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Abstract

The Center for Subsurface Sensing & Imaging System’s (CE3)SSptical Quadrature
Microscope (OQM) is a narrow band visible light microscopgable of measuring both am-
plitude and phase of a scattered field. We develop a diftmdiomography, that is, wave-
based, scattered field inversion and imaging algorithmrdoonstructing the refractive index
of the scattering object.
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1 Introduction

The Center for Subsurface Sensing & Imaging System’s (CE3)SSptical Quadrature Micro-
scope (OQM) is a narrow band visible light microscope capabimeasuring both amplitude and
phase of a scattered field. We develop a diffraction tomdgrapat is, wave-based, scattered field
inversion and imaging algorithm, for reconstructing thieaetive index of the scattering object.

The purposes of this report is to develop a wave-based ioveasnd imaging algorithm, not to
describe the OQM. We refer the reader to the references31425] for a thorough development of
the OQM. Our fundamental assumption, here, is that the OQWhoeasure a fully complex field
(simultaneously measure the magnitude and phase of arechfteld) at a single measurement
plane. We also assume the incident field is planar and that ibaind measurement plane are
rotated about the scattering object (object under evalnpsit multiple angular locations uniformly
distributed oveB60° as indicated in Figure 1.

We develop our forward scattering model in the next sectmtuding derivations under the
Born (amplitude) and Rytov (phase) approximations. Theilision algorithm is described in Sec-
tion 3.

2 Total Field Propagation

We begin by considering the wave equation

v e v r = S Rg) @

o

in which we have assumed a variable medium throughdfractive index

n(r) = ) 2

n(r) to represents the presence of a scattering object, thiagishject under evaluatio’ (r, RY,, )
is thetotal field (the sum of the scattered and incident fieldgy, R’ ¢) is the incident pulse ap-
plied to then-th transmitter located aR!, andc, is the background wave speed. We Fourier
transform Eqgn. 1 using the temporal transform of Appendix A:

(V2 + kn?(r)| 0" (r, R, w) = —p(r, R, w), 3)
where thebackground wavenumbes defined as

]{70 = g
Co

When solving the forward problem, it is frequently convenit cast Eqn. 3 into an integral
equation. We do so by addirkgy ' (r, R, w) to both sides of Eqn. 3, and moving the inhomoge-
neous term to the right hand side:

(V24 kg v (xR, w) = —p(r) = [k§n*(r) — k3] "' (r, R, w). (4)



Define theobject functioras
ofr) = n’(r) -1, (5)
and express Eqn. 4 as
V2 k[0 R w) = —p(n R w) — kfo(r)u (xR, w). (6)

The first term on the right-hand side of Eqn.zér, R, w), is theprimary source The second,
source-like, term on the right-hand sidé€p(r)y™ (r, R! , w), is known as theecondary source
We may use Green’s theorem to cast the differential equafiiqn. 6 into an integral equation [6],

Y, R w) = / dr’ Go(r, v, w) p(r',RL, w) +

Pine(r, R, w)

2 / dr' Go(r, ', w) o(r') ¥ (x| RL, W), @)

Poeat(r,RY, w)

where the background Green function satisfies
(V24 k2] Golrvw) = —d(r—1). (8)
We define therimary, incident or backgroundield as
VU RLW) = [ dr Golrr',w) plr R w) ©)
so that Eqn. 7 reads
VU RLw) = U R @)+ R [ d Golr, v w) oft) (Y, RE, @), (10)
Thescattered fields then defined as the difference between the total and intfigds,

P, R, w) = (R, w) — " (r,RL,w)
= k‘g/dr' Go(r,r’,w) o(r)) ™' (r', RE  w). (12)

We observe that with the primary field satisfying
(V2 + k] v (r R, w) = —p(r,R,w), (12)
the scattered field obeys

(V24 kg vt (r, R, w) = —kgo(r)'!(x, R, w), (13)



or alternatively,
(V2 + Bn?(r)| o (v, R, w) = —kZo(r)y™™(r, R, w). (14)

The integral equation of Eqn. 11 is non-linear in that theteced field appears in both sides of
the equation. The differential equation of Egn. 14 offeesgihoblem of having spatially dependent
scattering operator. Exact analytic solutions for thetecatl field exist only for a limited set of
scattering objects. Numerical solutions are readily abdd but not appropriate for an arbitrary
object tomographic inversion algorithm. Thus, we wish toify our forward model. In the
following section we simplify the model under the Born appnoation. In Section 2.2 use the
Rytov approximation. We note that the Born and Rytov apprations are the two most practical
simplifications when little is known of the scattering olije@vhen more is known of the object,
this prior information can be included in the model via a nfiedi Green function or through a
model-based processing approach and an (fast) forwarcgabqr.

2.1 Born Approximation

One potential method of simplifying Egn. 14 for solving isuse a perturbation approach. We
express the refractive index and scattered field as [7]

n?(r) = ng(r) +eny(r) + ny(r) + - -,
= in(r) (15)
wscat(n ng w) = %‘%B(L ng w) + wacat(rv wa w) + 62¢§Cat(r7 wa w) Ty

respectively, substitute them into Egn. 14, and equatepdwers ofe. Doing so we obtain the
follow set of equations:

(V2 + B3 (n)| Ui p(r RE, w) = —Kjo(r)y™(r, RE, w), (16)
(V24 3 ()] o5 (v, R, w) = —kgna ()55 (r, R, w), (17)
(V2 + kgnd(r)]| w5 (r, R, w) = —kdna(r)uistp(r, RL, )
— I () (x, R, w), (18)
(V24 3 ()| o (v, R, w) =~k S i (P (e, R ) (19)
m=0

The Green function for the left hand side operators of Egéshdough 18 satisfies
[Vz + l{:gng(r)} G(r,r,w) = —d6(r—r). (20)

Note: this is not the background Green function of Eqn. 8.ngshis to cast Eqn. 16 into an
integral equation, we obtain thikstorted wave Born approximatida the scattered field,

SisrRhw) = K [ d Glrr,w) oft) v R w) (21)
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Whenng(r) = 1, this reduces to the standa@drn approximatiori8],
sat(r, RE w) = kg/dr/ Go(r,r',w) o(r") v (r',RL, w). (22)

Comparing this to Eqn. 11, we see the Born approximatiorcediely replaces the total field with
the incident field.

2.2 Rytov Approximation

The Rytov approximation [8] starts with Egn. 6 and the asdionp that the source term is either
identically zero (accurate if we consider a volume whichleates the source support),

pr, R, w) = 0, (23)
or a plane wave with propagation vector
p(r,8,w) = P(w) e (24)
and that the total field can be expressed as
Yr) = rppt(r) = e et (25)

whereg;(r) and ¢s(r) are the incident and scattered field complex phases, résggcand the
total phase is

o(r) = ¢i(r) + os(r). (26)

For this section, we omit the explicit dependence of the field the temporal frequency, and
references to the incident fiel®{, for a point source, a& for a plane wave). We have the following
identities

Vi) = Y"(r)Ve(r), (27)
VAt(r) = () [V26(r) + (Vo(r))] . (28)
Using Eqn. 28, Eqgn. 6 reads,
V2o(r) + (Vo(x) + kg = —hkjo(r), (29)
which reduces to
V2o(r) + (Vo(r)” = —kin’(r), (30)

where we have used the definition of the object function fragn.b.



As in the Born approximation development, we expand theablfjgction and total phase as
follows,
n(r) = n2(r)+eny(r) + Eno(r) + -

= n(r) (3 1)

¢(r) = i(r) +edi(r) + 5 (r) + - -
Substituting the expansions from Eqn. 31 into Eqn. 30 anlécihg powers ot, we find

V3¢ + (V¢i)2 = —l{:gng(r), (32)
V21 +2Ve; - Vo = —kgni(r), (33)
V26y +2V¢; - Vo = —kina(r) — (Vér), (34)
V¢34 2V¢; - Vs = —king(r) — 2V - Vo, (35)
Vi + 2V - Vo = —kjny(r) Z Vo, - Vor_m. (36)

Consider
V2 (0 ()s(r) = (07 (x)s(r)) [(Vou(r))* + V26i(r)]
+07(r) [2Vi(x) - Vs (r) + V2o, (r)] (37)
Substituting Eqn. 32 and re-arranging terms, yields
(V2 + g (0)] (™ (0)gs(r)) = ¢™(r) [2Vei(r) - Voo (r) + VZeu(r)] . (38)

Retaining only the first two terms in the expansion of Eqn. 31,

n*(r) ~ ng(r) +m(r),
6(r) ~ 6i(r) + 6 (x) = 6ilr) + 6, (x), (39)

and using Eqgn. 33, we obtain théstorted wave Rytov approximation
V2 Eing(r)] (07 (0)6,(x)) = —kgna()e(x). (40)

Using Eqgn. 20, we cast this into an integral equation

~
~
~
~

s(1)

WM /dr G(r, v, w) n(r)) ™ (x'). 41

From Eqgn. 39, we observe that
ni(r) =~ n?(r) —ni(r). 42
Whenny(r) = 1, Eqn. 41 reduces to the classiégltov approximation

¢s(r)

b [ 4 Gulrt' ) ot () @3)



2.3 Summary of Born & Rytov Approximations

The forward scattering equations for the Born and Rytov @xiprations have identical forms for
the quantity they approximate: the scattered amplitudéh@iformer, and the scattered phase for
the latter. We repeat them here,

R W) = K [ Galrrw) o) v R ), (44)
06) = b [ Gulrr' ) o) ) (45)

We may compactly express these two equations as
Usat(r) = C(r) k] /dr' Go(r,r’,w) o(r") ("), (46)

where we have the following definitions

sat(r,Rf,w) for the Born approximation,
Uscatt(r) = (47)
¢s(r) for the Rytov approximation,
1 for the Born approximation,
Cr) = (48)

for the Rytov approximation.

1
¢inc<r>
2.4 Incident Fields

Usually, the incident field is taken to be either a plane witit propagation vectaos or spherical
wave due to a point source located®df. We express these mathematically as

(49)

_ P(w) eosT plane wave,
() =

P(w) Go(r,RL,w) spherical wave,

where P(w) is the temporal spectrum of the incident field, a#@-, r’, w) is the Green function
response of the medium.
We summarize the forward models of Eqn. 46 as follows:

Usat(r,8) = O(r) P(w) k2 / dr' Go(r, ', w) o(r') o5 (50)
Ustt(r,RY) = O(r) P(w) k2 / dr' Go(r, ', w) o(r') Go(r', R, w). (51)

With our forward models in hand, we are now prepared to dgvalmethod for inverting them to
determine the scattering object based upon a set of sahfieteé measurements. We derive the
“classical” plane wave diffraction tomography algorith&j {n the following section.



3 Inversion Using Incident Plane Wave and Planar Measure-
ment

Egns. 50 and 51 represent two possible forward models depmendon the nature of the probing
source (either plane wave or point). The measurement systates about the fixed object. We
label thefixed object coordinate systdm R = (X, Y, 7). The axis of rotation is th& -axis. The
rotated coordinate systeimdefined by = (z,y, 2) = (—=Zsinf + X cos 6,0, Z cos + X sin6).
The relationship between the two coordinate systems isidiye

T cos@ 0 —sinf X
Y = 0 1 0 Y (52)
z sinf 0 cos@ Z

We take thes-axis to be the major alignment axis of the measurementsy3tée assume a planar
measurement surface locatedtat z, whose normal lies along theaxis:

R" = (l’,y72’p) = (rJ_azp)'

A schematic of the measurement system is presented in Flgure
For future reference, the complementary rotated spatiali€ovariables are defined by

k-r = kx+ky+Ek.z,
= ky(Xcost — Zsinb) + kyy + k, (X sinb + Z cos0),
= (kycosO+k,sin0) X +k,Y + (—k,sind + k, cos0) Z,

= K- R, (53)
so that we have
K, cos@ 0 sinf k.
K, = 0 1 0 k, | . (54)
K, —sinf 0 cosf k.

3.1 PlaneWave Details & Fourier Diffraction Theorem
The forward scattering model is given by the approximatibBan. 50:

USH(RT,8) = C(R) Pw) K [ di! Go(RY,x',w) oft') e, (55)

where we now explicitly state the background Green function

eiko|RT —r’|

R", v = —— 56
GO( ,r,w) 47T‘RT—I'/‘7 ( )



do
®.

®7

(A

790
R' = (x7yazp) = (r4, Zp)
rotated
s =(0,0,1) = (sin 6,0, cosf)
rotated ; fixed
R’ = (0,0, 29) = 2 (sin 8, 0, cos )
rotated fixed

Figure 1: Schematic of measurement system. The plane wave propagattor,s, is given
by (sin 6,0, cos @) in the fixed object coordinate system. The point source imtas given by
2 (sin 6, 0, cos 0) in the fixed coordinate system. The entire measuremennsystates about the

y-axis which is out of the plane of the page.



and

ke = 2 (57)
Co

is the background wave number. Substitute the Weyl expansio
eiko\RT—r’\ i . ei(kﬁ_'(I‘J_—rl)-i-'Y(w)‘Zp_Z,D 58
4mRr —71/| @/ + Y(w) ’ (°8)

wherey(w) = /k3 — |K,|?, andR” = (r, 2,), into Egn. 55
. R ]{32 ) I'L r! )+’Y( )zp—2| N iko(w)ar

st (R7 ) = 8W2 /d /dk ) o(r) M@t (59)

We note that for the transmission mode measurement systeictei®in Figure 1z, > 2’ so that
we may set

|zp — 2| = z,—72 (60)
to achieve
/{52 6 I'L l‘l)+7(w)(zp z ))
scat (T 4 — / N iko(w)
Usat(R”,8) 87T2 /d /dk o o(r') eMo@?
_ i C<RT) P(w> k(%/ dk/J_ ez’(k’l-rl+7(w)zp) >
8 ¥ (w)

/ dr’ ofr') e (KT —(ko(@)=1(@)=") (61)

Using the spatial Fourier transform pair definitions fromp&pdix A,
D(k) = / dr (r) e, (62)
Y(r) = / dk (k) e, (63)

wheren is the dimensionality of the transform, we concludeithiategral in Eqn. 61 is the spatial
Fourier transform of the object:

O (K|, k) / dr’ o(r') e (K —(ko=v()=") (64)

wherek! = — (kg — v(w)). Egn. 61 then reads

i C<RT> P(w> k(% dk/J_ i(k T +y(w) zp) / /
o [ S O, k).  (65)

Uscat(rla va é) = ’y(w)




We digress briefly to examine th&(R") factor under the Born and Rytov approximations. We
have

1 for the Born approximation,

C(RT) = 1 e—ikos-R” e—ikozp (66)
4 = = for the Rytov approximation.
g T P) | PW) YOV aRP
We noteC'(R") is independent of the planar measurement variabl€eT his is significant because
we now perform a planar Fourier transform (PFT) of the mesgscattered quantity

Usc“t(kl, 2p,8) = /drl Usc“t(rl, Zp, 8) e kTl
i C(R") P(w) k2 y

872

dK/,
/56

[ vy )] @ 0,1, (67)
We use the identity
/ 1 i(k/, — -r
S k) = g [ AT, (68)

to reduce Eqgn. 67 to

i O(R") P(w) k2 en@=
27(w)

Eqn. 69 relates the-dimensional Fourier transform of the object to {he- 1)-dimensional planar
transform of the measured scattered field (Born approxonatr the measured scattered phase
(Rytov approximation). It is known as th®urier Diffraction Theorenin wave-based tomography
and is the equivalent of thEourier Slice Theorenjl0] of straight-ray tomography. Explicitly,
we have the measured field (phase) onkheplane which is proportional to the object Fourier
transform in the(k, , k,) space. This appears at first to be a mapping fromw-aimensional
function to a(n — 1)-dimensional function. Note, however, thiatdepends upok ; via

ko= —<k0—\/k:§—|kl|2>. (70)

Thus, the relationship is a mapping of the — 1)-dimensional locus of points through the
dimensional space described @, , . ), to the(n — 1)-dimensional Fourier space measurement
plane. Applying the coordinate rotation of Eqn. 54 to acadanall measurement anglés we

Uscat(kJJ Zp7 é) _

O (ki k). (69)

LAmplitude in the Born approximation or phase in the Rytovragpnation
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have in the fixed object frame

K, [ cosf® O sinf ky
K, | = 0 1 0 k, ,
K, | —sing 0 cosd — (ko — v(w))
[ kycosf+ (ko — y(w))sinb
= k, : (71)
| —kzsin® — (kg — y(w)) cos

where we have explicitly used the dependencg.adn &k, andk, = (k,, k,). Curves ofK, (k)
and K, (k,) are presented in Figure 2 for multiple valuesjokith |k,| < ky. This constraint on
k., or more generally the constraint that, | < k is required to ensurk, remain real valued as
can be observed in Eqn. 70. Rar | > ko, k. becomes complex and the resulting fields evanes-
cent. Although evanescent field tomography is possiblergilie dimensions of the measurement
system with respect to the illuminating wavelength, it i$ pi@actical because no evanescent field
will reach the measurement plane.

Although our entire development has beemidimensions (for all intents, three dimensions),
the Fourier Diffraction Theorem is entirely two dimensibn&gn. 71 shows the relationship be-
tween thek, andk, dimensions to be one-to-one. Thatis, the mapping is oreé&on the Fourier
variable complementary to the axis of rotation. Thus, inttiree Fourier dimensions, the loci of
points plotted in Figure 2 form a cylinder along theaxis, perpendicular to the plane of the page.

The Fourier Diffraction Theorem dictates the resolutiothaf reconstruction. Assume evanes-
cent fields are neglected, the resolution limit is governethb Ewald sphere [8, 9] which indicates
the transition from propagating to evanescent fields. Fsrdase of narrow-band transmission
mode tomography, this limit is inversely proportional y&k,. Consider the spatial frequency
limit in inverse length (as opposed to radians),

V27 V2y/n2 +n2,

L
27

- vl
Co

V2
where we have used Eqn. 57 = 27 f, andcy = f\, wheref is the frequency of the illuminating
source. The spatial resolution limit is thiagy/2 in the plane of rotation. In the perpendicular
domain, the resolution limit is governed by the spatial slamymlong they-axis.

We are now prepared to invert Eqn. 69 in order to “reconstithet scattering object. In theory
itis a simple matter of solving for the object spectrum andqgrening an inverse Fourier transform.
However, we do not know the object’s spectrum on a Cartesi@h gve know it at the points
defined by Egn. 71. Furthermore, lower spatial frequenciessampled more densely by the
Fourier Diffraction Theorem than higher ones, with the Zeequency (that is, DC) being sampled

11



Ewald \S phere

Kz/k()(CL)) 0; ‘

!

—V2

V2 -1 R 1 V2
K, /ky(w)

Figure 2: Graphical representation of the Fourier Diffraction Theon of Eqn. 69. The curves
represent the loci of points given by Eqn. 71 in the objectiarfer space. The Ewald sphere
defines the transition from propagating to evanescent figddsa.

the most: all curves pass through the origin. We accountisd issues and develop an inverse in
the next section.

3.2 PlaneWavelInversion
Solving for the object spectrum of Eqn. 69 yields

_i2y(w) e~ (W)zp
C(R") P(w) k3

O (kJ_a kz) = Uscat(kl’ Zpy é)a (73)

in terms of the PFT of the measured scattered field.
For practical considerations, we neglect the evanescddtifitormation and limit ourselves
to the propagating spectrum (€, | < k,. This yields a low pass reconstruction of the object as

12



indicated by the spectral coverage of Figure 2. We definertitestep function by

S(k) = {(1) z;g (74)

and write
i 2y(w) e” @)z
C(R") P(w) kg

where thdp subscript indicates we will be performing a low pass reaaesion.
We are now prepared to define the inverse Fourier transforfagof 75 to obtain the low pass
object reconstruction. The inverse Fourier transform is

Op (kiskz) = U (k1. 2,8) S (ko — [ko]), (75)

6(R) = ﬁ / dK O,,(K) ¢ KR, (76)

whereK is given by Egn. 71. The object spectrum of Eqn. 76 is spedifiéekms of the Cartesian
coordinate system given ¢ = (K, K,, K,). The actual measured values of the spectrum are
known along the arcs given by

K, k. cosf + (kg — y(w)) sin 6
K, | = k, : (77)
K, —kysinf — (ko — y(w)) cosd

In order to perform the integral of Eqn. 76, we must changeittegration variables from the
object spectrum’s Cartesian frame to those of the rotassddrof the incident plane wave. The
Jacobian of the transformation is

0K, ok, OK,/ok, OK.|ok,

J(K:k) = | 0K,/0k, OK,/ok, OK./ok, | = . (78)

0K, /0k, 0K,/0k, OK,/Ok,
We now express the inverse Fourier transform as

—1i2
2m)" C(R") P(w) ko

. 2T _ .
6(R) = dk, |ky| e”@)= / do U (k, z,,8) e, (79)
0

|k [<ko

where we have used Eqns. 54 and 73.

—i2 oz

o(R) = 2m)" C(R") P(w) ko

2 0o _ .
/ do / ko_ H(kJ_, y — Zp) Uscat<kj_, Zp, é) eszrL7 (80)
0 —00

where

Hk,,2) = |ky| e o@Dz gk — |k.|). (81)

13



Eqn. 80 is the “standard” filtered backpropagation algami{®]. The |k, | expression represents
a filter which accounts for the non-uniform sampling of theufter Diffraction Theorem. The
producte oz ~i(ko—7(w))= represents a plane-to-plane backpropagation of the neshguantity
from the measurement plane to a plane within the object. lliginthe S (ko — |k, |) expression
imposes the low-pass limit of the reconstruction requireetnove evanescent fields which, when
backpropagated, diverge given their exponentially dewayature in the forward propagation di-
rection.

4 Summary & Conclusions

We have developed a wave-based inversion and imaging gdgowhich is applicable to the Opti-
cal Quadrature Microscope. We have assumed narrow-band plave illumination of the object
under evaluation. We have also assumed multiple planarureragnts, uniformly distributegb0°
about the object, are possible while maintaining a fixed@l@measurement plane distance.
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A Standard Fourier Transforms
We summarize without comment our Fourier transform deéingi

Forward in time

Inversein time

Forward in space

I nversein space
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