleidg. Black points: tracking
simulation. Red line: analytical estimate. Modeith positive growth rates are
unstable.
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Importantly, there is good agreement between thgirman growth rates found from the
simulation (mode number 702, 1.5 isnd from the analytical estimate (mode number, 703
1.4 msh).

3.3 Simulation Results — Fill with 3 Bunch Trains and Radiation Damping

The standard operating mode of the NLC Main Damytimgs will be with 3 trains of 192
bunches, with a gap corresponding to 46 bunchegeleet the bunch trains to allow for the rise
and fall of the injection/extraction kicker pulse®¥/e have repeated the simulation reported in
Section 3.2 using this fill pattern in place of thaform fill. We have also included radiation
damping. The analysis proceeds as before, exbaptthe mode amplitudes are found by a
Fourier analysis of a “completed” fill, formed hyserting bunches with zero betatron action in
the gaps between the bunch trains. Thus, the notaber of modes present is 714, as in the
case of the uniform fill.

The bunch offsets and Fourier mode amplitudes atstart of the simulation and after 4000

turns are shown in Figure 6. As expected, theeesame modes that are still unstable. The
growth rates are compared with the analytical eggnin Figure 7. The blue line in Figure 7

showing the analytical estimate is the same asltieepoints in Figure 2, with the synchrotron

radiation damping rate subtracted.
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Figure 6

Results of tracking a fill with 3 trains of 192 llmes in the NLC MDR, with radiation damping. Théial rms

normalized vertical action is 50 um. Left plotsitial conditions. Right plots: after 4000 tursrfs). The top
plots show the vertical co-ordinate (black linejlanomentum (red points) of each bunch. The botitots show
the amplitudes of the Fourier modes in a “snapshbthe vertical offsets. Note the different ssat@mpared to
Figure 3.
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Figure 7

Growth rates of various modes in a ring filled wBhtrains of 192 bunches, including
radiation damping. Black points: tracking simulatio Blue line: analytical estimate.
Modes with positive growth rates are unstable.

Again, there is good agreement between the maxignanvth rates found from the simulation
(mode number 703, 0.99 Mjsand from the analytical estimate (mode number B m3).

4 Bunch-by-Bunch Feedback System

Under normal operating conditions, we expect to cagled-bunch instabilities in the NLC
Main Damping Rings, and a bunch-by-bunch feedbastem will therefore be needed to
suppress these instabilities. In this section,caesider the required performance of such a
feedback system, and present results from simuoktaf the resistive wall instability, that
include a simple model of a feedback system.

Bunch-by-bunch feedback systems can operate imdewuof different ways. Here we assume
a simple and fairly general model, with a pick-um a kicker separated by a betatron phase
advance of an odd-integer multiple af2. The signal generated by the transverse bunch
position at the pick-up is amplified and fed to kieker. Our model will also include random
noise on the pick-up signal and saturation of tlokédt pulse. We first consider the appropriate
parameters for a bunch-by-bunch feedback systeimeitNLC Main Damping Rings, and then
present the results of simulations of damping ahdkerse resistive-wall instability using a
feedback system.

4.1 Feedback System Parameters
Feedback systems for coupled-bunch instabilities discussed by Rogers [4]. Here, we
briefly review the important formulae.
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Suppose the pickup is located at positspnn the lattice, where the beta functionfs A
bunch with transverse actidnand betatron phageat the pickup will have transverse offset:

% = ¥(8) = 26,3, codp)

Now suppose the kicker is locatedsatwhere the beta function & and the alpha function is
. Let Agr; be the betatron phase advance franto s,. The action is conserved, so the
transverse momentum at the kicker will be:

P, = P (%)= —%[sm«» +0¢;)+a,codp + 1,

In the particular case thAip,; = 7712, the transverse momentum is:

——&co —-a,sin
P2 = \/;2 [cod¢)-a, sin(g)]

Now suppose the signal from the pick-up is trangdito the kicker with gaig, i.e. the bunch
receives a momentum kick stwith strength proportional to the bunch offsesat

Ap, =gy, (6)
This leads to a change in the betatron action. chlaege in the action can be calculated from:
2, = Y2 +2a,y,p + BpG
23, = y,¥2 +2a,y,(p,, + 80, )+ 5,(p,, + b, ]
where the co-ordinate and momentum are evaluatgd Affter some algebra, we find:
3, = 3129,/ BB, cof(8)+ 9°B.B, cos ()

Over many turns, we can average the phase angle:
1
cog(g)) ==
(cos(g)) =2

and thus we find:

3, = 31-0JBE, +3 9285~ 3,67 @

We see that on average, the betatron amplitude theare root of the action) decays
exponentially:

NOENCRIEEL 8)

whereTy is the revolution period.

Suppose we have an unstable coupled-bunch mode,avgrowth timer for the betatron
amplitude. The action is the square of the amghditsio the action grows exponentially:

J(t)=3,6*" (9)
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For the feedback system to prevent the instalfildyn growing, then from equations (8) and
(9) we require:

N
>

> _0
RN

Finally, we need to relate the garto the voltage pulse at the kicker. If the kickensists of
a pair of electrodes of lengthand separated by distand,ethen the momentum kick given to a
bunch passing between the electrodes when thegediteatween them M, is:

1 LV_V
JAY = = 10
Py cBp d cBp (10)
whereBp is the beam rigidity, and we define an “effechﬂtage”V given by:
v=tV
d
From equations (6) and (10), we have:
dv
v =cBplg=—g
y

where we have written the rigidity in terms of theam energf. This gives us finally the
required gain (expressed in terms of the effectéage at the kicker per unit bunch offset at
the pick-up) in terms of the growth time of thetaislity we are trying to suppress:

dy BB, ert

From Section 3.3, we expect a maximum growth redenfthe resistive-wall impedance of
around 1 ms. In the simulation, we shall position the pick-amd the kicker at locations with
beta functiong?, = 5.2 m ang? = 6.4 m. Using the parameters from Table 1, vea fimd that
we require:

d—V > 690 V/mm

dy

In practice, a bunch-by-bunch feedback system isabte to provide an unlimited voltage at

the kicker, but the voltage will saturate at someel. Also, the pick-up does not have

unlimited resolution. The limited resolution mag tepresented in the model by adding some
random number to the signal from the pickup; in owrdel, we use a Gaussian distribution.

To prevent continuously shaking the beam, the sys$eset so that no voltage is applied to the
kicker unless the pickup detects a bunch offsev@alsome minimum level.

The simple model for the bunch-by-bunch feedbadtesy we shall use in our simulations is
shown in Figure 8. No voltage is applied to thekkr unless the pick-up detects a bunch with
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offsety > ynmin. There is then a linear response up to some maxiroltageVmy, at which the

kicker voltage saturates.

>y

Figure 8

Kicker voltage response to pick-up signal in simpledel of a
bunch-by-bunch feedback system.

We shall consider two cases for our simulatiorheffeedback system: the parameters for each
case are given in Table 3. The only differencevben the cases is the value of the threshold
Ymin @nd the resolution of the pick-up.

There are a number of other practical issues ®id#sign and operation of feedback systems.

For example, closed orbit distortion will give a ifset to the pick-up signal.

There are

techniques for dealing with these issues, whichdavanot consider here: our tracking will be
for a perfectly tuned lattice, with no closed owdigtortion.

Table 3

Parameters of bunch-by-bunch feedback system in MR Damping

Ring simulations.

Case | Case Il
Threshold yin 1.0 um 0
Pick-up resolution <@2> 1.0 um 5.0 um
Beta function at pick-upz 52m 52m
Beta function at kicker, 6.4m 6.4 m
Gain, %/ 700 V/imm 700 V/Imm
Gain,g 3.5<10* m™* | 3.5x10* m™*
Saturation voltageVimax 100 V 100 V
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4.2 Effect of Pickup Signal Noise

The pick-up of the feedback system has a limitedltgion. In the simulation, we represent
this by adding a random number with a Gaussiamilgiigion to the transverse position of the
bunch at the pick-up. Itis interesting to considbat the effect of the limited resolution of the
pick-up will be on the bunch-to-bunch jitter.

If we replacey; in equation (6) by:
Vi - ity
then the result in equation (7) is:
J, =3, A% 118 %5

The noise on the pickup signal gives a term analsgo the quantum excitation that acts with

the radiation damping to determine the equilibrineam size. In the present case, where we
are interested in the coherent transverse osoitiatof the bunch, we can write the equation of
motion for the action, including the effect of thiek-up noise:

dl _ ﬁ292<@2> 2J

dt 2T, r

The action reaches an equilibrium:
_ T 2/ 5,2
Jou = g7 P20 () (12)

If the feedback system is adjusted to prevent thevitn of unstable modes from the resistive-
wall impedance, then it is appropriate to setjual to the synchrotron radiation damping time.

The specified upper limit on the bunch-to-buncteyitof the extracted train is that the jitter

should be less than 10% of the rms beam sizeg; idfthe rms emittance of the bunch, then the
beam size is:

Uy - ﬂygy

Let us writeJ, for the coherent transverse action of the bunehthe action corresponding to
the transverse co-ordinate and momentum of thetboeectroid. The maximum transverse co-

ordinate is:
(¥)=y28,3,

The specified upper limit on the bunch-to-bunctejican then be written:

7 0.1
Jy

from which it follows:
J, <0.00%,

16



For a vertical emittance of 5 pm, the coherentsvarse action should be less than 0.025 pm.
If we use this value fodg In equation (12), with the values of other pararsets given in
Table 3, then we find the upper limit on the naisthe signal from the pick-up:

<5)/2> <55 um

A pick-up resolution of 5 um is within the capatids of modern technology.

4.3 Simulations of Resistive Wall Instability with Feedback System

To approximate the conditions under which the dagpping will operate, we simulate a fill
with three bunch trains at different stages of dagp The specified upper limit on the bunch-
to-bunch jitter of the injected train correspondstmean action of 13 nm (50 pum normalized).
The vertical damping time is 4.08 ms, and the igpetrate of the NLC is 120 Hz. We start
the simulation with one bunch train just injectedd other bunch trains that have bunch-to-
bunch jitter corresponding to storage for 1 andamme cycles, with the effects of radiation
damping only (no resistive wall, filamentation eetiback system effects).
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Figure 9

Results of tracking a fill with 3 trains of 192 kalres in the NLC MDR, with different trains at diféait stages of
damping. The feedback system pick-up has a résplof 1 um, and a threshojg,, of 1 um (Case ). Bunches
with higher bunch number are ahead of bunches laitler bunch number. Left plots: initial conditionRight
plots: after 8333 turns (8.33 ms). The top pldisvs the vertical co-ordinate (black line) and motoen (red
points) of each bunch; the blue dashed-dot lingkenupper left plot shows,, normalized by the beta function;
the red dashed line shows 10% of the vertical etdthbeam size. The bottom plots show the amg#wf the
Fourier modes in a “snapshot” of the vertical aseNote the different scales on the axes of ifierdnt plots.
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Case |

In this case, the noise in the signal from the qipkhas rms 1 um, and the threshold vaiue

is also 1 um. Figure 9 shows the bunch co-ordsnatel spectra at the start of the simulation,
and 8333 turns (one machine cycle) later. Noté tha co-ordinates are plotted for a
“snapshot” of bunches in the ring, with an assutmeta function of 1 m. The beta function at
the pick-up is 5.2 m, so the 1 um valueygf, corresponds to 0.44 pm at a beta function of 1
m; this is shown on the plot by the broken horiablines. Some of the bunches lie outside
this limit, which is possible because of the nasethe pickup signal. The spectrum after one
machine cycle is dominated by the modes with tetef resistive-wall growth rates.

With the parameters given in Table 3, the feedlsyskem should provide additional damping
of 1.0 ms. A comparison of the growth rates of the différenodes found from the
simulation with the analytical estimate (includirggistive-wall wake fields, radiation damping
and feedback system damping) is shown in Figure Tlite feedback system has the expected
effect, and all modes are now damped; the theoeyestimates the damping slightly, because
we have not included the saturation of the feedlssitem for bunches with large betatron
amplitude. Figure 11 shows the evolution of twtested modes over one machine cycle.
Figure 12 shows the maximum action of any bunclkanh of the three bunch trains as a
function of time.

The vertical action of each bunch after 8.3 mshisa in Figure 13. There appears to be a
“transient” along each bunch train; it is not cléathis is a systematic effect. Clearly, the

extracted bunch train in the simulation (the céritench train in Figure 13) does not meet this
requirement; the reason is that modes with ammitbhdlow 1 um at the pick-up are not

damped, and this is more than 10% of the beamasiites point.
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Figure 10

Growth rates of various modes in a ring filled wihtrains of 192 bunches, including
radiation damping and bunch-by-bunch feedback sysBtack points: tracking simulation.
Blue line: analytical estimate. All modes are daohp
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Figure 11

Evolution of two selected mode amplitudes over amechine cycle, for the simulation with 3 trains 182
bunches, including radiation damping and feedbgsiesm. Left: mode 345. Right: mode 702. The lblaaints
show the simulation data, the red lines show ameaptial fit used to determine the growth/dampiigs.
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Figure 12

Maximum action of any bunch in each bunch trainaafunction of time, for the
simulation with feedback system Case |. The bloédsline shows the action
corresponding to the feedback system saturatiosl My, The blue dashed-dot line
shows the action corresponding to the feedbaclesytiireshold/,. The red dashed
line shows the specified bunch-to-bunch jitter 1infi0.025 pm.
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Figure 13

Vertical coherent action of bunches in the dampiimy, after 8333 turns in the
feedback system simulation, Case |. The centratldrain is the train about to be
extracted. The red dashed line shows the spedifiedh-to-bunch jitter limit of 0.025
pm. The blue dashed-dot line shows the actionesponding to the feedback system
thresholdyp.

Case Il

In this case, the noise in the signal from the ipkhas rms 5 um, and the lower threshold
valueynn is zero; otherwise the simulation is the sameoa£hse I. In particular, the starting
conditions are the same as shown in Figure 9, andgain track for 8333 turns (one machine
cycle). The bunch positions at the end of thekiracare shown in Figure 14. It now appears
that many more bunches meet the specification owhsto-bunch jitter. The vertical actions
at the end of the tracking are shown in Figure 16.

Figure 17 shows the distribution of vertical actidn the bunch train about to be extracted.
66% of bunches are within the specified actioejjitblerance of 0.025 pm. The mean action is
0.021 pm. From Figure 14, it is clear that thedw jitter is dominated by the modes that are
most strongly driven by the resistive-wall wakdds The gain of the feedback system has
been adjusted so that these modes are dampedebdamping rate is very slow. Increasing
the gain of the feedback system would further segpthese modes, but the noise on the pick-
up would need to be reduced proportionately, tadairreasing the random noise on bunch-
to-bunch jitter. If we compare Figure 16 with Fig.3, it appears that in Case | (low noise on
the pick-up), there is an increasing coherent adtiom the head to the tail of the bunch train,
as would be expected if the transverse oscillatavesdriven by resistive wall wake fields. In
Case I, there is still some systematic increag@enmaction from the head of the bunch train to
the tail, but the random noise is much larger, aihd level consistent with the estimate from
equation (12).
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Results of tracking a fill with 3 trains of 192 lalres in the NLC MDR, with different trains at diféait stages of
damping. The feedback system pick-up has a régplaf 5 pm, and a threshoig,, of O (Case Il). Bunches
with higher bunch number are ahead of buncheslaitler bunch number. The initial conditions areshewn in
Figure 9, and the plots here show the bunches &3@8 turns. The left plot shows the vertical cdhoate (black
line) and momentum (red points) of each bunch;rdtedashed line shows 10% of the vertical extrabkeaim
size. The right plot shows the amplitudes of tharfer modes in a “snapshot” of the vertical offset
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Figure 15
Maximum action of any bunch in each bunch trainaatunction of time, for the
simulation with feedback system Case Il. The bdadfid line shows the action

corresponding to the feedback system saturatiogl ¢y, The red dashed line shows
the specified bunch-to-bunch jitter limit of 0.0@&.
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Figure 16

Vertical coherent action of bunches in the dampiimg, after 8333 turns in the
feedback system simulation, Case Il. The centwalkh train is the train about to be
extracted. The red dashed line shows the spedifiedh-to-bunch jitter limit of 0.025
pm.
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Figure 17
Distribution of vertical coherent action of bunchiesthe bunch train about to be
extracted in the tracking simulation with feedbagistem, Case Il. The specified

bunch-to-bunch jitter limit is 0.025 pm; 53% of lwlwes are within this limit, and the
mean action is 0.025 pm.
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5 Conclusions and Proposals for Further Work

We have estimated the growth rates of instabilitiegen by resistive-wall wake fields in the
NLC Main Damping Rings. Analytical estimates, @si& number of simplifications, are in
good agreement with more detailed simulations. tiMwinch instabilities will appear in both
the horizontal and vertical planes; the verticalvgh rates are higher, because the vertical tune
is lower than the horizontal tune. The fastestvginorates in the vertical plane are of the order
1 ms?, and in the horizontal plane of the order 0.5'ms

Bunch-by-bunch feedback systems can be used taesgfhe instabilities, and estimates of
the parameters suggest that the required perfoenahould be within present capabilities.
The noise level on the pick-up must be low (belowrb) to avoid driving random bunch-to-

bunch jitter above the specified limit of 10% oé thertical beam size.

Further work needs to be done to specify the feddbgstem more accurately and completely.
For example, the value of 100 V that we have usedhke saturation voltage (Table 3) is likely

to be unnecessarily conservative. The maximunagelkick depends on the amplifier power
and kicker shunt impedance: values for both thesetities vary widely between different

systems [5]. However, using typical (though stiinservative) values of 150 W for the

amplifier power, and 2.5 kW for the kicker shuntpdance, a saturation voltage of 850 V is
realistic. Keeping other parameters (gain and l@tations) at the values we assumed in
Table 3, the saturation voltage would not be redal#il the betatron action were up to 70
times larger than shown by the solid blue line§igure 12 and in Figure 15. Although this

sounds a large factor, it corresponds to a changesition of the saturation level of less than 2
on the (logarithmic) vertical scale in these platsd is unlikely to have any real impact on our
results. For reducing the bunch-to-bunch jitter the extracted bunch train, the most
significant feedback system parameter is the nieigel. Further study is needed to estimate
the lowest noise level that can be achieved imaatimal system; it is possible that a noise level
of around 1 yum may be possible, in which case tfstes should stay safely below the

specified bunch-to-bunch jitter limit.

Although we expect the resistive-wall wake fieldsdominate the multi-bunch instabilities,
other sources, such as higher-order modes in thec&fies, should be included. The
parameters of the feedback system depend to soterten the precise implementation, for
example through the beta functions at the locatwhthe pick-up and kicker. Also, some
significant effects that coulthcrease the damping of the instabilities, such as filama&on,
have not been included. However, as filamentatvwounld increase the bunch size, which is
highly undesirable, it seems appropriate to desigystem in which filamentation is a small
effect. All these issues provide topics for furtbridies.
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