
 ORNL/TM-2004/3

Computing Path Tables for Quickest
Multipaths In Computer Networks

January 2004

William C. Grimmell and Nageswara S. V. Rao
Computer Science and Mathematics Division
Oak Ridge National Laboratory

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: reports@adonis.osti.gov
Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.

 ORNL/TM-2004/3

 COMPUTING PATH TABLES FOR QUICKEST MULTIPATHS IN COMPUTER NETWORKS

 William C. Grimmell and Nageswara S.V. Rao

 Date Published: January 2004

 Prepared by
 OAK RIDGE NATIONAL LABORATORY
 P.O. Box 2008
 Oak Ridge, Tennessee 37831-6285
 managed by
 UT-Battelle, LLC
 for the
 U.S. DEPARTMENT OF ENERGY
 under contract DE-AC05-00OR22725

 iii

 CONTENTS

 Page

LIST OF FIGURES... v

LIST OF TABLES .. vii

LIST OF ALGORITHMS ... ix

ACKNOWLEDGEMENTS .. xi

ABSTRACT.. xiii

 1. INTRODUCTION………………………………………………………………………………… 1
 2. CONJECTURE AND COUNTER EXAMPLE…………………………………………………… 5
 3. RELATIONSHIPS BETWEEN MULTIPATHS AND NETWORK FLOWS…………………… 7
 4. MULTIPATH ALGORITHM..…………………………………………………………………… 11
 5. ALGORITHM IMPLEMENTATION……………………………………………………………… 15
 5.1 GENERAL ASPECTS OF THE IMPLEMENTATION .. 15
 5.2 DETAILS OF ROUTINES UTILIZED BY MTMP... 16
 5.3 MTMP1 AND MTMP2 COMPLEXITIES... 21
 6. CONCLUSION... 23

REFERENCES .. 24

APPENDIX A. LINEAR PROGRAMMING AND THE GENERAL MINIMAL COST FLOW AND

MINIMUM COST MAXIMUM FLOW PROBLEMS... A-1
 A.1 LINEAR PROGRAMMING FORMULATION OF THE GENERAL MINIMIML COST

FLOW PROBLEM ... A-1
 A.2 LINEAR PROGRAM DUALITY .. A-2
 A.3 DUALITY AND THE GENERAL MINIMAL COST FLOW PROBLEM......................... A-4
 A.4 FORD-FULKERSON GENERAL MINIMAL COST FLOW ALGORITHM..................... A-6
 A.5 THE MINIMUM COST MAXIMUM FLOW PROBLEM.. A-8
 A.6 COMPARISONS.. A-11
APPENDIX B. MTMP ALGORITHM CHOICES.. B-1
APPENDIX C. INTEGER MESSAGE SEGMENTS REQUIREMENT .. C-1
 C.1 IMPACT ON QUICKEST MULTIPATHS.. C-1
 C.2 COMPLEXITY... C-4
 C.3 ADJUSTING THE UNRESTRICTED CASE SOLUTION... C-7
APPENDIX D. COMPLEXITY OF GENERATING QUICKEST MULTIPATHS D-1
 D.1 FLOW DECOMPOSITION MTMP COMPLEXITY IMPACT .. D-1
 D.2 NETWORKS WITH ONLY POSITIVE LINK DELAYS ... D-1
 D.3 MULTIPATH GENERATION ONE GENERALIZED PATH AT A TIME....................... D-2
 D.4 COMPLEXITY OF SUPPLEMENT_MULTIPATH AND RELATED OPERATIONS..... D-6
 D.5 DUPLICATE MULTLIPATH PATHS .. D-10

 v

 LIST OF FIGURES

Figure Page

1 Network in which procedure of the conjecture leads to incorrect F(T)................................... 5

2 Creation of expanded residual network .. 17

3 First network for illustrating integer message segment requirement impacts.......................... C-2

4 Second network for illustrating integer message segment requirement impacts C-2

5 Network illustrating augmenting flow choices ... D-1

6 S7 structure... D-11

 vii

 LIST OF TABLES

Table Page

1 Complexity of routines within MTMP ... 21

2 Algorithm complexities .. A-12

3 Quickest figure 3 network multipaths... C-3

4 MTMP produced table.. C-4

 ix

 LIST OF ALGORITHMS

 Page

1 General Operation of Algorithm... 11

2 MTMP .. 15

3 X_ResidualNetwork ... 16

4 Prune ... …………………………………………… 18

5 Reconstitute .. 19

6 Decompose_to_Path_Flows ... 20

7 FFGMCF .. A-6

8 CGMCF.. A-7

9 FFMTMP.. A-8

10 EKMCMF…………….……………………………………… .. A-9

11 EKMTMP... A-10

12 Adjust .. C-8

13 Fractional_Adjust ... C-8

14 Integer_Adjust .. C-9

15 Supplement_Multipath ... D-2

16 Create_Subpaths…………………………………………….. D-4

17 Create_New_Paths ... D-4

18 Determine_Path .. D-5

19 Determine_if_Duplicate_Path .. D-11

 xi

ACKNOWLEDGEMENTS

We should like to thank Professor Guoliang Xue of Arizona State University for his insights that we were
fortunate to receive as we considered various aspects of the work described in this report.

The support of this work by Laboratory Directed Research and Development Program of Oak Ridge National
Laboratory, the Engineering Science Program and High-Performance Networks Program of the Office of
Science, Department of Energy, the Advanced Networking Infrastructure Program of National Science
Foundation, and Network Modeling and Simulation Program of Defense Advanced Research Projects Agency
is acknowledged by the authors.

 xiii

ABSTRACT

We consider the transmission of a message from a source node to a terminal node in a network with n nodes
and m links where the message is divided into parts and each part is transmitted over a different path in a set of
paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay.
The set of paths together with their transmission rates used for the message is referred to as a multipath. We
present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every
message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also
generate a function that maps the minimum end-to-end message delay to the message length. The time
complexities of the algorithms are O(n2((n2/logn) + m)min(Dmax, Cmax)) and O(nm(Cmax + nmin(Dmax, Cmax)))
when the link delays and bandwidths are non-negative integers. Here Dmax and Cmax are respectively the
maximum link delay and maximum link bandwidth and Cmax and Dmax are greater than zero.

Keywords and Phrases: Route computation algorithms, quality of service, maximum flow methods, multipaths.

 1

1. INTRODUCTION

This report presents pseudopolynomial time algorithms that generate a “path table” of “quickest multipaths”
for a network. The path table consists of multipaths and their associated message length ranges. Each
multipath is a minimum end-to-end delay multipath for any message length in its associated range, and the
ranges are intervals that intersect only at their end points and cover (0, ∞). As part of the process of generating
the path table, the algorithms also generate the inverse of the function that maps message length to minimum
end-to-end delay.

Determining the maximum length message that can be transmitted within a given time is equivalent to solving
a problem analyzed by Ford and Fulkerson (Ford and Fulkerson 1962) and referred to therein as a general
minimal cost flow problem. The Ford-Fulkerson approach can be readily extended to find a solution to the
well-known minimum cost maximum flow problem. Edmunds and Karp (Edmunds and Karp 1972) provided
two approaches to this problem. The first approach closely follows Ford and Fulkerson and is applicable to
aspects of quickest multipath path table generation1. Xue et. al. (Xue et. al. 1998) noted that the Ford and
Fulkerson general minimal cost flow approach can be adapted to the problem of finding a quickest multipath
for a message length. However they didn't provide an algorithm that generally determines the function that
maps message length to minimum end-to-end delay and produces minimum end-to-end delay multipaths2.

A minimum time multipath problem, MTMPP, is a problem of choosing a set of “simple paths” in a network
between a transmitting node and a receiving node, transmission rates for each path in the set and an assignment
of parts of a message to each path in the set such that the message is completely received in the minimum
possible time, i.e., has minimum end-to-end multipath delay. A network, N = (G(V, E), C, D) is specified by a
directed graph G(V,E) with nodes v �V and links (u, v)�E (where u, v �V with u ≠ v), a capacity (bandwidth)
function C:E → (0,∞) and a delay function D: E → [0, ∞), where v �V � � u �V such that (u, v) and/or
(v, u)�E3. No more than C(u, v) message units per unit time can be transmitted along (i.e., flow along) the

1 Ford and Fulkerson illustrated how their general minimal cost flow problem can be formulated as a linear program
problem and then used quantities comparable to linear programming “dual variables” in their approach, which includes a
series of network flow maximizations (see Appendix A, Subsection A.4). Edmunds and Karp's approach directly solves a
series of minimum delay path problems on the way to a single minimum cost maximum network flow (see Appendix A,
Subsection A.5). However, in the derivation of one bound on the number of minimum delay paths they require, they
utilize the concept of a series of flow maximizations. Our method utilizes elements of both approaches.
2 A polynomial time algorithm, whose development began from results of Ford and Fulkerson (Ford and Fulkerson 1962),
was presented by Xue (Xue et. al. 1998) and claimed to achieve the results of the algorithm of this report. That algorithm
however is not universal as shown by a counter example in this report. The Xue et. al. algorithm was also considered by
Rao and Batsell (Rao and Batsell 1998) without benefit of the Ford Fulkerson results. However its lack of universality
was pointed out to them in a correspondence from Grimmell. Latter in a correspondence with Xue it was found that he
had independently recognized the “suboptimality” of the algorithm. Subsequently Xue (Xue 2003) created a polynomial
time algorithm that finds a multipath for a given message length such that the multipath's end-to-end delay has a least
integer upper bound for the message length (see Appendix C, Subsection C.2).
3A network might be more broadly defined than is done here, e.g., in algorithms presented in this report we shall deal
with networks which have one or more zero capacity links, one or more infinite capacity links, one or more links with
infinite delay, and one or more isolated nodes (i.e., v �V such that� u �V, (u, v) �E and (v, u) �E). In Section 3, a
“residual network” containing links in which flow can be in either direction is defined. However we shall always assume
that we start with a network in which all link capacities are > 0 and < ∞, all the link delays are ≥ 0 and < ∞, and no
isolated nodes exist. We shall also assume that our starting network will have no more than one link per ordered node
pair that can carry flow from the first to the second node. However, a situation in which there are a greater number of
links from the first to the second node of an ordered node pair can be transformed into the one link model by using
dummy nodes, a.k.a. fictitious nodes, to distinguish the multiple links.

 2

link (u,v) from u to v and any part of the message (e.g., its leading edge) will arrive at v, D(u,v) time units after
it is transmitted from u.

A path P = [v1, v2, …, vp] = (v1, v2), (v2, v3), … , (vp-1, vp) in N consists of a sequence of nodes v1, v2, …, vp and
links between the nodes where (vi, vi+1)� E � i : i = 1, 2, …, p -1. A path is a simple path if vi ≠ vj � i,j i ≠j.
A generalized path GP = [[u1, u2, …, uq], [d2,d3, …, dq]] = (u1, u2, d2), (u2, u3, d3), …, (uq-1, uq, dq) in N consists
of a sequence of nodes u1,u2, … , uq and links between the nodes where the links are designated by a set of
directions [d2,d3, …, dq] and each di is either 1 or -1. If di = 1 then (ui-1, ui) � E is in the generalized path and
if di = -1 then (ui, ui-1) � E is in the generalized path. We shall refer to a link of a generalized path with di = 1
as a forward flow link, a ffl, and a link with di = -1 as a counter flow link, a cfl. Note that every path can be
considered a generalized path with all positive link directions, but any generalized path with a negative link
direction is not equivalent to a path4. A generalized path is a simple generalized path if ui ≠ uj � i,j i ≠j.

A path's delay is defined as the sum of the path's link delays, i.e.,

 ��������
��

��

��

ii

p

i
p vvDvvvD ,...,([21 (1)

The shortest path from node u to node v in a network is a path that has the minimum path delay of all paths
from u to v in the network. A path capacity (bandwidth) is defined as the minimum of the path's link
capacities, i.e.,

 ����
�

��
11,...,121 min]),..,([iipip vvCvvvC (2)

It is assumed that a message sent over a path [v1, v2, …, vp] would be transmitted at a rate R ≤ C([v1, v2, …, vp])
message units per unit time along each link (vi , vi+1) (leading to no buffering of parts of the message at any
node). If the leading edge was transmitted from v1 at time T = 0 along the path [v1, v2, …, vp], then the trailing
edge would arrive at vp at time:

R
σvvvDT p ��]),..,([21 (3)

where σ is the message length. The maximum length message that can be sent over a path as a function of time
T is then:

 �����������		���

� pp vvvDvvvCσ ,...,, 211max (4)

The end-to-end delay for a message of length σ over a path [v1, v2, …, vp] is:

]),...,,([

]),..,([
21

21
p

p vvvC
σvvvDT �
 (5)

i.e., the time between transmission of the leading edge of the message from node v1 and the reception of its
trailing edge at node vp if the transmission rate is the path capacity (and the message is transmitted
continuously). We will refer to a quickest path from a node v1 to node vp in a network for a message of length σ
as a path from v1 to vp in the network that gives the minimum end-to-end delay for the message for all network
paths from v1 to vp.

4 The term “chain” is used by Ford and Fulkerson (Ford and Fulkerson 1962) to designate what we call a “path” and the
term “path” to designate what we call a “generalized path”. We have chosen our terminology because our use of “path”
is in keeping with certain current networking vernacular. Terminology differences apparently are what led to the claim of
greater generality than warranted for Xue et.al.’s result (Xue et. al. 1998).

 3

A MTMPP is formally defined as follows: Given a message of length σ > 0, to be transmitted in a network
N=(G(V,E), C,D) from s to t where s, t �V, choose a set of simple paths P = (P1, P2, …, Pp) from s to t, an
assignment of message units L(Pi) to each path Pi, and an assignment of path transmission rates R(Pi) to each
path Pi where:

 σPL i
PPi

����
�

 (6)

 EvuvuCPR i
PvuP ii

������������
�),(:

 (7)

such that starting to simultaneously transmit L(Pi) message units at a rate R(Pi) from s to t over each path Pi
leads to the full message being received at t in the minimum time from the initiation of the transmission.

We define a multipath as a set of simple paths with common initial and final nodes and an assignment of rates
to the paths per inequality (7) above. Note that for any multipath MP = (P, R) = ((P1, P2, …, Pp),

(R(P1), R(P2), …, R(Pp))) and any message of length σ such that))())(max()((
,...,2,11

ijpj

p

i
i PDPDPRσ ���

�
�

, the

message can be transmitted over the multipath in the minimum time of TMP,σ where:

�

��

�

�

�

��

PP
i

PP
ii

P

i

i

PR

PDPRσ
T

)(

)()(
�

 (8)

if the message segments assigned to each path in the multipath are5:

�
�
�

�

�

�
�
�

�

�

�
�

�	

�

�

)(
)(

)()(
)()(i

PP
j

PP
jj

ii PD
PR

PDPRσ
PRPL

j

j (9)

We shall call TMP,σ the end-to-end multipath delay for a message of length σ sent from s to t over multipath
MP. An MTMPP with these definitions can be stated as a problem in which a network, a starting node, a
terminal node and a message length are given, and a network multipath from the starting to terminal node with
a minimum end-to-end delay, i.e., a quickest multipath, for the message is to be found.

We shall define the capacity, C(P, R), of a multipath (P, R) to be:

 ���

�

i
PP

PΡRPC
i

),((10)

and define (somewhat arbitrarily) the delay, D(P, R), of the multipath (P, R) to be:

�

�

�

�

�

PP
i

PP
ii

i

i

PR

PDPR
RPD

)(

)()(
),((11)

This allows the length of a maximum length message that can be sent over the multipath in a time T to be
expressed as σmax = C(P, R)(T-D(P, R)) which is analogous to the expression for the maximum length message

5 Here we assume the message can be divided into segments of arbitrary positive length neglecting that there may be a
minimum length message unit. The effects of having to make the L(Pi) integer are considered in Appendix C. One
effect, as shown by Kargaris et. al. (Kargaris et. al. 1999), is the MTMPP becomes NP-complete.

 4

that can be transmitted over a path in time T. The end-to-end delay time for a message of length σ over a
multipath (P, R) can then be expressed as:

),(
),(

RPD
RPC

σT �� (12)

Finding a shortest path in a network can be accomplished by a number of well-known algorithms. Dijkstra's
algorithm, see e.g., Cormen et. al. (Cormen et. al. 1990), implemented with Fibonnaci heaps accomplishes this
with complexity6 O(m + nlogn), where here n is the number of elements in V, the set of network nodes, and m
the number of elements in E the set of network links. Dijkstra's algorithm does not however operate in a more
general situation in which negative link delays are allowed in a network (a situation potentially applicable to
the algorithms that we shall discuss in Sections 4 and 5). However the Bellman-Ford algorithm (see e.g., the
Cormen et. al. reference) can, in the absence of “negative delay loops”, handle this more generalized situation
and has complexity O(nm).

Rao and Batsell (Rao and Batsell 1997) among others have shown that the quickest path delay for a message of
length σ from a node s to a node t in a network is a piecewise linear function of σ where each linear piece
represents a particular path (or any one of a set of paths) in the network from s to t and where these paths have
greater delay and increased capacity as σ increases. Similarly, as has been noted by Xue et. al. (Xue et. al.
1998), the Ford Fulkerson presentation (Ford and Fulkerson 1962) can be used to show that the quickest
multipath delay from s to t in a network with integral capacities and delays is a piecewise linear function of the
message length σ with monotonically decreasing slope. Each linear portion can be associated with a multipath
(or any one of a set of multipaths), where these multipaths have greater delay and increased capacity as σ
increases. This function can be found by finding its inverse7 and, given aspects of such an inverse, major
attention will be paid to it in the sections below.

6 When we use the term complexity in this report we are referring exclusively to an execution time related bound
expressed in terms of network parameters, i.e., to “time complexity”.
7 The function is 1 to 1 from [0, ∞) onto [Dmin , ∞), where Dmin is the delay of a shortest path, consequently it has an
inverse with domain [Dmin , ∞).

 5

2. CONJECTURE AND COUNTER EXAMPLE

The following, which we shall refer to as the Conjecture, is stated as a theorem in Xue et. al. (Xue et. al. 1998),
where it is assumed that nodes s, t �V of a network N = (G(V, E), C, D) where C and D's ranges are the non-
negative integers8:

Conjecture: Let F(T) be the maximum amount of data that can be transmitted from node s to t in time T,
T=0,1,2,… . Then F(T) is a monotonically increasing piecewise-linear function whose number of pieces is no
more than m + 1 and the function F(T) can be computed by repeatedly computing a shortest path, Pi,
(according to delay) with positive capacity, adding the selected path to the flow9 and taking its capacity away
from the links in the original network that are in this path until there is no path from s to t with a positive
capacity. For any non-negative integer T, the maximum amount of data that can be transmitted from node s to
node t in T time units can be achieved by transmitting c(Pi) units of data at time unit j for j=0, 1, 2, T-D(Pi) -1
along path Pi, where c(Pi) and D(Pi) represent the capacity and delay of path Pi respectively.

We note that c(Pi) refers to the capacity of the network's shortest non-zero capacity path after the reduction of
each of path Pj's link capacities by c(Pj) for j = 1, 2, …, i -1, which implies c(Pi) ≤ C(Pi) for all Pi, where C(Pi)
is path Pi 's capacity in the initial network.

Based on the supposed general correctness of the Conjecture, it is claimed in the reference that F(T) can be
computed in time O(m2 + mnlogn), since a shortest path in a network of positive delays can be computed in
time O(m + nlogn) and each computation of a shortest path also effectively removes one link from the network
(sets its capacity to zero from which it will not be changed for the rest of the procedure).

Fig. 1. Network in which procedure of the conjecture leads to incorrect F(T).

Consider now the network of Figure 1a above that has the same topology as a network used in an example in
the reference but has different link capacities and delays. Here the first number in the pair by each link is the
link capacity (or reduced capacities for Figures 1b to 1d) and the second is the link delay. The arrows show the
forward flow direction of the links. Figures 1b through 1d show the results of applying the procedure of the
Conjecture to this network. First path [s, u, v, t] is chosen leading to Figure 1b, then path
[s, u, t] is chosen leading to Figure 1c and finally path [s, v, t] is chosen leading to Figure 1d that has no
remaining non-zero capacity paths from s to t. The resulting F(T) is:

8 A zero capacity link can be considered to be non-existent so restricting C's range to the positive integers by dropping all
links with zero capacity would result in an equivalent network.
9 The phrase “adding the selected path to the flow” is not essential to the conjecture. The term flow as used in the phrase
is defined below in Section 3.

s

t

v

u

(8,1)

(10,3)

(10,1)

(10,1)

(10,5) s

t

v

u

(0,1)

(10,3)

(2,1)
(2,1)

(10,5) s

t

v

u

(0,1)

(8,3)

(0,1)

(2,1)

(10,5) s

t

v

u

(0,1)

(8,3)

(0,1)
(0,1)

(8,5)

 Fig. 1a Fig. 1b Fig. 1c Fig. 1d

 6

Inspection of Figure 1d leads to the suspicion that F1(T) is not the maximum message length versus multipath
end-to-end delay function since the maximum flow (i.e., the maximum sum of transmission rates along paths
from s to t) for the network is 20 not 12, where the maximum flow can be achieved by using the paths (s, v, t)
and (s, u, t). We confirm this suspicion by considering a message of length 160. By F1(T) a message of this
length can be received in no less time than T = 17. However if we send 70 units via path (s, v, t) and 90 units
via path (s, u, t), each at a rate of 10 message units per unit time, the message can be received in time T = 13.
The correct value for F(T) for the Figure 1 network is:

Here the linear segments of F2(T), after the F2(T) = 0 segment, result successively from the following
multipaths:

 8T - 24 3 ≤ T ≤ 4 (([s, u, v, t]), (8))
10T - 32 4 ≤ T ≤ 6 (([s, u, v, t], [s, u, t]), (8, 2))
12T - 44 6 ≤ T ≤ 7 (([s, u, v, t], [s, u, t], [s, v, t]), (8, 2, 2))
20T - 100 7 ≤ T (([s, u, t], [s, v, t]), (10, 10))

The Conjecture has thus been shown to be false by the counter example of Figure 1. Interestingly the shortest
path of the Figure 1a network is not a path in the quickest multipath for messages greater than 40 units,
whereas if the Conjecture were correct it would remain present in all quickest delay multipaths of the
network10.

10 The final linear segment of F2(T) might be considered to result from path (s, u, v, t) with rate 8, path (s, u, t) with rate
2, path (s, v, t) with rate 2 and generalized path (s, v, u, t) with rate 8. However since data cannot flow from v to u,
(s, v, u, t) cannot be used as part of a data transmitting “multipath”.

F2(T) =

 0 T ≤ 3
 8T – 24 3 ≤ T ≤ 4
10T – 32 4 ≤ T ≤ 6
12T – 44 6 ≤ T ≤ 7
20T – 100 7 ≤ T

(14)

F1(T) =

 0 T ≤ 3
 8T – 24 3 ≤ T ≤ 4
10T – 32 4 ≤ T ≤ 6
12T – 44 6 ≤ T

(13)

 7

3. RELATIONSHIPS BETWEEN MULTIPATHS AND NETWORK FLOWS

A “flow” along a set of simple paths P =(P1, P2, …, Pp) in a network from node s to node t, where each “path
flow” is at a rate R(Pi) for i = 1 to p, can be composed into a “network flow” f: E �non-negative reals, where
for (u, v) �E:

 ��
����� ii PvuP

iPRvuf)(),((15)

The magnitude of a flow f from s to t, as represented in (15) can be defined as:

 ����
���� EusVuEtuVu

usftuff
),(:),(:

),(),(|| (16)

It follows from (15) and (16) that:

 �
�

�

PP
i

i

PRf)(|| (17)

 tsuVuuvfvuf
EuvVvEvuVv

,:0),(),(
),(:),(:

�������
����

 (18)

The sum of a multipath's path flow rates, given relation (17) is the magnitude of the corresponding network
flow. The data flow of multipath (P, R) from s to t in time T for)(max iPP

PDT
i�

� , i.e., the length of the message

that will be transmitted from s to t over (P, R) in time T can, when f(u,v) is defined by (15) be expressed in
terms of f as follows:

 ���
�Evu

vuDvufTfTfDF
),(

),(),(||),((19)

More generally a network flow from s to t satisfies (18), and

 EvuvuCvuf ����),(),(),(0 (20)

The magnitude of a network flow f from s to t in this more general case can be defined as

 ��������
�������� EsuVuEusVuEutVuEtuVu

sufusfutftuff
),(:),(:),(:),(:

),(),(),(),(|| (21)

(where when f results from a composition of path flows per (15) the terms of the second summation in the two
expressions for | f | in (21) are zero11). A maximum flow from a node to another node in a network is a network
flow which has the maximum possible magnitude for network flows from the first to the second node, i.e., a
flow f from the first to the second node such that | f | has the maximum possible value (given the network's link
capacities).

We shall now state as lemmas with proofs two facts about general network flow decompositions that are
relevant to our algorithms.

Lemma 1: A general network flow from s to t can be decomposed into a (not necessarily unique) set of three
flow components (any of which can be zero) where the three components are:

1. a flow along a multipath from s to t (a forward multipath)

11 No simple path from s to t has links of the form (t, u). However in a more general case for a flow satisfying equation
(18) with some non-zero terms of the form f(t, u), the “magnitude” of the flow as defined in equation (17) can be negative
(i.e., a flow magnitude is not a magnitude in the common usage of the term magnitude). In fact in general if two network
flows f and g are added | f + g | = | f | + | g | and if g is subtracted from f, | f – g | = | f | - | g |.

 8

2. a flow along a multipath from t to s (a backward multipath)
3. a set of loop flows (which make no contribution to the network flow magnitude)

where the original network flow is the sum of compositions of the three decomposition components.

Proof: Given network flow f in N from s to t we can remove all links (u, v) for which f(u, v) = 0. Then we can
successively choose a simple path in the remaining network from s to t, find the minimum of the link flows in
the path and assign this minimum value to the path flow, reduce the flow in each path link by this path flow
and then remove all path links for which the reduced flow is 0. (The reduced flow will continue to satisfy
equation (18) since at each intermediate path node the sum of incoming and outgoing flows is reduced by the
same amount and will continue to satisfy inequality (20) because the link flows are reduced but not to less than
zero.) This process will terminate in m or less steps, since one or more links are removed at each step, leaving
no paths from s to t. The set of chosen paths and assigned path flows form a (forward) multipath. Similarly
starting with the network remaining after a link from the last path from s to t has been removed, we can create a
(backward) multipath leaving a network with no paths from s to t or t to s.

After the construction of the two multipaths, the net flow into (i.e., the difference of the sum of flows into and
sum of flows from) s and the net flow into t in the remaining network are both zero, since there are no paths
from s to t or from t to s. Further, since the net flow into any other node in the network has not been changed
by the multipath constructions, the net flow into any other node in the remaining network is also zero (i.e.,
equation (18) remains satisfied). Therefore any node with a link into it in the remaining network must have a
link from it as well. Thus, if the network has any links, it must have loops, i.e., paths of the form
(u0, u1), (u1, u2), …, (up-1, up), (up, u0). Hence, we can successively choose a loop in the remaining network,
find the minimum of the link flows in the loop and assign this minimum value to the loop flow, reduce the flow
in each loop link by this loop flow and then remove all loop links for which the reduced flow is 0. Since a link
is removed from the network for each loop, the network will be reduced to no links in m - r or less steps, where
r is the number of steps required to create the two multipaths.

Let ff, fb, and fl be respectively the composition of the forward multipath flow, backward multipath flow
and the flow of the set of loops from an above-described construction. Then, since for every link (u, v) in N,
ff(u, v), fb(u, v) and fl(u, v) are respectively the link's flow reductions during the forward multipath, backward
multipath and loop set constructions, and the flow in (u, v) is reduced to zero by these constructions,
f = ff + fb + fl. ■

Lemma 2: Let f be a network flow from s to t that for some T, T > 0, maximizes DF(·, T), defined
in equation (19), and let ff, fb, and fl be respectively the composition of the forward multipath flow,
backward multipath flow and the flow of the set of loops from a decomposition of f. Then fb = 0 and
DF(ff, T) = DF(f, T). Further fl will be zero on a network link with a non-zero delay and every forward
multipath path will have a delay less than or equal to T.

Proof: Any non-zero flow which is a component of a decomposition of a network flow f adds to the magnitude
of the second (i.e., the negative) term of DF(f, T) unless it is non-zero only on links with zero delay in which
case it will make no contribution to the second term. It can only add to DF(f, T) if it increases the magnitude of
f thereby increasing the first term of DF(f, T). A flow of a backward multipath decreases and a loop flow
doesn't effect the magnitude of | f |. Therefore, since f maximizes DF(·, T), fb = 0 and fl is zero on any non-
zero delay link (since otherwise DF(ff, T) > DF(f, T)). Hence, DF(ff, T) = DF(f, T). Further, if P is a forward
multipath path whose delay > T, then contradictorily DF),(Tf f

� > DF(fl, T), where �

ff is the composition of
the forward multipath excluding P. ■

A flow R(P) along a generalized path P from s to t may be added to a non-maximum network flow f provided

 R(P) ≤ C(u, v) - f(u, v) � ffl (u, v) �P (22)

 R(P) ≤  f(u, v) � cfl (u, v) �P (23)

 9

Here in adding a flow R(P) along a generalized path P to a flow f, we add R(P) to f(u, v) for ffls (u, v) in P and
subtract R(P) from f(u, v) for cfls (u, v) in P. A generalized path from s to t for which there is a R(P) > 0
meeting constraints (22) and (23) is a flow augmenting generalized path (when f is the network flow in N)
since an increased flow along it will increase, i.e., augment, the magnitude of the network flow. It therefore
follows that if N still contains a flow augmenting generalized path for s to t after a flow f is imposed upon it,
then f isn't a maximum flow.

A residual network, Nf, where f is a network flow in N, has the same links and nodes as N but its links have
forward and counter flow capacities, Cff and Ccf. These capacities are defined as:

 Cff(u, v) = C(u, v) – f(u, v) for forward flow (from u to v) on link (u, v) (24)

 Ccf(u, v) = f(u, v) for counter flow (from v to u) on link (u, v) (25)

A residual network may have links that can accommodate flow in both directions. Therefore a network
flow g in a residual network Nf may be such that for a link (u, v) in Nf, g(u, v) < 0, in which case the flow
of g in (u, v) is from v to u. The network flow g must however be such that � (u, v) in Nf,
-Ccf(u, v) ≤ g(u, v) ≤ Cff(u, v). Paths and generalized paths are defined in a residual network identically to how
they are defined in Section 1. The capacity of a link (u, v) “in the direction of ” a generalized path
P = [[u0, u1, …, uq, uq+1][d1, d2, …, dq+1]], in a residual network is Cff(u, v) if (u, v) is a ffl and Ccf(u, v) if (u, v)
is a cfl in P. The delay,)(~ PD and capacity,)(~ PC of P, in the residual network are defined respectively as:

1. the difference between the sum of the delays of P's ffls and the sum of the delays of its cfls i.e.,

 ����
�� cfff PvuPvu

vuDvuDPD
),(),(

),(),()(~

2. minimum of P's link capacities in the direction of P, i.e.,

 �
�

�
�
�

�
��

),(min),,(minmin
),(),(

vuCvuC cfPvuffPvu cfff

where Pff = {(u, v): (u, v) is a ffl in P} and Pcf ={(u, v): (u, v) is a cfl in P}. We define (ui, ui+1, 1) = (ui, ui+1)
and D~ (ui, ui+1, 1) = D(ui, ui+1) when (ui, ui+1) � E and (ui, ui+1, -1) = (ui+1,ui) and)(~ PD (ui, ui+1, -1) =

 -D(ui+1,ui) when (ui+1,ui) � E. Then in accordance with the definition 1 above, ��
�

��

q

i
iii duuDPD

0
11),,(~)(~ . We

note that a non-zero capacity generalized path, a nzcgp, from s to t in Nf is, with the definition 2 above, a flow
augmenting generalized path (when f is the network flow in N). A shortest generalized path in a residual
network Nf is a nzcgp with the minimum delay of all nzcgps in Nf with the same initial and final nodes.

A generalized loop is a sequence of links and directions (u1, u2, d2), (u2, u3, d3), …, (uq-1, uq, dq), (uq, uq+1, dq+1)
whose initial and final nodes are the same, i.e., uq+1 = u1. The delay and capacity of a generalized loop are
defined analogously to that of a generalized path and a non-zero capacity negative delay generalized loop, i.e.,
a nzcndgl, is a non-zero capacity generalized loop whose link delays sum to a negative number. If u is a node
on a nzcndgl in a residual network Nf then there is no shortest generalized path from s to u, since the delay of
any generalized path P from s to u is greater than the delay of a generalized path consisting of P followed by
the nzcndgl. If there is no nzcndgl in Nf, then any nzcgp Q from s to u with generalized loops in it has a delay
that is not less than the delay of the simple generalized path from s to u resulting from removing the
generalized loops from Q. Therefore, since there are a finite number of simple generalized paths in Nf from s
to u, there is a shortest generalized path from s to u. The following lemma provides a property of Nf and
shortest generalized paths that is of significance to a part of our algorithms.

 10

Lemma 3: Let f be a network flow from s to t in N that maximizes DF(·,T) for some T > 0. Then Nf contains
no non-zero capacity negative delay loops. If P is a shortest generalized path from s to t in Nf and x is a node in
P, then δ(x) ≤)(~ PD where δ(x) is the delay of a shortest generalized path from s to x in Nf.

Proof: If LOOP is a nzcndgl in Nf then adding a flow around LOOP to f will contradictorily yield a DF(·, T) >
DF(f, T) (see equation (19) on page 7)12. Hence, no nzcndgl is in Nf and therefore �u in Nf � a shortest
generalized path from s to u. Let P =[[x0, x1, …, xq, xq+1], [d1, d2, …, dq+1]], where x0 = s and xq+1 = t, be a
shortest generalized path in Nf where � i, 1 ≤ i ≤ q such that δ(xi) >)(~ PD and � j: i < j ≤ q+1, δ(xj) ≤)(~ PD .

Since P is a shortest generalized path, for k such that 1 ≤ k ≤ q + 1, δ(xk) = �
�

�

��

1

0
11),,(~k

j
jjj dxxD 13. Further,

since δ(xi) >)(~ PD and δ(xi+1) ≤)(~ PD δ(xi) > δ(xi+1). Therefore (xi, xi+1, di+1) must have a negative delay and
hence (xi+1, xi) � E and f(xi+1, xi) > 0. Since f maximizes DF(·,T) and D(xi+1, xi) > 0, by Lemma 2 on page 8,
f(xi+1, xi) must contribute to the forward multipath component of a decomposition of f. Therefore � a path Q
from s to t including (xi+1, xi) such that),(min

),(
vuf

Qvu �

 > 0. Let
1�ixP be the subpath of P from xi+1 to t and

ixQ be

the subpath of
1xQ from xi to t. Since P is a shortest generalized path in Nf, δ(xi) - D(xi+1, xi) +)(~

1�ixPD =

)(~ PD . Hence, since δ(xi) >)(~ PD , D(xi+1, xi) >)(~
1�ixPD . Further, since Q contains only forward flow links,

)(~
ixQD ≥ 0.

Consider the generalized loop starting at xi+1 traversing

1�ixP to t in the direction of
1�ixP then traversing

1xQ to xi

counter to
1xQ 's direction, then returning to xi+1 along (xi+1, xi) counter to that link's direction. This generalized

loop has a non-zero capacity in Nf and its delay is)(~
1�ixPD - D(xi+1, xi) -)(~

ixQD which is < 0 since)(~
ixQD ≥ 0

and D(xi+1, xi) >)(~
1�ixPD But this is a contradiction since Nf contains no nzcndgls. Therefore � x in P,

δ(x) ≤)(~ PD . ■

12 An added flow around LOOP would not effect the first term of equation (19) but would decrease the second term (that
is subtracted from the first).
13 If this were not so then the path consisting of a shortest generalized path from s to xk followed by the subpath of P from
xk to t would contradictorily have a smaller delay than P.

 11

4. MULTIPATH ALGORITHM

The algorithms we have developed are particular instantiations of a generic algorithm that is an extension of a
variant of an algorithm presented by Ford and Fulkerson (Ford and Fulkerson 1962). The extension provides
the multipath path table. We shall in this section outline the general operation of the generic algorithm and
prove that it produces the correct maximum length message vs. time function and provides multipaths to realize
these maximum lengths. Then in the next section we shall provide details of the two algorithm instantiations,
including where appropriate, why their detailed implementations are correct implementations of the generic
approach, and we shall develop complexity bounds for the detailed implementations. The generic algorithm,
shown below on this page, employs:

1. a shortest generalized path delay function δ : V →[0, ∞]
2. a “pruned network” Nf,δ that consists of:

a. all nodes u �V such that δ(u) ≤ δ(t)
b. all links (u, v) �E such that u and v are in Nf,δ and δ(v) - δ(u) = D(u, v)

and in which each link in Nf,δ has the forward and counter flow capacities of its corresponding link in
Nf

3. an extension function Extend that extends a flow ĝ in Nf, δ to a flow g in Nf by letting g(u, v) =),(ˆ vug
for (u, v) in Nf, δ and g(u, v) = 0 for (u, v) not in Nf,δ

The algorithm also uses a message length σ, a “previous value” of δ(t), pδ, and three stacks DEL, SIGMA, and
MULTI.

__

 General Operation of Algorithm
1. f ← 0; σ ← 0; pδ ← 0; δ(s) ← 0; DEL ← empty stack;
SIGMA ← empty stack; MULTI ← empty stack; Push NILL onto MULTI;
2. � u �V -{s}, δ(u) ← the delay of shortest paths in N from s to u;
3. while (δ(t) < ∞) do
4. σ ← σ + | f |(δ(t) - pδ); pδ ← δ(t);
5. ĝ ← a maximum flow from s to t in Nf,δ; g ← Extend(ĝ); f ← f + g;
 MP ← the forward multipath component of a decomposition of f;
6. Push δ(t) onto DEL; Push σ onto SIGMA; Push MP onto MULTI;
7. �u �V -{s}, δ(u) ← the delay of shortest generalized paths in Nf from s to u;
8. return DEL, SIGMA, MULTI and | f |;
__

Every generalized path from s to t in a Nf,δ network of the algorithm has a delay δ(t). Thus the pertinent part of
Nf,δ may be thought of as the set of all non-zero capacity shortest generalized paths in Nf from s to t. Further,
by Lemma 1 on page 7, any network flow f can be decomposed to produce a multipath from s to t. In that
regard, if on the ith iteration of the algorithm's main loop,� (u, v)�E, g(u, v) ≥ 0 in Nf , then g is a network
flow in N. Therefore it can be decomposed into a multipath MPg. Then the multipath consisting of the paths
and path flow rates of MPg and the paths and path flow rates of the multipath generated at line 5 of the
previous iteration is a forward multipath of a decomposition of the new value of f generated in this iteration.

We shall subsequently prove the following (in which stack entries are referred to by indices with the earliest
stack entry having index 0):

Theorem: The above algorithm terminates and returns stacks and a value such that linear segments between
the (DEL[i], SIGMA[i]), 0 ≤ i ≤ imax, and a final linear segment which starts at the last such ordered pair
(DEL[imax], SIGMA[imax]) and continues to ∞ with a slope equal to the returned value of | f | form the function
F(T), providing the maximum message length as a function of time. Multipath MULTI[i], 0 < i ≤ imax, is a

 12

quickest multipath for message lengths between and including SIGMA[i-1] and SIGMA[i], and multipath
MULTI[imax + 1] is a quickest multipath for message lengths equal to or greater than SIGMA[imax]. The
returned value | f | is the maximum flow magnitude for flows from s to t in N and DEL[imax] < nDmax, where

),(max
),(

vuDD
Evumax

�

� .

The problem of choosing a network flow f that maximizes DF(·, T) (of equation (19) on page 7) subject to the
network constraints is a linear programming problem. Ford and Fulkerson (Ford and Fulkerson 1962)
demonstrated, using linear programming duality relationships, that if a network flow f from s to t and a
function π whose domain is V can be found such that:

 π(s) = 0 and π(t) = T (26)

 π(v) - π(u) > D(u, v) � f(u, v) = C(u, v) (27)

 π(v) - π(u) < D(u, v) � f(u, v) = 0 (28)

then f maximizes DF(·, T)14.

The following properties of shortest generalized paths are central to aspects of our proof of the theorem:

 C(u, v) - f(u, v) > 0 � δ(v) ≤ δ(u) + D(u, v) (29)

 f(u, v) > 0 � δ(u) ≤ δ(v) - D(u, v) (30)

where (as defined in Lemma 3 on page 10),� x �V, δ(x) is the delay of the shortest generalized path from s to
x15. If P is a shortest generalized path and (x, y, d) � P then δ(y) - δ(x) = D~ (x, y, d). This shortest generalized
path link delay equality and the contrapositive relationships (which exist since 0 ≤ f(u, v) ≤ C(u, v)) between
conditions (27) and (29) and between conditions (28) and (30), when δ is substituted for π in equations (27)
and (28), are key to the algorithm's correctness.

The algorithm generates three sequences of functions f0, f1, …, 0ĝ , 1ĝ , … and g0, g1, … where f0 = 0 and
 fi = fi-1 + gi-1 for i > 0, a sequence of multipaths M0, M1, … where M0 is the null multipath, a sequence of times
δ0(t), δ1(t), …, a sequence of message lengths σ0, σ1, … where σ0 = 0 and σi = σi-1 + | fi |(δi(t) - δi-1(t)) for i > 0,
and two sequences of networks ,

0f
N ,

1f
N … and ,

00 ,�fN ,
11�fN …, generating them in the following order:

fi, Mi, ,
ifN δi, σi, ,, iif

N
� iĝ , gi, fi+1, Mi+1, ,

1�if
N δi+1 …. It sets SIGMA[i], DELTA[i] and MULT[i] to σi, δi(t) and

Mi respectively. The proof below of the algorithm's correctness has the following main steps:
1. A flow fi, computed at line 5, is shown to maximize DF(·, δi-1(t)) and DF(·, δi(t)) over the set of

possible network flows. Here δi-1(t) and δi(t) are the respective values of δ(t) before and after the next
execution of line 7 (subsequent to the line 5 execution in which f is set to fi). This is done by
considering equations (26) - (28) with δ substituted for π and δ(t) substituted for T16.

14 As noted in the Ford and Fulkerson reference if γ(u, v) = max(0, π(v) - π(u)), then π and γ form a solution to the dual
of the linear programming problem outlined above. For a complete treatment of linear program duality as related to
network general minimal cost problems see Appendix A, Subsections A.1, A.2, A.3.
15 A shortest generalized path from s to u in Nf has non-zero capacity and has delay δ(u). Extending such a generalized
path to v by appending the link (u, v), where C(u, v) - f(u ,v) > 0, to it provides a non-zero capacity generalized path from
s to v with delay δ(u) + D(u, v). Therefore since δ(v) is the delay of a shortest generalized path from s to v, δ(v) ≤ δ(u) +
D(u, v). Similarly extending a shortest generalized path from s to v by appending the link (u, v), where f(u, v) > 0, to it
produces a non-zero capacity generalized path from s to u with delay δ(v) - D(u, v). Hence δ(u) ≤ δ(v) - D(u, v).
16 Since our algorithm is a variant of the algorithm provided by Ford and Fulkerson for the general minimal cost flow
problem, there is a close relationship between δ and the function π used by Ford and Fulkerson. However they are not
identical with δ having an obvious “physical interpretation” in the networking area that π lacks (among the differences is:
the sequence of π(t) used in the Ford and Fulkerson reference are by definition such that a successor π(t) is greater than
its predecessors while it is incumbent upon us to prove that a successor δ(t), is greater than its predecessors).

 13

2. The sequence δ0(t), δ1(t), … is shown to be strictly increasing, have a finite number of elements, be
non-negative, and have a final element equal to ∞.

3. � i, 0 < i ≤ imax, fi is shown to maximize DF(·, T) for T such that δi-1(t) ≤ T ≤ δi(t), and 1max�if is shown

to maximize DF(·,T) for T such that)(
max

tδi ≤ T, where imax is the index of the next to last fi generated
by the algorithm.

Proof of Theorem: Let δ be substituted for π in equations/conditions (26) – (28). Since at all times δ(s) = 0,
equations (26) are always satisfied for T = δ(t). Immediately after line 2 and up to the first execution of line 7,
δ(x) is the delay of a shortest path for s to x in N. Hence � (u, v) � E, δ(v) ≤ δ(u) + D(u, v) and therefore there
is no (u, v) � E such that δ(v) - δ(u) > D(u, v). Hence condition (27) is satisfied. Since f = 0 from
immediately after line 1 until the first execution of line 5 condition (28) is satisfied. Assume for an iteration of
the algorithm loop that conditions (27) and (28) are satisfied just prior to the execution of line 5. Since all
links of Nf,δ are such that δ(v) - δ(u) = D(u, v), g(u, v) developed at line 5 is non-zero only for (u, v) such that
δ(v) - δ(u) = D(u, v). Therefore augmenting f by g at line 5 cannot cause condition (27) or (28) to be
violated. Hence the new flow, i.e. the new f, maximizes DF(·, δ(t)) before execution of line 7. Since the new f
maximizes DF(·, δ(t)) no non-zero capacity negative delay loops exist in Nf (by Lemma 3 on page 10) and thus
the new shortest generalized path delay function, i.e., the new δ, to be computed from Nf at line 7, exists.
Therefore if C(u, v) - f(u, v), the forward capacity of (u, v) in Nf, is greater than 0 (i.e., f(u, v) � C(u, v)), then
for the new δ, δ(v) ≤ δ(u) + D(u, v) (i.e., δ(v) - δ(u) ≤ D(u, v)) so condition (27) is satisfied. Also if f(u, v), the
counter flow capacity of (u, v) in Nf, is greater than zero (i.e., f(u, v) � 0), then δ(u) ≤ δ(v) - D(u, v) (i.e.,
δ(v) - δ(u) ≥ D(u, v)) so condition (29) is satisfied. Thus f maximizes DF(·, δ(t)) after line 7 is executed. The
values of f and δ remain unchanged until the next execution of line 5. Therefore (by induction) the flow f
calculated at line 5 (i.e., fi) maximizes DF(·, δ(t)) for the δ(t) before (i.e., δi-1(t)) and for the δ(t) after (i.e., δi(t))
the next execution of line 7.

Let P =[[u0, u1, …, uq, uq+1], [d1, d2, …, dq, dq+1]], where u0 = s and uq+1 = t, be a shortest generalized path
from u0 to uq+1 in .

1�if
N Then:

1. P is a nzcgp in
1�if

N

2. δi+1(uk)= �
�

�

1

0

~k

j
D (uj,uj+1, dj+1), � k, 1 ≤ k ≤ q+1 and in particular

3. δi+1(t) = �
�

q

j
D

0

~ (uj, uj+1, dj+1)

4. δi+1(uj) ≤ δi+1(t) � j, 0 ≤ j ≤ q+1 (by Lemma 3)

� j, 0 ≤ j ≤ q, if P's link between uj and uj+1 has non-zero capacity in the direction of P in
ifN then

 δi(uj+1) ≤ δi(uj) + D~ (uj, uj+1, dj+1). If the link has zero capacity in the direction of P in
ifN then gi, where

gi = fi+1 - fi, has a positive flow from uj+1 to uj since by item 1 above the link's capacity in the direction of P
in

)1(�ifN is non-zero. Therefore the link is in
iifN

�, and hence δi(uj+1) = δi(uj) + D~ (uj, uj+1, dj+1). Applying the

just noted δi(·) inequality and equality along all the nodes of P yields δi(t) ≤ �
�

q

j
D

0

~ (uj, uj+1, dj+1) and hence by

item 3 above, δi(t) ≤ δi+1(t).

If δi(t) = δi+1(t), then δi(uj+1) = δi(uj) + D~ (uj, uj+1, dj+1) � j, 0 ≤ j ≤ q, hence:

5. δi(u j+1) - δi(u j) = D~ (u j, u j+1, d j+1) � j, 0 ≤ j ≤ q

and δi(uk) = �
�

�

1

0

~k

j
D (uj, uj+1, d j+1), � k, 1 ≤ k ≤ q+1. Hence by item 2 above:

 14

6. δi(uj) = δi+1(u j), � j, 0 ≤ j ≤ q+1

and then by items 4 and 6 above:
7. δi(uj) ≤ δi(t) � j, 0 ≤ j ≤ q +1

By items 5 and 7 above, all nodes and links of P are in
iif

N
�, (see definition of Nf,δ on page 11). Therefore by

item 1 above, after the flow iĝ is imposed upon ,, iif
N

�
 P is a flow augmenting generalized path in ., iif

N
�

 But

this is a contradiction since iĝ is a maximum flow in ., iif
N

�
 Therefore δi+1(t) � δi (t) and hence δi+1(t) > δi(t).

The δi(t) form a strictly ascending sequence, each δi(t), for i ≤ imax, is the delay of a simple nzcgp in N (since by
Lemma 3, no nzcndgls are in an)

if
N and there are a finite number of simple generalized paths in N. Therefore

the number of δi(t) is finite and the algorithm will terminate, i.e.,)(1max
tδi �

= ∞. Further δ0(t) ≥ 0 since δ0(t) is
the delay of a shortest path. Hence δi(t) > 0 � i, 0 < i ≤ imax.

Assume that for some i, 0 < i ≤ imax , there is a network flow h such that DF(h, T) > DF(fi, T) for
some T, δi-1(t) < T < δi(t). Then since DF(·, T) is a linear function of T for a fixed network flow,
either DF(h, δi-1(t)) > DF(fi, δi-1(t)) or DF(h, δi(t)) > DF(fi, δi(t)). This however is a contradiction and
therefore fi provides a maximum DF(·,T) for δi-1(t) ≤ T ≤ δi(t). Now assume that for some T >)(

max
tiδ ,

there is a network flow h such that DF(h, T) > DF(1max �if , T). Since 1max �if maximizes DF(·,)(
max

tiδ),

DF(h,)(
max

tiδ) ≤ D(1max �if ,)(
max

tiδ). Hence | h | > | 1max �if | and consequently 1max �if is not a maximum
network flow. Since 1max �if is not a maximum network flow in N, there exists a flow augmenting generalized

path from s to t in
1max�if

N and therefore the algorithm will not terminate with)(
max

tiδ as the last value of δ(t)

before δ(t) = ∞. This however is a contradiction, therefore 1max �if , whose magnitude is returned, is a maximum

network flow and provides a maximum DF(·, T) for T ≥)(
max

tiδ .

DF(f, T) is the message length that can be transferred by a network flow f in time T, �T, 0 < T < ∞, and in
general DF(f, T) = DF(f, T) + | f |(T -T), � T > T . Therefore DF(fi, T) = σi-1 + | fi |(T - δi-1(t)),
�T > δi-1(t), since in our algorithm, σi-1 = DF(fi, δi-1(t)). F(T) is the maximum message length that can be
transferred from s to t in the time T and DF(fi, T) is the maximum value of DF(·, T) for δi-1(t) ≤ T ≤ δi(t)
� i, 1 ≤ i ≤ imax + 1 (where 1max �iδ (t) = ∞). Therefore � i, 0 < i ≤ imax + 1, F(T) = σi-1 + | fi |(T - δi-1(t)) for
δi-1(t) ≤ T ≤ δi(t), since, as just shown, DF(fi, T) = σi-1 + | fi |(T- δi-1 (t)), �T > δi-1(t). Hence the pairs
(SIGMA[i], DEL[i]), for 0 ≤ i ≤ imax, and | 1max �if | define F(T).

By Lemma 1 (on page 7), each fi, 0 < i ≤ imax + 1, can be decomposed into a forward multipath, a backward
multipath and a set of loop flows. Mi (the forward multipath of a decomposition of fi) therefore exists. Since
fi maximizes DF(fi, T) for δi-1 ≤ T ≤ δi, by Lemma 2 on page 8, Mi can transfer a message of length DF(fi, T) in
time T. Hence MULT[i], for 1 ≤ i ≤ imax + 1, is a quickest multipath for messages of length σ when
SIGMA[i-1] ≤ σ ≤ SIGMA[i].

Since �a simple nzcgp from s to t in N whose delay is)(

max
tiδ ,)(

max
tiδ ≤ the delay of the longest simple

generalized path in N from s to t (i.e., ≤ the maximum delay of simple generalized paths from s to t). Since any
simple generalized path in N has no more than n - 1 links, DEL[imax] < nDmax. ■

 15

5. ALGORITHM IMPLEMENTATION

5.1 GENERAL ASPECTS OF THE IMPLMENTATION

The generic algorithm that we described and proved to be correct in the previous section might be implemented
in many different ways, and the complexity of the algorithm will vary from implementation to implementation.
We shall describe in this section two closely related implementations MTMP1 and MTMP2 that we
developed. The term MTMP will be used when referring to both implementations. We have provided
pseudocode for MTMP below.

Algorithm MTMP
1. f ← 0; σ ← 0; pδ ← 0; Rδ̂ ← 0; DEL ← empty stack; SIGMA ← empty stack;
 SIGMA ← empty stack; MULTI ← empty stack; Push NILL onto MULTI;
2. NR ← X_ResidualNetwork(N, f, Rδ̂)

3. Rδ̂ ← Min_Path(NR);
4. while Rδ̂ (t') < ∞ do

5. σ ← σ + | f |(Rδ̂ (t') - pδ); pδ ← Rδ̂ (t');

6. NPR ← Prune(NR, Rδ̂);
7. g~ ← Max_Flow(NPR);
8. g ← Reconstitute(NPR, g~ , N);
9. for each (u, v) � E do
10. f(u, v) ← f(u ,v) + g(u, v)
11. MP ← Decompose_to_Path_Flows(N, f);
12. Push Rδ̂ (t') onto DEL; Push σ onto SIGMA; Push MP onto MULTI;

13. NR ← X_ResidualNetwork(N, f, Rδ̂);

14. Rδ̂ ← Min_Path(NR);
15. return(DEL, SIGMA, MULTI, | f |);

MTMP uses the following set of algorithms:

1. X_ResidualNetwork that creates an “expanded residual” network for finding shortest generalized
paths

2. Min_Path that finds shortest generalized path delays in a network
3. Prune that creates a network for flow maximization
4. Max_Flow that finds a maximum flow in a network
5. Reconstitute that converts a maximum flow in a pruned residual network to a network flow in the

residual network from which the pruned network was derived
6. Decompose_to_Path_Flows that generates a forward multipath of a decomposition of a network flow

MTMP1 and MTMP2 differ only in the Max_Flow algorithm that they use, with MTMP1 using a particular
“pre-flow push” algorithm and MTMP2 using a particular “augmenting path” algorithm.

The first part of Min_Path is the Dijkstra shortest path algorithm that requires all network link delays be non-
negative. The Dijkstra and Max_Flow algorithms are sufficiently discussed in the literature and therefore we
shall not discuss them in detail here. However in the next subsection we provide pseudocode for the other
algorithms listed above on this page. MTMP uses an “expanded residual” network NR from which shortest

 16

path delays for all nodes in Nf are determined. Hence MTMP refers to a function Rδ̂ relative to a start path
node s" rather than the δ relative to s used in the general algorithm description of the last section and refers to a
terminal path node t' rather than the last section's terminal node t. The flow maximization in MTMP is carried
out on a “pruned” version of an expanded residual network NR rather than on Nf,δ and in Reconstitute, the
maximum flow is first extended into a network flow in NR before being transformed into a network flow in Nf.

5.2 DETAILS OF ROUTINES UTILIZED BY MTMP

The algorithm X_ResidualNetwork, shown below utilizes a “node splitting” network transformation,
see Ahuja et. al. (Ahuja et. al. 1991), and link delay and capacity redefinition to produce a network
NR = (G(VR, E R), CR, DR). NR's links have counter flow capacities of zero and, taking advantage of
relationships described by Edmunds and Karp (Edmunds and Karp 1972), non-negative delays. NR's nodes and
links result from the expansion of N that is illustrated in Figure 2 on page17. Each node u �V is expanded into
two “companion” nodes, u' and u". Each link (u, v)�E is expanded into two links (u", v') with capacity
CR(u", v') = C(u, v) - f(u, v) and delay DR(u", v') = RD̂ (u, v) = Rδ̂ (u") - Rδ̂ (v') + D(u, v) or, if CR(u", v') = 0,
delay DR(u", v') = ∞, and (v', u") with capacity CR(v', u") = f(u, v) and delay DR(v', u") = - RD̂ (u, v) or, if
CR(v', u") = 0, delay DR(v', u") = ∞. Two additional links (u', u") and (u", u') each with an infinite capacity
and zero delay are generated for each node u �V. The resulting NR therefore has 2n nodes and 2m + 2n links
(though links with zero capacity, which might be considered non-existent, are assigned delays of ∞)17. All
links of NR are of the form (x", y') or (x', y"), i.e., there are no links in NR of the form (x", y") or (x', y').

Algorithm X_ResidualNetwork(N, f, δ)
1. S �V; VR ←� ; ER ←� ;

2. while S � �
~

 do
3. u ← Pop S; VR ←{u'}� {u"}� VR; Adj(u") ←� ; Adj(u') ← � ;
4. S � V;
5. while S � �

~
 do

6. u ← Pop S; S' � Adj(u); ER = {(u', u")}� {(u", u')}� ER;
7. while S' � �

~
 do

8. v ← Pop S'; ER ← {(u'', v')}� {(v', u")}� ER ;
9. RD̂ (u, v) ← Rδ̂ (u") - Rδ̂ (v') + D(u, v);
10. Adj(u") ← {v'}� Adj(u"); CR(u'', v') ← C(u, v) - f(u, v); DR(u", v') ← RD̂ (u, v);
11. if CR(u", v') = 0 then DR(u", v') ← ∞;
12. Adj(v') ← {u"}� Adj(v'); CR(v', u") ← f(u, v); DR(v', u") ← - RD̂ (u, v);
13. if CR(v', u") = 0 then DR(v', u") ← ∞;
14. Adj(u") ← {u'}� Adj(u"); CR(u", u') ← ∞; DR(u", u') ← 0;
15. Adj(u') ←{u"}� Adj(u'); CR(u', u") ← ∞; DR(u', u") ← 0;
16. return NR

17 Dual links in NR for each link in N lead to a directed network graph that facilitates finding shortest paths and
subsequently a maximum flow. Node splitting accommodates networks in which � u, v � V such that (u, v) � E and
(v, u) � E.

 17

X_ResidualNetwork assumes adjacency lists exist for G(V, E) (their creation complexity is O(m), i.e., it
assumes that � u � V, � Adj(u) = {v � V: (u, v) � E}. S and S' are stacks,�

~
 is the empty stack and� is the

empty set in the algorithm (as they are in all other routines/algorithms listed in this subsection) and VR and ER
are respectively the set of nodes and links of NR

18. The loop of X_ResidualNetwork that creates VR (line 3)
will run n times and, since its complexity is O(1), the complexity of the totality of all iterations of this loop is
O(n). The loop that creates ER and adjacency lists (lines 6-15) will also run n times. However its inner loop
(lines 8-13) will pop S' only once for each link in E during the complete set of outer loop iterations. The
complexity of this inner loop is also O(1) and the outer loop instructions have complexity O(1), so the
complexity of the totality of all the iterations of the outer loop is O(m). Therefore the complete routine has
complexity O(m) (since n -1 ≤ m).

Fig. 2. Creation of expanded residual network.

We shall now show that the link delays of NR are non-negative. Initially �u � V, Rδ̂ (u") = Rδ̂ (u') = 0 (line 1
of MTMP on page 15), hence D̂ (u, v) = D(u, v). Further, since initially f = 0, all links of the form (u', v") in
the initial NR have infinite delay. Hence the initial NR's links all have non-negative delay. Subsequent NR’s
non-negative delays are a consequence of Rδ̂ (u") = Rδ̂ (u') = δ(u) �u � V at the end of each MTMP line 5 –14

loop iteration. Given this property, equations (27) and (28) on page 12 apply with Rδ̂ substituted for π.

Let δR(x) be the delay of shortest paths from s" to x in NR, PR be a shortest path in NR, from initial node s" to
terminal node y' and let PR+ be the one link extension of PR to y". Since (y', y") has a delay of zero, PR+ has
the same path delay as PR, and therefore δR(y") ≤ δR(y'). By an analogous argument δR(y') ≤ δR(y") and hence
δR(y") = δR(y'). Min_Path, at the end of each MTMP loop iteration, computes δR and determines the new Rδ̂

by setting Rδ̂ (x) to Rδ̂ (x) + δR(x), i.e., it sets the new Rδ̂ (x) to the sum of its old value and the determined

δR(x), � x � NR. Therefore, since initially Rδ̂ (y") = Rδ̂ (y') and δR(y") always equals δR(y'), Rδ̂ (y") always

equals Rδ̂ (y').

Corresponding to each link of the form (u", v') in PR is a ffl (u, v) and to each link of the form (u', v") a cfl
(v, u) in Nf. This correspondence provides a corresponding generalized path P(PR) in Nf

19. Summing link

18 The symbol � , used in this subsection's depictations of X_ResidualNetwork, Prune and Reconstitute, denotes an
operation that sets the stack to the left of the symbol to the empty stack and then pushes each element of the set to the
right of the symbol onto that stack. Its complexity is O(number of elements in the set).
19 P(PR) is found by removing each link of the form (u", u') or (u', u") from the PR link sequence and substituting the
corresponding Nf links for the remaining links in the sequence.

v"

u'

v'
),()'(ˆ)"(ˆ),(ˆ vuDvuvuD RRR ��� ��

)),(ˆ),,(),((uvDvufvuC R�

(∞, 0)

),()'(ˆ)"(ˆ),(ˆ uvDuδvδuvD RRR ���

Links with zero capacity have delays
= ∞ rather than the delay shown along
side the link

)),(ˆ),,((vuDvuf R�

(∞, 0)

)),(ˆ),,((uvDuvf R�
(∞, 0)

)),(ˆ),,(),((vuDvufvuC R�

(∞, 0)u"

 18

delays along PR results in a path delay δR(y') = Rδ̂ (s") - Rδ̂ (y') + �
�)(

)(~
RPPe

eD = - Rδ̂ (y') + �
�)(

)(~
RPPe

eD ,

where �
�)(

)(~
RPPe

eD is D~ (P(PR)). Since Rδ̂ (y') is fixed relative to paths from s" to y' and PR is a shortest path in

NR, P(PR) is a shortest generalized path in Nf and hence D~ (P(PR)) = δ(y) where y is the node in Nf from which
y' is derived. Hence Rδ̂ (y') = δ(y) - δR(y') prior to Min_Path’s execution. Since Min_Path carries out the

operation Rδ̂ (y') ← Rδ̂ (y') + δR(y') = δ(y) - δR(y') + δR(y') = δ(y), after Min_Path’s execution Rδ̂ (y') = δ(y).

Consequently equations (27) and (28) hold with Rδ̂ (u") or Rδ̂ (u') replacing π(u) and Rδ̂ (v") or Rδ̂ (v')

replacing π(v). Note that in particular Rδ̂ (t') = δ(t).

The delay of any link of the form (u", v') in NR is D̂ (u, v) if f(u, v) < C(u, v). If D̂ (u, v) < 0, equation (27)
requires f(u, v) = C(u, v) and if f(u, v) = C(u, v) link (u", v') has infinite delay, hence the delay of (u", v') is
always non-negative. The delay of any link of the form (u', v") in NR is - D̂ (u, v) if f(u, v) > 0. If - D̂ (u, v) < 0,
equation (28) requires f(u, v) = 0 and if f(u, v) = 0 link (u', v") has infinite delay. Therefore the delay of
(u', v") is always non-negative (and if (u", v') and (v', u") both have finite delay, then D̂ (u, v) = 0). Thus, since
delays of links of the form (u", u') and (u', u") are zero, for all NR constructed in MTMP, NR' s link delays are
non-negative.

Since all of NR's link delays are non-negative, Min_Path uses Dijkstra's algorithm to compute δR. Then it
computes the new Rδ̂ from δR and the old Rδ̂ . Min_Path's implementation of the Dijkstra algorithm uses
Fibinocchi heaps to facilitate a minimization step which gives the Dijkstra algorithm operating on NR the
complexity O(2m+ 2n + 2nlog2n) = O(m + nlogn). The subsequent computation of the new Rδ̂ has
complexity O(n). Hence Min_Path's complexity is O(m + nlogn)20.

__

Algorithm Prune(NR, Rδ̂)
1. S � VR; EPR ← � ; VPR ← � ;
2. while S � �

~ do

3. x ← Pop S;
4. if Rδ̂ (x) ≤ Rδ̂ (t') then
5. VPR ← {x}�VPR; S' � Adj(x); Adj(x) ←� ;
6. while S' � �~ do

7. y ← Pop S'
8. if Rδ̂ (y) ≤ Rδ̂ (t'), and Rδ̂ (y) - Rδ̂ (x) = DR(x, y), then

9. EPR ←{(x, y)}�EPR ; Adj(x) ←{y}�Adj(x);

10. CPR(x, y) ← CR(x, y) ;

11. return(NPR)

20 Delays of (u", v') and (u', v") type NR links, when not infinite, could be defined to be D(u, v) and -D(u, v) respectively.
Then Dijkstra's algorithm couldn't be used since NR might have negative delay links. However, the Bellman-Ford
algorithm, whose complexity is O(nm), could be used since NR wouldn't have negative delay generalized loops (see
Appendix B). This increased complexity versus Dijkstra's algorithm wouldn't, as will be subsequently clear, increase
MTMP's complexity.

 19

Prune, shown on page 18, produces a network NPR = (G(VPR,EPR),CPR) by removing all nodes x � VR from NR
for which Rδ̂ (x) > Rδ̂ (t') and removing all links (x, y) � ER from NR for which Rδ̂ (x) > Rδ̂ (t'),

Rδ̂ (y) > Rδ̂ (t'), or Rδ̂ (y) - Rδ̂ (x) � DR(x, y). Note that if links (u, v) and (v, u) are both in E, then a necessary
condition for either (u", v') and/or its corresponding (v', u") and (v", u') and/or its corresponding (u', v") to be
in NPR is D(u, v) = D(v, u) = 0. For if both link types are present then δ(v) - δ(u) - D(u, v) =
δ(u) - δ(v) - D(v, u) = 0 and this can only occur if D(u, v) = D(v, u) = 0. Prune, since it requires one
computation for each link (x, y) �ER (its inner loop, lines 7 - 10, pops S' once for each link in ER during the
complete set of outer loop iterations), has complexity O(2m + 2n) = O(m).

Max_Flow returns a flow g~ in NPR. Max_Flow for MTMP1 is the preflow push algorithm of Cheriyan e.t. al.
(Cheriyan e.t. al. 1990) that has complexity O((2n)3/ log(2n)) = O(n3/ logn). Max_Flow for MTMP2 is the
original Ford-Fulkerson augmenting path algorithm that has complexity O(m| g~ |), where g~ is a maximum flow
in NPR, see e.g., Ahuja et. al. (Ahuja e.t. al. 1991). Reconstitute, shown below on this page, extends g~ to a
network flow ĝ in NR and then converts ĝ to network flow g in Nf. Reconstitute's first and second loops
have complexity O(2n + 2m) and its third loop has complexity O(m). Hence Reconsitute's complexity is O(m).

__

Algorithm Reconstitute(NPR, g~ , N)
1. S � ER;
2. while S � �~ do
3. (x, y) ← Pop S; ĝ (x, y) ← 0;
4. S � EPR;
5. while S � �~ do
6. (x, y) ← Pop S ; ĝ (x, y) ← g~ (x, y);
7. S � E
8. while S � �~ do
9. (u, v) ← Pop S; g(u, v) ← ĝ (u", v') - ĝ (v', u");
10. return g;
__

It can be shown by straightforward (though tedious) algebraic manipulations that a maximum flow on
NPR is transformed by Reconstitute to a maximum flow on Nf. Therefore if Decompose_to_Path_Flows
is a valid multipath decomposition, then MTMP is an implementation of the generic algorithm shown
on page 11 of Section 4.

Lines 1-4 of Decompose_to_Path_Flows, which is shown on page 20, create a network on which the
decomposition will be carried out. They include in the network all links and only those links (u, v) of N for
which f(u, v) > 0. Here inclusion takes the form of entering v into u's adjacency list21. Since f is a network
flow between s and t, if (u, v) is a link in the created network and v � t then v has at least
one node in its adjacency list. The network creation is dominated by its line 4 loop that has complexity
O(m).

21 Each

__
Adj (·) in Decompose_to_Path_Flows is a linked list and �̂ at lines 2 and 5 is the empty linked list. Previously we

have not explicitly concerned ourselves with ordering of an adjacency list (treating it simply as a set). However
adjacency lists are implemented here as linked lists to assure that Decompose_to_Path_Flows' removal of nodes from
adjacency lists, at lines 19 and 22, are O(1) complexity operations (which they are since ui at lines 19 and 22 is the head
of the linked list from which it is deleted).

 20

__

Algorithm Decompose_to_Path_Flows(N, f)

1. MP ← �~ ; ψ(s) ← 1; ψ(t) ← 1; u0 ← s;

2. �u �V,

Adj (u) ← �̂ ;

3. � (u, v)�E do

4. if f(u, v) > 0 then Insert v at head of

Adj (u);

5. while

Adj (s) � �̂ do

6. �u �V – {s, t} do ψ(u) ← 0; φ(u) ← NILL;

7. u1 ← head of

Adj (s); φ(u1) ← s; i ← 1; min_flow ← f(s, u1);

8. while ψ(ui) � 1 do

9. ui+1 ← head of

Adj (ui); φ(ui+1) = ui; ψ(ui) ← 1; i ← i + 1;

10. if f(ui-1, ui) < min_flow then min_flow ← f(ui-1, ui);

11. if ui = t then

12. start ← s; P~← (Φ(t), min_flow); Push P~ onto MP;

13. else

14. start ← ui; min_flow ← f(ui-1, ui); j ← i -1;

15. while u j � start do

16. if f(uj-1, u j) < min_flow then min_flow ← f(uj-1, u j);

17. j ← j -1;

18. while ui-1 � start do

19. if f(ui-1, ui) = min_flow then Delete {ui} from

Adj (ui-1);

20. else f(ui-1, ui) ← f(ui-1, ui) - min_flow;

21. i ← i -1;

22. if f(start, ui) = min_flow then Delete {ui} from

Adj (start);

23. else f(start, ui) ← f(start, ui) – min_flow;

24. return(MP);
__

The main loop of Decompose_to_Path_Flows, lines 6-23, determines, at each iteration, either a simple path
that is part of a multipath from s to t or a network loop. It removes a link or links (line 19 and/or line 22) to
eliminate the determined path or network loop from the network. This link removal, since it is part of a path or
network loop elimination, preserves the property that if (u, v) is a link in the created network and v � t then v
has at least one node in its adjacency list. The line 5 condition that determines if another iteration will take
place is a necessary condition for the existence of a path from s to t in the network. Lines 6 and 7 set up for
finding a new path or network loop and then the line 9 - 10 loop finds the path or network loop.

When a path, Φ(t) = [s, …, φ(φ(t)), φ(t), t], is found, line 12 saves the path Φ(t) and saves a path flow equal to
Φ(t)'s minimum link flow. When a network loop is found, lines 14 - 17 find its minimum link flow. The line
19 - 21 loop and lines 22 - 23 are the path or network loop elimination steps. These steps reduce the link flows
of the path or network loop by the minimum path or network loop link flow. The resulting link flows continue
to form a network flow since a complete path or network loop flow has been eliminated. The process will

 21

continue until all flow from s has been eliminated and when the process terminates, the multipath MP will have
a flow equal to the initial magnitude of the s to t network flow.

The main loop is dominated by line 12, and its line 9-10, line 16-17 and line 19-21 interior loops. Each has
complexity O(n). Hence a single iteration of the main loop, has complexity O(n). Since at least one link is
eliminated in each iteration, the main loop will be executed no more than m times. Therefore the algorithm's
complexity is O(nm)22.

5.3 MTMP1 AND MTMP2 COMPLEXITIES

The complexities of lines of the main MTMP algorithm loop that determines the algorithm's complexity are
shown in Table 1 below. Adding the table's entries for MTMP1 (taking into account that n - 1 ≤ m < n2))
yields a MTMP1 loop complexity of O((n3/ logn) + nm). If N's link delays are all non-negative integers (even
when its link capacities are only restricted to be greater than zero), then each Rδ̂ (t') computed by Min_Path is
an integer. Therefore the number of main loop iterations is ≤ nDmax where, as defined earlier, Dmax is N's
maximum link delay (since, by Section 4's theorem on page 11, the sequence of values of Rδ̂ (t') that is
computed by MTMP1 is strictly increasing with the initial value being non-negative and the final value being
< nDmax). Consequently MTMP1's complexity is O(((n3/ logn) + nm)nDmax) = O(n2((n2/ logn) + m)Dmax) for
non-negative integer link delays.

Table 1. Complexity of routines within MTMP
Loop Line(s) Complexity

 MTMP1 MTMP2
σ + | f |(δR(t') – pδ) O(n) O(n)
Prune(NR, δ) O(m) O(m)
Max_Flow(NR) O(n3/ logn) O(m| g~ |)
Reconstitute(NPR, g~ , N) O(m) O(m)
� (u, v)�E, f(u, v) ← f(u, v) + g(u, v) O(m) O(m)
Decompose_to_Path_Flows(N, f) O(nm) O(nm)
X_ResidualNetwork(N, f) O(m) O(m)
Min_Path(NR) O(m + nlogn) O(m + nlogn)
The expression for MTMP2's Max_Flow complexity assumes positive integer
link capacities.

If the link capacities are positive integers (even when the link delays are only restricted to be greater than or
equal to zero), then the main loop of MTMP will be executed less than nCmax times, where, as defined earlier,
Cmax is the maximum link capacity. This is because the positive integer restriction on the link capacities
assures that each iteration of the loop adds at least one unit to the network flow, f, (i.e., every | g~ | ≥ 1) and
because the flow into t is limited to be less than or equal to the sum of the capacities of the links into t which in
turn is less than nCmax . Therefore MTMP1's complexity is O(n2((n2/ logn) + m)Cmax) for positive integer link
capacities and O(n2((n2/ logn) + m)min(Dmax, Cmax)) for non-negative integer link delays and positive integer
link capacities.

22 The use of flow augmenting generalized paths in MTMP2 opens up the possibility that MTMP2's complexity can be
improved by combining Max_Flow and Decompose_to_Path_Flows. This combination would create a quickest
multipath by adding one generalized path flow at a time to an evolving multipath. Aspects of this approach are discussed
in Appendix D Subsections D.3 to D.5.

 22

The complexity of the totality of the executions of MTMP2's Max_Flow routine is O(nmCmax) when
all link capacities are positive integers. This is because the sum of the maximum flows determined
by MTMP2's Max_Flow routine (i.e., the sum of all the g~ computed during MTMP's execution) is less
than nCmax. Excluding Max_Flow, the complexity of the MTMP2's main loop is O(nm). Since MTMP2's main
loop is executed less than nCmax times when all link capacities are positive integers, the complexity of the
combined executions, excluding MTMP2's Max_Flow is O(n2mCmax) . Hence MTMP2's complexity is
O(n2mCmax) when N's link capacities are positive integers (even when its link delays are only restricted to be
non-negative). If in addition the link delays are non-negative integers, then MTMP2's complexity is
O(nm(Cmax + nmin(Dmax, Cmax))) (since MTMP2's main loop will not be executed more than nDmax times when
the link delays are non-negative integers).

The commonly accepted definition of a polynomial complexity for a network algorithm is a complexity that is
polynomial in the number of network links and nodes, the log of link delays and the log of link capacities. The
commonly accepted definition of a pseudopolynomial complexity is a complexity that isn't a polynomial
complexity but is polynomial in the number of links, number of nodes, link delays and link capacities, see e.g.,
Ahuja et. al. (Ahuja e.t. al. 1991) . Thus by the commonly accepted definitions, MTMP1 and MTMP2 are
pseudopolynomial.

 23

6. CONCLUSION

The MTMP algorithms that we developed and discussed above generate a multipath path table for a network
where each multipath is a quickest multipath over an applicable interval of message lengths and where the
union of these intervals is the positive reals. Hence the algorithms also produce the quickest multipath delays
for messages of every possible length. When all network link delays are non-negative integers, the MTMP1
algorithm has a pseudopolynomial complexity, with this complexity being linear in Dmax, the maximum link
delay, and polynomial in the number of nodes and number of links. When all network link capacities are
positive integers, the MTMP1 and MTMP2 algorithms have a pseudopolynomial complexity, with this
complexity being linear in Cmax, the maximum link capacity, and polynomial in the number of nodes and
number of links.

The message length intervals over which any multipath path table entry except the first and last is a quickest
multipath path is a closed interval and the first and last intervals are respectively open below and closed above
and closed below and open above. Corresponding to each message length interval is a delay time interval over
which any multipath path table entry is a quickest multipath. When the link capacities are all positive integers,
the end points are integer message length end points and when the link delays are all non-negative integers,
these intervals' end points are integer time end points23.

Since the algorithm has potential applicability in network message routing systems, extending it to finding
quickest multipaths in dynamic cases where link bandwidths have been previously reserved for earlier
messages is a natural follow-on to this work. Also, consideration of situations in which segment headers have
to be attached to each message segment is a worthwhile extension of this work.

23 All the characteristics of the algorithms that result from non-negative integer delays and/or positive integer capacities
can be routinely extended to situations where the delays are non-negative and/or the capacities are positive rational
numbers.

 24

REFERENCES

Ahuja, R. K., T. L. Magnanti, J.B. Orlin 1993. Network Flows, Prentice Hall Inc., Upper Saddle River N.J.

Ahuja, R. K., J. B. Orlin 1991. Distance-directed augmenting path algorithms for maximum flow and
parametric maximum flow problems, Naval Logistics Research Quarterly, 38, 413-430.

Cheriyan, J, T. Hagerup, and K. Mehlhorn 1990. Can a maximum flow be computed in O(nm) time?
Proceedings of the 17th International Colloquium on Automata, Languages and Programming 235-248.

Cheriyan, J. and S. N. Maheshwari, 1989. Analysis of preflow push algorithms for maximum network flow,
SIAM Journal on Computing, 18, 1057-1086.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest 1990. Introduction to Algorithms, MIT Press, Cambridge,
MA.

Edmunds, J. and R. M. Karp. April 1972. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the Association for Computing Machinery Vol. 19, No. 2.

Ford, L. R. Jr. and D. R. Fulkerson 1962. Flows in Networks, Princeton University Press, Princeton, N.J.

Goldberg, A. V. 1985. A new max-flow algorithm, Technical Report MIT/LCS/TM-291, Laboratory for
Computer Science, MIT, Cambridge MA.

Goldberg, A. V. and R. E. Tarjan 1986. A new approach to the maximum flow problem, Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, 136-146.

Kagaris, D., G. E. Pantziou, S. Tragoudas, C. D. Zaroliagis 1999, Transmissions in a Network with Capacities
and Delays, Networks, 33: 167-174.

Rao, N. S. V. and S. G. Batsell 1997. Algorithm for minimum end-to-end delay paths, IEEE Communication
Letters, 1(5): 152-154.

Rao, N. S. V. and S. G. Batsell. 1998. QOS routing via multiple paths using bandwidth reservation, Oak
Ridge National Laboratory report ORNL/TM-1357.

Sleator, D. D. and R. E. Tarjan. 1983. A data structure for dynamic trees. Journal of Computer and System
Sciences, 24, 362-391.

Xue, G. May 2003. Optimal multichannel data transmission in computer networks, Computer
Communications, Vol. 26, Issue 7, 759-765.

Xue, G., S. Sun and J. B. Rosen 1998. Fast data transmission and maximal dynamic flow, Information
Processing Letters, 66:127-132.

 A-1

APPENDIX A. LINEAR PROGRAMMING AND THE GENERAL MINIMAL COST FLOW AND
MINIMUM COST MAXIMUM FLOW PROBLEMS

A.1 LINEAR PROGRAMMING FORMULATION OF THE GENERAL MINIMAL COST FLOW
PROBLEM

Ford and Fulkerson (Ford and Fulkerson 1962) formulated their general minimal cost flow problem as follows:
Find f(u, v) � (u, v)�E so that

 | f |T - �
�Evu

vuDvuf
),(

),(),((31)

is maximized subject to the constraints

 � u�V u ≠ s, t �

�� EvuVv
vuf

),(:
),(- �

�� EuvVv
uvf

),(:
),(= 0 (32)

 � (u, v)�E 0 ≤ f(u, v) ≤ C(u, v) (33)

where | f | is the net flow into t which is equal to the net flow out of s, T is a positive integer, and � (u, v) �E,
D(u, v) is a non-negative integer and C(u, v) is a positive integer. Note that the definitions of | f | can be written
in the form of the constraint equations (32) as follows:

 �

�� EutVu
utf

),(:
),(- �

�� EtuVu
tuf

),(:
),(+ | f | = 0 (34)

 �
�� EusVu

usf
),(:

),(- �
�� EsuVu

suf
).(:

),(- | f | = 0 (35)

Let A be an (m+n) x (m + 1) matrix, order the links and let f1 = f(e1), f2 = f(e2) …, fm = f(em) and fm+1 = | f |.
Then we can represent equations (32) to (35) and a requirement that | f | ≥ 0, by:

 and � i, 1 ≤ i ≤ m +1 fi ≥ 0 (37)

Here, in equation (36) the ='s sign above and ≤'s sign below the dashed line indicate that in the vector resulting
from the left hand side matrix multiplication the first n elements are equal to and the last m elements less than
or equal to their right hand side counterparts. The first m columns represent the network links and the last
column represents the flow magnitude. The first n rows of the matrix represent the network nodes with the

0
0
.
.
.

0

C(e1)
C(e2)

.

.

.

C(em-1)
C(em)

links magnitude
 a1,1 a1,2 ….. a1,m a1,m+1
 a2,1 a2,2 ….. a2,m a2,m+1

 an,1 an,2 ….. an,m an,m+1

 an+1,1 an+1,2 ….. an+1,m an+1,m+1

am+n-1,1 am+n-1,2 ….. am+n-1,m am+n-1,m+1
 am+n,1 am+n,2 ….. am+n,m am+n,m+1

=

≤

f1
f2

.

.

.

.

.

.

fm
fm+1

nodes

links (36)

 A-2

n -1st and nth row representing respectively nodes t and s. The first n - 2 rows therefore assert that the total
inflow to a node equals the total outflow (i.e., equation (32)) and the n - 1st and nth rows define | f | in terms of
the flow into and out of respectively t and s (i.e., equations (34) and (35)). The final m rows represent the
network links and define the link capacity limitations. Therefore for 1 ≤ i ≤ n, if row i represents node u, and
1 ≤ j ≤ m +1:

The last m rows represent the capacity upper bounds and hence for 1 ≤ i ≤ m and 1 ≤ j ≤ m + 1

Note that each of the first m columns has two elements equal to 1, one element equal to -1 and all other
elements equal to 0 (e.g., if the column represents link (u, v) , its element for the row representing u is 1, for the
row representing v is -1, and for the row representing (u, v) is 1). The last column has a -1 element and
+ 1 element in the rows representing nodes s and t respectively and zeroes for all its other elements.

A.2 LINEAR PROGRAM DUALITY

We shall consider general linear program duality, utilizing the equations (36) and (37) type of constraint
representation. Here we define a primal problem to be: Find a set of real values f1, f2, …, fq that maximizes

 �
�

q

i
ii fh

1
 (40)

subject to the constraints:

 and � i, l+1≤ i ≤ q f i ≥ 0 (42)

The dual of the primal problem is: Find a set of real values π1, π 2, …, πp that minimizes

 �
�

p

i
iib

1
� (43)

subject to the constraints:

=

≤

 a1,1 a1,2 ….. a1,q-1 a1,q
 a2,1 a2,2 ….. a2,q-1 a2,q

 ak,1 ak,2 ….. ak,q-1 ak,q

 ak+1,1 ak+1,2 ….. ak+1,q-1 ak+1,q

ap-1,1 ap-1,2 ….. ap-1,q-1 ap-1,q
 ap,1 ap,2 ….. ap,q-1 ap,q

f1
 f2
 .

 .

 .

 .

 .

 .

 fq-1
 fq

b1
b2

.

.

.

bk

bk+1
bk+2

.

.

.

.

.

bp-1
bp

 -1 ej = (v, u) for some v � V or u = s (i.e., i = n) and j = m + 1
ai,j = 1 ej = (u, v) for some v � V or u = t (i.e., i = n -1) and j = m +1
 0 otherwise

1 j = i
0 j ≠ i an+i,j =

(38)

(39)

(41)

 A-3

 and � i, k+1 ≤ i ≤ p πi ≥ 0 (45)

Here we note that the dual's constraint matrix, in equation (44), is the transpose of the primal's constraint
matrix, in equation (41).

As we shall see, if a set of values f1, f2, ..., fq satisfying equations (41) and (42) and a set of values π1, π2, ..., πp
satisfying equations (44) and (45) can be found such that:

 �
�

q

i
ii fh

1
= �

�

p

i
iib

1
�

then f1, f2, ..., fq and π1, π2, ..., πp are respectively solutions to the primal and dual problems.

Starting with the primal's function to be maximized, i.e., expression (40), and applying the constraints of the
dual's constraint matrix equation (44), to the hi yields:

 �
�

q

j
jj fh

1
= �

�

l

j
jj fh

1
+ �

��

q

lj
jj fh

1
≤ ji

l

j

p

i
ji fa �� �

� �1 1
, + ji

q

lj

p

i
ji fa �� �

�� �1 1
, = ji

q

j

p

i
ji fa �� �

� �1 1
, (46)

since, by equation (44), hj = �
�

p

i
ijia

1
, � for 1 ≤ j ≤ l and, by equations (44) and (42) respectively, hj ≤ �

�

p

i
ijia

1
, �

and fj ≥ 0 for l+1 ≤ j ≤ q.

Starting with the dual's function to be minimized, i.e., expression (43), and applying the constraints of the
primal's constraint matrix equation (41), to the bi yields:

 �
�

p

i
iib

1
� = �

�

k

i
iib

1
� + �

��

p

ki
iib

1
� ≥ ij

k

i

q

j
ji fa �� �

� �1 1
, + ij

p

ki

q

j
ji fa �� �

�� �1 1
, = ij

p

i

q

j
ji fa �� �

� �1 1
, = ji

q

j

p

i
ji fa �� �

� �1 1
, (47)

since by equation (41), bi = �
�

q

j
jji fa

1
, for 1 ≤ i ≤ l and by equations (41) and (45) respectively

 bi ≥ �
�

q

j
jji fa

1
, and πi ≥ 0 for k + 1 ≤ i ≤ p.

The final expressions in equations (46) and (47) are the same. Hence the equations can be combined to yield
the following result: for any f1, f2, ..., fq satisfying equations (41) and (42), i.e., the primal constraints, and
π1, π2, ..., πp satisfying equations (44) and (45), i.e., the dual constraints:

 �
�

q

j
jj fh

1
 ≤ ji

q

j

p

i
ji fa �� �

� �1 1
, ≤ �

�

p

i
iib

1
� (48)

Suppose f1, f2,, ..., fq satisfies the primal constraints, π1, π2, ..., πp satisfies the dual constraints and:

h1
h2

.

.

.

hl
hl+1

.

.

.

.

hq

=

≥

 a1,1 a1,2 ….. a1,p-1 a1,p
 a2,1 a2,2 ….. a2,p-1 a2,p

 al,1 al,2 ….. al,p-1 al,p

 al+1,1 al+1,2 ….. al+1,p-1 al+1,p

aq-1,1 aq-1,2 ….. aq-1,p-1 aq-1,p
 aq,1 aq,2 ….. aq,,p-1 aq,p

π1
π2

.

.

.

.

.

.

.

.

.

πp-1

πp

(44)

 A-4

 �
�

q

j
jj fh

1
 = �

�

p

i
iib

1
� (49)

Then it follows from equations (48) and (49) that for any f1
*, f2

*, …, fq
* satisfying the primal constraints,

 �
�

q

j
jj fh

1

* ≤ �
�

p

i
iib

1
� = �

�

q

j
jj fh

1
 (50)

Hence f1, f2,, ..., fq maximizes expression (40) and therefore is a solution of the primal problem. Also, for any
π1*, π2*, ..., πp* satisfying the dual constraints

 �
�

p

i
iib

1
� = �

�

q

j
jj fh

1
≤ �

�

p

i
iib

1

*
� (51)

Hence π1, π2, ..., πp minimizes expression (43) and therefore is a solution of the dual problem.

Equation (49) will hold for a f1, f2, ..., fq satisfying the primal constraints and a π1, π2, ..., πp satisfying the dual

constraints if and only if equality holds in equations (46) and (47) (i.e., �
�

q

j
jj fh

1
 = ji

q

j

p

i
ji fa �� �

� �1 1
, and �

�

p

i
iib

1
�

= ji

q

j

p

i
ji fa �� �

� �1 1
,). Equality in equation (46), can occur if and only if:

 � j, l+1 ≤ j ≤ q when hj < �
�

p

i
ijia

1
, � then fj = 0 (52)

(for by constraint (42) � j, l +1 ≤ j ≤ q, fj ≥ 0) and equality in equation (47), can occur if and only if:

 � i, k+1 ≤ i ≤ p when πi > 0 then bi = �
�

q

j
jji fa

1
, (53)

 (for by constraint (41) � i, k+1 ≤ i ≤ p, bi ≥ �
�

q

j
jji fa

1
,).

Thus if for some f1, f2, ..., fq satisfying the primal constraints and π1, π2, ..., πp satisfying the dual constraints the
following hold:

 � j, l+1 ≤ j ≤ q when hj < �
�

p

i
ijia

1
, � then fj = 0 (54)

 � i, k+1 ≤ i ≤ p when πi > 0 then bi = �
�

q

j
jji fa

1
, (55)

then �
�

q

j
jj fh

1
 = �

�

p

i
iib

1
� and hence f1, f2, ..., fq is a solution of the primal problem and π1, π2, ..., πp is a solution

of the dual problem.

A.3 DUALITY AND THE GENERAL MINIMAL COST FLOW PROBLEM

We note that in the general minimal cost flow problem l = 0 (for l of equations (42) and (44) on pages A-2 and
A-3) since all of the fi ≥ 0. Also k = n (for k of equations (41) and (45) on pages A-2 and A-3) since the
inequality applies only to the rows representing network links, hi = -D(ei) � i, 1 ≤ i ≤ m, and
hm+1 = T (for the hi of expression (40) on page A-2 and equation (44)). The dual constraints are therefore:

 A-5

 � i, n + 1 ≤ i ≤ m + n πi ≥ 0 (57)

We can see from the dual constraint matrix that the first n dual variables are associated with network nodes and
the last m dual variables are associated with network links. Further we can see from the constraint equation
(57) that the dual variables corresponding to the links are constrained to be non-negative. Since each row of
the dual constraint network is a column of the primal constraint network, the first m rows will have only three
non-zero elements and the last row only two non-zero elements (see equations (38) and (39) on page A-2).
Designating the dual variables by the nodes or links they are associated with, we then have equation (58) from
the first m rows of the dual constraint matrix equation, i.e., equation (56), and equation (59) from the last row
of the dual constraint matrix equation.

 π(u) - π(v) + π((u, v)) ≥ -D(u, v) � (u, v) � E (58)

 π(t) - π(s) ≥ T (59)

We can assure that the inequalities of equations (58) and (59) as well as (57), i.e.,� (u, v) � E, π((u, v)) ≥ 0,
are met by defining the π((u, v)), π(s) and π(t) as follows:

 π((u, v)) = max(0, π(v) - π(u) - D(u, v)) (60)

 π(s) = 0 and π(t) = T (61)

We shall now translate conditions (54) and (55) of the general dual problem (on page A-4) to the general
minimal cost flow problem. Condition (54) (given the only three nonzero ai,j for 0 ≤ j ≤ m and the only two
nonzero ai,j for j = m + 1 (see equations (38) and (39)) is:

 � (u, v) � E, π(u) - π(v) + π((u, v)) > -D(u, v) � f(u, v) = 0 (62)

 π(t) - π(s) > T � | f | = 0 (63)

Because of the π(t) and π(s) definitions in equation (61), π(t) - π(s) = T, so we needn’t concern ourselves with
condition (63). It can be seen from the definition of π((u, v)) in equation (60) that π(u) - π(v) + π((u, v)) will be
greater than -D(u, v) if and only if π(v) - π(u) < D(u, v)24. Hence the general dual condition (54) translated to
the general minimal cost flow problem with the dual variable values of equations (60) and (61) is:

 � (u, v) � E, π(v) - π(u) < D(u, v) � f(u, v) = 0 (64)

The bn+j of the general dual problem for 1 ≤ j ≤ m can be seen from equation (36) on page A-1 to equal
C(ej) for the general minimal cost flow problem. Hence condition (55) of the general dual problem

24 If π(v) - π(u) ≥ D(u, v), then π(v) - π(u) - D(u, v) ≥ 0 . Therefore, by equation (60), π((u, v)) = π(v) - π(u) - D(u, v) and
hence π(u) - π(v) + π((u, v)) = - D(u, v). If π(v) - π(u) < D(u, v), then π(v) - π(u) - D(u, v) < 0. Therefore π((u, v)) = 0
and hence π(u) - π(v) + π((u, v)) = π(u) - π(v) > -D(u, v).

nodes links
π1
π2

.

.

.

πn
πn+1

.

.

.

πn+m

 a1,1 a2,1 ….. an,1 an+1,1 ….. an+m-1,1 an+m,1
 a1,2 a2,2 ….. an,2 an+1,2 ….. an+m-1,2 an+m,2

 a1,m a2,m ….. an,m an+1,m ….. an+m-1,m an+m,m
a1,m+1 a2,m+1 ….. an,m+1 an+1,m+1 ….. an+m-1,m+1 an+m,m+1

≥

-D(e1)
-D(e2)

.

.

.

.
.
.

-D(em)
T

(56)

 A-6

translated to the general minimal cost flow problem (given that an+j, j = 1 and an+i, j = 0 for i ≠ j, see equation
(39)) is:

 � (u, v) � E, π((u, v)) > 0 � f(u, v) = C(u, v) (65)

It can be seen from the definition of π((u, v)) in equation (60) that π((u, v)) will be greater than 0 if and only if
π(v) - π(u) > D(u, v)25. Hence the general dual condition (55) translated to the general minimal cost flow
problem with the dual variable relations of (60) is:

 � (u, v) � E, π(v) - π(u) > D(u, v) � f(u, v) = C(u, v) (66)

Therefore a procedure that creates link flows and node related dual variables that satisfy the constraints of
equations (36) and (37), the equalities of equation (61) and the conditions (64) and (66), will provide a solution
to the general minimal cost flow problem. Here equation (61) and conditions (64) and (66) are respectively
equation (26) and conditions (28) and (27) of Section 4 of the body of the report (see page 12) that we used to
prove the correctness of the general MTMP approach.

A.4 FORD-FULKERSON GENERAL MINIMAL COST FLOW ALGORITHM

The general Ford-Fulkerson General Minimal Cost Flow Algorithm, which we have called FFGMCF, is
shown below on this page. We have constructed the pseudocode from a verbal description given by Ford and
Fulkerson (Ford and Fulkerson 1962) and included the added condition that π(t) < nDmax which is consistent
with an observation made in that reference following the description. Here a node in a residual network Nf is
reachable from s if there is a non-zero capacity “admissible” generalized path from s to the node. A
generalized path is admissible if each of its links are admissible and a link (u, v) is admissible if π(v) - π(u) =
D(u, v). R in line 10 is the complement of R, so the line 10 operation increments the dual variable associated
with each node that isn't in the reachable set.

Algorithm FFGMCF(N, f)
1. � (u, v)� E, f(u, v) ← 0; � u �V, π(u) ← 0;
2. while π(t) ≤ T and π(t) < nDmax do
3. R ← reachable set of V;
4. while t � R do
5. P ← a non-zero capacity generalized admissible path from s to t;
6. � (u, v) in P do
7. if (u, v) a ffl in P then f(u, v) ← f(u, v) +)(~ PC ;
8. else f(u, v) ← f(u, v) -)(~ PC ;
9. R ← reachable set of V;
10. � u � R , π(u) ← π(u) + 1;
11. return(f);

FFGMCF's line 5-9 loop utilizes flow augmenting generalized paths to maximize the flow in a network whose
links are the (u, v)� E for which π(v) - π(u) = D(u, v) and whose nodes are the end nodes of such links as
called for in the Ford Fulkerson reference. The network is essentially Nf,δ defined in Section 4 on page 11
(where π(t) = δ(t)). MTMP finds δ(t) “directly” by applying a standard shortest path algorithm to a residual
network. FFGMCF successively increases π(t), line 10, until t is in the reachable set of the residual network
(t's entry into the reachable set is termed “breakthrough” in the reference). The result is that for a residual
network, � u � V, π (u) = δ(u) for u such that δ(u) ≤ δ(t) and π(u) = δ(t) for u such that δ(u) ≥ δ(t). FFGMCF's

25 From equation (60), π((u, v)) > 0 if and only if π(v) - π(u) - D(u, v) > 0, i.e., if and only if π(v) - π(u) > D(u, v).

 A-7

correctness is proven in the reference by applying equation (61) and conditions (64) and (66) of this appendix
(corresponding to equation (26), and conditions (28) and (27) of Section 4 of the body of the report - see page
12). No consideration was given in the reference to the complexity of the algorithm.

We shall assume in our discussion of FFGMCF's complexity that link capacities are positive integers and link
delays are non-negative integers, as is done in the reference. The reachable set R (lines 3 and 9) is determined
by a “labeling” method26 that has complexity O(m). This labeling method includes the maintenance of
predecessor nodes. Hence the generalized path P (line 5) is generated from the method's results in O(n).
Therefore in the line 5-9 loop, line 9 dominates the rest of the loop from a complexity standpoint. The
complexity of the totality of loop iterations executed during FFGMCF is therefore O(nmCmax) since the
number of augmenting generalized paths is no greater than the maximum network flow which in turn is less
than nCmax. Line 3 and line 10 are the only main loop instructions not part of (or related to) the inner
line 5 - 9 loop and line 3's generation of a new reachable set, that has complexity O(m), dominates line 10, that
has complexity O(n). Since no more than nDmax iterations of the outer loop will occur, the complexity of the
totality of outer loop iterations exclusive of the inner loop contributions is O(nmDmax). Hence FFGMCF's
complexity is O(nm(Cmax+ Dmax)).

Algorithm CGMCF(N, f)
1. � (u, v) � E, f(u, v) ← 0; � u �V, π(u) ← 0; T ← 0;
2. while T < nDmax do
3. R ← reachable set of V; enable ← 0;
4. while t � R do
5. P ← a non-zero capacity generalized admissible path from s to t;
6. � (u, v) in P do
7. if (u, v) a ffl in P then f(u, v) ← f(u, v) +)(~ PC ;
8. else f(u, v) ← f(u, v) -)(~ PC ;
9. R ← reachable set of V; enable ← 1;
9a. if enable = 1 then Save(f and T);
10. � u � R , π(u) ← π(u) + 1;
10a. T ← T + 1;
11. return(saved (f, T) pairs);

Ford and Fulkerson explicitly recognized that their general minimal cost flow problem defines a set of related
problems, one for each of the set of successive integers 0, 1, 2, ..., that for some positive integer Tmax the
solution is a maximum flow for the network27, that the problem for any integer ≥ Tmax has this maximum flow
as a solution and that Tmax ≤ the network's longest generalized path delay. They further recognized that if
breakthrough occurs at π(t) = T1 and subsequently not again until π(t) = T2, then the flow resulting from the
maximization immediately after π(t) is set to T1 is a solution for any T between and including T1 and T2.

26 The labeling method first “labels” nodes and subsequently “scans” them. Scanning a node is the process by which
unlabeled nodes that can be “reached” via a single link from the node being scanned are labeled. The label given a node
contains a predecessor node and a generalized path capacity. The predecessor node is the node which when scanned led
to the labeled node being labeled, and the generalized path capacity is the capacity of the generalized path that can be
constructed by tracing back from the labeled node to s via predecessor nodes. The process starts with s being labeled
with itself as its predecessor node and with a generalized path capacity of ∞. It continues by scanning in no particular
order labeled but unscanned nodes and it terminates when no such node exists. Here a node v can be reached from a node
u via a single link if and only if either (u, v) � E, f(u, v) < C(u, v) and π(v) - π(u) = D(u, v) or (v, u) � E, f(v, u) > 0
and π(u) - π(v) = D(v, u). Note that when π(u) = δ(u) and π(v) = δ(v), the admissibility condition π(v) - π(u) = D(u, v) is
a necessary condition for (u, v) to be a link on a shortest generalized path in Nf from s to t.
27 They noted that such a maximum flow would be a solution to the minimum cost maximum flow problem that is
described in the next subsection.

 A-8

Suppose FFGMCF is altered so T is initialized to 0, T is incremented by one at the end of each iteration of the
routine's main loop, and the loop is terminated when T = nDmax. Further suppose the altered FFGMCF saves
the flow and T values on each exit from the line 5-9 loop when at least one augmentation was made during the
loop execution. Then the altered FFGMCF, displayed on page A-7 as CGMCF, solves the complete set of
problems and has the same complexity as FFGMCF28.

Algorithm FFMTMP(N, f)
1. � (u, v) � E, f(u, v) ← 0; � u �V, π(u) ← 0; T ← 0;

2. while T < nDmax do

3. R ← reachable set of V; enable ← 0;

4. while t � R do

5. P ← a non-zero capacity generalized admissible path from s to t;

6. � (u, v) in P do
7. if (u, v) a ffl in P then f(u, v) ← f(u, v) +)(~ PC ;
8. else f(u, v) ← f(u, v) -)(~ PC ;
9. R ← reachable set of V; enable ← 1;

9a1. if enable = 1 then

9a2. MP ← Decompose_to_Path_Flows(N, f);

9a3. σ ← message length MP can communicate in time T;

9a4. Save(MP, T, σ);
10. � u � R , π(u) ← π(u) + 1;

10a. T ← T + 1;

11. return(saved (MP, T, σ) triples);

Further suppose Decompose_to_Path_Flows in Subsection 5.2 on page 20 is executed on exit from
CGMCF's line 5-9 loop when at least one augmentation was made during the loop execution, and T, the
multipath and the multipath's message length for T are saved. Then the altered CGMCF, shown above on this
page as FFMTMP, creates a path table of minimum end-to-end delay multipaths. The number of required
decompositions is bounded above by the maximum flow which is < nCmax and by the number of
distinct values of T which is nDmax. Therefore the number of decompositions is bounded above by
nmin(Cmax, Dmax) and since such a decomposition has a complexity of O(nm), the complexity of FFMTMP is
O(nm(Cmax + Dmax) + n2mmin(Cmax, Dmax)) = O(nm(Cmax + Dmax + nmin(Cmax, Dmax))).

A.5 THE MINIMUM COST MAXIMUM FLOW PROBLEM

The Minimum Cost Maximum Flow Problem is the problem of finding a maximum flow f* in a network
N(G(V,F), C, D) such that:

� f: f is a maximum flow,

 ���
�� EvuEvu

vuDvufvuDvuf
),(),(

*),(),(),(),((67)

28 π (t) = T until the end of each main loop iteration since π(t) and T are initialized to 0 and each incrementing of π(t) is
followed by an incrementing of T (lines 10 and 10a) restoring the equality of π(t) and T. Therefore no test for π(t) ≤ T is
required at line 2.

 A-9

Edmunds and Karp (Edmunds and Karp 1972)29 presented an algorithmic solution to the problem that we
provide in pseudocode below on this page as EKMCMF. They confined their consideration to networks in
which if (u, v) � E then (v, u) � E, noting that any network can be transformed into a network meeting this
criterion through artifacts such as fictitious nodes.

__

Algorithm EKMCMF(N, f)
1. � (u, v) � E, f(u, v) ← 0; � u � V, π(u) ← 0; | fmax | ← magnitude of a maximum flow from
 s to t in N;
2. while | f | < | fmax | do
3. � (u, v) � Ef, D̂ (u, v) ← π(u) - π(v) + D~ (u, v);
4. � u � V,)(ˆ uδ ← shortest s to u path delay in fN̂ ;
5. P ← shortest path from s to t in fN̂ with minimum number of links among all shortest paths from s
 to t in fN̂ ;
6. � (u, v) in P do
7. if (u, v) a ffl in P then f(u, v) ← f(u, v) +)(~ PC ;
8. else f(u, v) ← f(u, v) -)(~ PC ;

9. � u � V do π(u) ← π(u) +)(ˆ uδ ;
10. return(f);
__

fN̂ = (G(V, Ef,) Cf, D̂) (line 4) is related but not identical to Nf which we defined in the body of this
report. (u, v)� Ef if and only if (u, v) � E and f(u, v) < C(u, v) or (v, u) � E and f(v, u) > 0. Thus one or
more links in E may not be in Ef and Ef may contain one or more links that aren't in E. Analogous to
definitions for Nf, C f(u, v) = C(u, v) - f(u, v) and D~ (u, v) = D(u, v) if (u, v)� E, and C f(u, v) = f(v, u) and
D~ (u, v) =- D(v, u) if (u, v)� E. Here D~ (u, v) is used at line 3 to compute D̂ (u, v) and, with these definitions,
� (u, v) � Ef, D̂ (u, v) ≥ 0. Further if (u, v) � Ef and (v, u) � Ef, then D̂ (u, v) = D̂ (v, u) = 0. Though not
directly evident from EKMCMF, π(u) calculated at line 9 is δ(u), the minimum s to u generalized path delay in
Nf, and consequently EKMCMF anticipated MTMP's use of δ(u) as a dual variable30.

We note that Edmunds and Karp did not completely address the problem of the complexity of their algorithm.
They did however address bounds on the number of augmenting paths it uses (which equals the number of
executions of line 5). Their algorithm (i.e., EKMCMF) which redefines fN̂ prior to each flow augmentation,
masks the fact that it is engaging in a series of network flow maximizations of networks defined by
successively generated differing values of δ(t). However they recognized this fact and used it to develop their
bound on the number of flow augmentations.

29 This paper is most recognized for a network maximum flow algorithm that appears toward its beginning and which has
become known as the Edmunds-Karp algorithm. This algorithm utilizes a modified labeling method which leads to
augmenting generalized paths being chosen in a sequence with monotonically increasing numbers of links. It is proven in
the paper that the number of augmenting generalized paths is less than n3 though the particular proof also can be used to
establish that this number is less than nm. The procedure outlined for obtaining an augmenting generalized path has
complexity O(m), hence the algorithm has complexity O(nm2). EKMCMF is subsequently outlined in the paper as a
lead up to a minimum cost maximum flow algorithm that isn't closely related to an MTMP but has lower complexity than
EKMCMF.
30 The equality is noted in the reference (Edmunds and Karp 1972) in the statement of a theorem for which no proof is
provided (and a shortest generalized path delay is incorrectly equated to πk(u) rather than πk+1(u)).

 A-10

Edmunds and Karp also addressed the number of operations required to find shortest path delays and as a result
presented a routine for determining shortest path delays in a network with non-negative link delays that is used
in the line 4 determination of the)(ˆ �δ . This routine is essentially Dijsktra's algorithm without predecessor
nodes and is applicable due to Edmunds and Karp's definition of link delays in fN̂ (i.e., the D̂ (·,·)) that
assures that they will be non-negative. Since, with predecessor nodes, the shortest path routine will not
necessarily provide a minimum link shortest generalized path from s to t, the generalized path P of line 5 is
generated by their modified “labeling method”31. Line 4 whose complexity is O(m + nlogn) dominates the line
3 to 9 loop (in which line 5 has complexity O(m)). The number of iterations of this loop is bounded above by
nCmax and n2mDmax when the link capacities are positive integers and the link delays are non-negative integers.
The first bound results from the facts that each iteration adds at least one unit to the flow and the maximum
flow is bounded above by nCmax . The second bound results from the facts that each set of iterations for a
particular δ(t) value corresponds to a flow maximization of a subnetwork of a network ,fN δ(t) takes on no
more than nDmax values, and a flow maximization using the modified labeling method requires no more
than nm flow augmenting generalized paths. Here f is the flow immediately before the first augmenting
path is chosen with end-to-end delay equal to the particular δ(t). Therefore the complexity of EKMCMF is
O(n(m + nlogn)min(Cmax , nmDmax)).

__

Algorithm EKMTMP(N, f)
1. � (u, v) � E, f(u, v) ← 0; � u � V, π(u) ← 0; | fmax | ← magnitude of a
 maximum flow from s to t in N;
1a. enable ← 0;
2. while | f | < | fmax | do
3. � (u, v) � Ef, D̂ (u, v) ← π(u) - π(v) + D~ (u, v);
4. � u � V,)(ˆ uδ ← shortest s to u path delay in fN̂ ;

4a. if)(ˆ tδ ≠ 0 and enable ≠ 0 then
4b. MP ← Decompose_to_Path_Flows(N, f);
4c. σ ← message length MP can communicate in time T; Save(MP, T, σ);
5. P ← shortest path from s to t in fN̂ with minimum number of links among all shortest paths from s
 to t in fN̂ ;
6. � (u, v) in P do
7. if (u, v) a ffl in P then f(u, v) ← f(u, v) +)(~ PC ;
8. else f(u, v) ← f(u, v) -)(~ PC ;

8a. T ← π(t) +)(ˆ tδ ; enable ← 1;

9. � u � V, π(u) ← π(u) +)(ˆ uδ ;
9a. if enable = 1 then
9b. MP ← Decompose_to_Path_Flows(N, f);
9c. σ ← message length MP can communicate in time T; Save(MP, T, σ);
10. return(f);
__

EKMCMF solves the whole family of generalized minimal cost flow problems formulated by Ford and
Fulkerson (Ford and Fulkerson 1962) though it doesn't pause to save the solutions whose flow magnitudes are

31 This modified labeling method follows the form of the original labeling method of Ford and Fulkerson but scans nodes
in the order that the nodes were labeled. It therefore has the form of a breadth first search via, in EKMCMF, links
satisfying)(ˆ vδ -)(ˆ uδ = π(u) - π(v) + D~ (u, v), analogous to admissible path links of FFGMCF. Since π(u) - π(v) +

D~ (u, v) = D̂ (u, v), these links satisfy a necessary condition for being links of a shortest path from s to t in Nf.

 A-11

less than the maximum network flow. Consequently it can readily be expanded to produce a path table of
minimum end-to-end delay multipaths. Such an expansion is presented on page A-10 as EKMTMP. It
requires detecting a change in δ(t) (other than its change from its initial value) and after such a change
decomposing the flow into a multipath flow. This is accomplished by testing for)(ˆ tδ > 0 at line 4a after the

generation of the)(ˆ �δ at line 4 (and by testing a flag which indicates whether or not the current iteration of the
line 3-9 loop is its initial iteration). A final decomposition (line 9b) is required after the last loop iteration to
handle the maximum network flow (which is a solution to the minimum cost maximum flow problem). Each
decomposition has complexity O(nm). The number of required decompositions is bounded above by the
maximum network flow and by the maximum number of values of δ(t). Hence the total set of decompositions
has complexity O(n2mmin(Cmax ,Dmax)). Adding this to the complexity of EKMCMF yields an EKMTMP
complexity of O(n((m + nlogn)min(Cmax , nmDmax) + nmmin(Cmax , Dmax))).

A.6 COMPARISONS

The most obvious difference between MTMP and the algorithms of Ford and Fulkerson and Edmunds and
Karp, translated into FFGMCF and EKMCMF respectively (in sections A.4 and A.5), is MTMP's
decomposition of flows into multipaths. Since communications networks were not the focus of Ford and
Fulkerson and Edmunds and Karp such decompositions were not of concern in these works32. However, as
illustrated in the previous two subsections, FFGMCF and EKMCMF can be expanded to provide results
comparable to MTMP's. MTMP has another significant difference. Its construction of the set of pruned
residual networks allows instantiations of MTMP to use any network flow maximization routine that is
applicable to networks that can be represented as directed graphs having non-negative link capacities. Hence
MTMP1 uses the flow maximization routine with the apparently “best” complexity of flow maximization
routine complexities expressed only in terms of n and m, i.e., independent of link capacities and delays (see
Appendix B, page B-2). FFGMCF and EKMCMF are in contrast oriented to network flow maximization via
flow augmenting generalized paths and particularly to such maximizations that are achieved through use of a
“labeling” technique.

The concept of solving all MTMPP's for a network via generation of a multipath path table through a series of
flow maximizations (as is done in MTMP) was anticipated by FFGMCF. Further the use of residual networks'
minimum generalized path delays to determine successive networks for flow maximization was anticipated by
EKMCMF. However the explicit use of these minimum generalized path delays as dual variables was
apparently first implemented in our MTMP. It is worth noting that in the Ford Fulkerson reference it is
recognized that FFGMCF's dual variable values for unreachable set nodes, those that comprise R , can be
increased by more than one unit at a time. The increase that is suggested for FFGMCF is the minimum
increase necessary to make a node in R reachable, i.e., to move the node from R to R. It is pointed out there
that a maximum of | 0R | such increases will then lead to breakthrough, where 0R is the complement of the
initial reachable set or of the reachable set determined immediately after a flow maximization33. However this
procedure still requires consideration of π(t) values that are between breakthrough values.

Table 2 on page A-12 provides complexities of instantiations of MTMP and expansions of FFGMCF and
EKMCMF to produce MTMP results. The column 2-4 entries should be understood as the x values of O(x).

32 It is worth noting however that a flow decomposition algorithm was outlined in the Ford and Fulkerson reference
outside the context of the general minimal cost flow problem.
33 The increment for the π(u) for u � 0R is determined here by examining all non-zero capacity links between nodes in R0
and 0R and determining the minimum increment which makes one such link admissible. This can be accomplished with
complexity O(m). Since | 0R | < n, less than n such increments are required to reach breakthrough.

 A-12

We have added four routines that are mild modifications of other routines listed in the table. MTMP3,
MTMP4 and MTMP5 are MTMP instantiations34 that use different flow augmenting generalized path
maximum flow routines than MTMP2 does. MTMP3 uses the modified labeling method of Edmunds and
Karp (Edmunds and Karp 1972). MTMP5 uses the apparently best flow augmenting generalized path
maximum flow routine from a complexity point of view when complexity is limited to being expressed
independent of Cmax and Dmax. The complexity of this best routine is O(nmlogn), see Sleator and Tarjan
(Sleator and Tarjan 1993). FMTMPR is FFMTMP except that the modified labeling method of Edmunds and
Karp is substituted for the original labeling method of Ford and Fulkerson. Columns 2 - 4 contain algorithm
complexities that respectively are those expressed in terms of both Cmax and Dmax, Dmax only, and Cmax only. A
column 3 or 4 entry of “-----” indicates an inability to express the complexity in the column's required terms.
The complexities in Table 2 are all applicable to the case where link capacities are positive integers and link
delays are non-negative integers. However column 3's and column 4's complexities are also valid respectively
in cases where only the link delays are integers and only the link capacities are integers.

Table 2. Algorithm complexities
algorithm full independent of Cmax independent of Dmax
MTMP1 n2(n2/ logn + m)min(Cmax , Dmax) n2(n2/ logn + m)Dmax n2(n2/ logn + m)Cmax
MTMP2 nm(Cmax + nmin(Cmax , Dmax)) ------ n2mCmax
MTMP3 nm(min(Cmax , nmDmax) + nmin(Cmax , Dmax)) n2m2Dmax n2mCmax
MTMP4 n3mmin(Cmax, Dmax) n3mDmax n3mCmax
MTMP5 n2m(logn)min(Cmax , Dmax) n2m(logn)Dmax n2m(logn)Cmax

FFMTMP nm(Cmax + Dmax+ nmin(Cmax , Dmax)) ----- -----
FMTMPR nm(min(Cmax ,nmDmax) + Dmax +

nmin(Cmax , Dmax))
n2m2Dmax -----

EKMTMP n((nlogn + m)min(Cmax , nmDmax) +
nmmin(Cmax , Dmax))

n2m(nlogn + m)Dmax n2mCmax

The Table 2 complexity expressions contain four or less network parameters and the only relationship among
these parameters that we are free to assume is n-1 ≤ m ≤ n(n-1), i.e., there are at least enough links for every
node but s to have an incoming link and there are no more links than necessary to link each node to every other
node in the network (where node u is linked to node v if and only if (u, v) � E). Prior to making algorithm
complexity comparisons based upon Table 2 expressions, we shall define terms that we shall use in the
comparisons.

If � k > 0, Ψ(n, m, Cmax , Dmax) ≠ kΩ(n, m, Cmax , Dmax) and � kΩ > 0 such that� possible set of n, m, Cmax
and Dmax , Ψ(n, m, Cmax , Dmax) < kΩΩ(n, m, Cmax , Dmax), then Ψ(n, m, Cmax , Dmax) is “over bounded” by
Ω(n, m, Cmax , Dmax). Algorithm A is superior to (has a superior complexity than) Algorithm B and Algorithm
B is inferior to (has an inferior complexity than) Algorithm A if Algorithm A has complexity
O(Ψ(n, m, Cmax , Dmax)) and� Ω(·,·,·,·) such that Algorithm B has complexity O(Ω(n, m, Cmax , Dmax)),
Ψ(n, m, Cmax, Dmax) is over bounded by Ω(n, m, Cmax ,Dmax).

34 MTMP4's routine, see Ahuja and Orlin (Ahuja and Orlin 1991) and MTMP5's routine, see Sleator and Tarjan (Sleator
and Tarjan 1993) each use “distance” labels and a series of “advances” and “retreats” to find augmenting generalized
paths from s to t. In addition MTMP5's routine uses a “dynamic tree” data structure to reduce the average number of
operations required to find an augmenting generalized path. Neither of these routines, unlike the ones used in MTMP2
(and FFMTMP) and MTMP3 (and EKMTMP), has the property that a “best” complexity can be found by multiplying an
upper bound on the number of flow augmenting generalized paths by a complexity per augmentation. Each augmentation
carries computational overhead where the sum of these overheads can be quantified over the set of augmentations to
provide a lower complexity value than can be obtained by multiplying a maximum complexity of any augmentation by
the number of augmentations.

 A-13

Let Ψ(n, m, Cmax , Dmax) = �
�

q

j
maxmax DCmn

1
i),,,(ψ and let the limit as n → ∞ of the fraction of the range of m,

where m's range is [n - 1, n(n - 1)], for which for some j, 1 ≤ j ≤ q, O(Ψ(n, m, Cmax, Dmax)) =
O(ψj(n, m, Cmax , Dmax)) be 1 (i.e.,� i: 1 ≤ i ≤ q and i ≠ j and� k > 0, the fraction of m's range for which
kψi(n, m, Cmax, Dmax) ≤ ψj(n, m, Cmax , Dmax) has a limit of 1 as n → ∞). Further let there be no set of linearly
independent functions ψj,i(n, m, Cmax, Dmax), 1 ≤ i ≤ p and p ≥ 2, such that ψj(n, m, Cmax, Dmax) =

�
�

q

j
maxmax DCmn

1
i),,,(ψ and for some l, 1 ≤ l ≤ p, the limit as n → ∞ of the fraction of m's range for which

O(ψj(n, m, Cmax, Dmax)) = O(ψ j,l(n, m, Cmax, Dmax)) is 1. Then O(ψj(n, m, Cmax, Dmax)) is an asymptotic value of
O(Ψ(n, m, Cmax, Dmax)). Algorithm A is asymptotically superior to Algorithm B and Algorithm B is
asymptotically inferior to Algorithm A if O(�̂ (n, m, Cmax, Dmax)) is an asymptotic value of an Algorithm A
complexity expression and � �̂ (·,·,·,·) for which O(�̂ (n, m, Cmax , Dmax)) is an asymptotic value of an
Algorithm B complexity expression, �̂ (n, m, Cmax , Dmax) is over bounded by �̂ (n, m, Cmax , Dmax).

We shall in our comparisons consider cases in which algorithm complexities are restricted to being expressed
in limited fashions (per 2's columns 3 and 4). We shall use the terms superior, inferior, asymptotically superior
and asymptotically inferior in these limited cases in the same manner as for the “full” complexities, i.e., the
case for which the terms were defined above.

Only MTMP1 and EKMTMP in Table 2 have asymptotic complexities that are different from their
complexities. MTMP1's asymptotic complexities are respectively O(n2mmin(Cmax , Dmax)), O(n2mDmax) and
O(n2mCmax) when complexities are unlimited, i.e., full, limited to being expressed independent of Cmax and
limited to being expressed independent of Dmax. This can be seen by letting ε(n) be the percentage of the range
of m that lies between n -1 and n2/ logn. Then

��n
lim ε(n) = 0, i.e., the percentage of the range of m in which

m < n2/ logn (corresponding to the percentage of the range for which MTMP1's first complexity
expression term is greater than its second term, e.g., (n4/logn)Cmax > n2mCmax in the case where the complexity
is expressed independent of Dmax), has a limit of zero as n → ∞35. EKMTMP's asymptotic complexities are
O(nm(min(Cmax , nmDmax) + nmin(Cmax, Dmax))) and O(n2m2Dmax) when complexities are unlimited and limited
to being expressed independent of Cmax respectively36.

Based upon the “full” expressions of the algorithm complexities there is no Table 2 generally superior
algorithm. However MTMP1 (the only one of the routines that doesn't use a flow augmenting generalized path
approach) is asymptotically superior to all the other algorithms. When complexity expressions are limited to be
independent of Cmax, MTMP1 is superior to all but MTMP5 and is asymptotically superior to all the other
algorithms including MTMP5. Further when complexities are expressed independent of Dmax , while MTMP1
is inferior to some of the other algorithms, the “best” of them aren't asymptotically superior to MTMP1.

35 ε(n) =)1()1(

)1()log/(2

���

��

nnn
nnn = 2

2

)1(
)1()log/(

�

��

n
nnn . Hence

��n
lim ε(n) =

��n
lim 2

2)log/(
n

nnn � =
��n

lim � �nn
1

log
1

� = 0.

36 Here we set �)(ˆ n�)1()1(
)1(log

���

��

nnn
nnn = 2)1(

)1(log
�

��

n
nnn . Hence

��n
lim (n)ε̂ =

��n
lim 2

)log(
n

nnn � =
��n

lim � �nn
n 1log
� = 0.

 B-1

APPENDIX B. MTMP ALGORITHM CHOICES

We shall consider in this appendix factors related to our choices of algorithms for Min_Path and Max_Flow.
We chose to use Dijkstra's algorithm as the major part of Min_Path. This necessitated assigning augmented
residual network, NR, link delays that were more involved than might otherwise have been required. We could
have simply set the delays of non-zero capacity NR links to plus and minus the original network, N, link delays,
i.e., links of the form (u", v') and (v', u") with non-zero capacity would be assigned link delays
DR(u", v') = D(u, v) and DR (v', u") = - D(u, v) respectively. However then a Min_Path built around Dijkstra's
algorithm that requires non-negative delays wouldn't have been possible. Instead we could have used the
Bellman-Ford algorithm for Min_Path provided that we could show that with these link delay assignments NR
doesn't have a negative delay loop, i.e., a loop in which the sum of the loop's link delays is < 0. We shall
demonstrate the non-existence of negative delay loops in the proof of the following lemma. Here the simple
link delay assignment refers to assigning D(u, v) to DR (u", v') rather than Rδ̂ (u") - Rδ̂ (v') + D(u, v) and

-D(u ,v) to DR (v', u") rather than Rδ̂ (v') - Rδ̂ (u") - D(u, v) for nonzero capacity links of the form (u", v') and
(v', u") respectively in NR.

Lemma 4: No NR network produced by MTMP has a negative delay loop when the simple link delay
assignment is applied to NR.

Proof: Since the first NR produced by MTMP is generated from N, it has no links with negative delays
and hence cannot have a negative delay loop (all (v', u") type links in NR have zero capacity
and hence are assigned delays of ∞ rather than -D(u, v), (see Figure 2 in Subsection 5.2 on page 17
with RD̂ (u, v) = D(u, v) and RD̂ (v, u)= D(v, u)). Let LOOP represented by the sequence of links
(x0,x1), (x1,x2), ..., (xp-1, xp),(xp, xp+1) where xp+1 = x0 be a loop in NR . If any link in LOOP has infinite delay,
then LOOP has infinite delay and hence doesn't have a negative delay. Therefore assume all links in LOOP
have a finite delay. Then every link in the loop has a non-zero capacity since all links with zero capacity in NR
have delays of ∞. Construct GLOOP in Nf corresponding to LOOP in NR (recognizing per Figure 2 that each
node xi in NR was generated by a node yi in Nf and either has the form yi' or yi") by creating a sequence of links
in Nf (in the order of LOOP's sequence of links) as follows:

include link (yi, yi+1, 1) when xi was generated from yi and is of the form yi" and xi+1
was generated from yi+1 and is of the form yi+1'

include link (yi , yi+1, -1) when xi was generated from yi and is of the form yi' and xi+1 was
generated from yi+1 and is of the form yi+1"

include no corresponding link when xi and xi+1 were generated from the same node in Nf

After this construction the resulting sequence is a generalized loop in Nf and the delay of GLOOP is (given the
relation of delays in links of NR and Nf, including that links of the form (yi", yi') and (yi', yi") in NR have zero
delay):

 D(GLOOP) = �
�

��

��

GLOOPidiyiy
iii dyyD

)1,1,(
11),,(~ = �

�

�

p

i
iiR xxD

1
1),(= D(LOOP) (68)

Every link in GLOOP (given the relationship of link capacities in NR and Nf) has non-zero capacity in the
direction of GLOOP and hence GLOOP is a non-zero capacity generalized loop in Nf .

Since for some T > 0, f maximizes D(·,T), by Lemma 3 in Section 3 on page 10, D(GLOOP) ≥ 0. Hence by
equation (68), D(LOOP) ≥ 0 and therefore NR has no negative delay loops. ■

 B-2

The Bellman-Ford algorithm whose complexity is O(nm) is inferior to Dijkstra's algorithm whose complexity
of O(m + nlogn). However Bellman-Ford's use wouldn't increase the complexity of MTMP since
Decompose_to_Path_Flows also has complexity O(nm). Our choice of a Min_Path built around Dijkstra's
algorithm however causes Decompose_to_Path_Flows to be a dominant factor in MTMP's complexity and
hence assures that any reduction of Decompose_to_Path_Flows' complexity will improve MTMP's complexity
(see Appendix D).

Our choice of Max_Flow algorithms was targeted at two separate cases. The first case is one in which
link delays are all non-negative integers (and link capacities are only constrained to be positive) and
the second case is one in which link capacities are all positive integers (and link delays are only constrained to
be non-negative). The first case lead to MTMP1 in which we chose the maximum flow algorithm
of Cheriyan Maheshwari (Cheriyan and Maheshwari 1989) that, among those we are aware of, has the
“best” complexity when complexities are limited to being expressed only in terms of n and m.
This maximum flow algorithm as noted in Table 1 in Subsection 5.3 on page 21 has complexity
O(n3/ logn) and is neither inferior nor superior to Decompose_to_Path_Flows whose complexity is O(nm).
Hence both of these algorithms impact MTMP1's complexity that is O(n2(n2/ logn + m)Dmax) even when link
capacities aren't integers. As noted in Subsection A.6 on page A-13, this MTPMP1 complexity reduces to an
asymptotic complexity of O(n2mDmax) determined by Decompose_to_Path_Flows' complexity(which, per the
definition in the last paragraph of this appendix, results from MTMP1's maximum flow algorithm being
superior in the limit to Decompose_to_Path_Flows’).

The second case's integer link capacity requirement leads to all flow augmenting generalized paths
(used in flow maximizations) being assigned integer flow rates. This, in turn, causes the number of flow
augmenting generalized paths used to be bounded above by the maximum network flow that is less than nCmax.
The most straightforward flow augmenting generalized path maximum flow algorithm is such that the
complexity of the totality of its executions by MTMP is O(nmCmax). That complexity is equal to the complexity
of the totality of executions of other MTMP operations (i.e., those in Table 1 whose single execution
complexities are O(m)) that are all dominated by the totality of Decompose_to_Path_Flows' executions. Hence
the straight forward flow augmenting generalized path maximum flow algorithm
was chosen for MTMP2 causing MTMP2's complexity, when only its capacities have to
be integers, to be determined by the totality of Decompose_to_Path_Flows' executions which is
O(n2mCmax).

The “best” maximum flow algorithm for MTMP1 was selected based in part on a comparison
related to asymptotic complexity discussed in Subsection A.6 on page A-13. Its O(n3/ logn) complexity
makes it superior to a number of the strictly comparable algorithms (i.e., other algorithms whose
complexity can be expressed only in terms of n and m), e.g., a “preflow push to front” algorithm with
complexity O(n3), see Goldberg (Goldberg, 1985). However there exists a set of strictly comparable
algorithms that this best routine is neither superior to nor asymptotically superior to. We define another ratio
based limit comparison to distinguish among these. Particularly we say that if the limit as n → ∞ of the
fraction of the range of m for which algorithm A has lower complexity than algorithm B is 1, then algorithm A
is superior in the limit to algorithm B. MTMP1's maximum flow routine is superior in the limit to all the
strictly comparable maximum flow routines that we are aware of. For example, one strictly comparable
algorithm's complexity is O(n2 m) but isn't O(n3/ logn), see Cheriyan and Maheshwari (Cheriyan and
Maheshwari 1989). The chosen algorithm therefore has a lower complexity when n2/ log2n < m. The fraction

 B-3

of the range of m for which n2/ log2n > m is 2

22

)1(
)1(log/

�

��

n
nnn whose limit as n → ∞ is zero. So the limit of the

fraction of the range for which n2/ log2n < m is 1 and therefore the chosen routine is superior in the limit37.

37 A routine for which the fractional limit requires a more involved computation is one whose complexity is O(nmlog m

n2
)

but not O(n3/ logn), see Goldberg and Tarjan (Goldberg, and Tarjan 1986). Here in comparing its complexity to the
chosen algorithm's complexity, the comparison is between mlog m

n2
and n

n
log

2
. mlog m

n2
 has a maximum at m = n2/e,

equals n2/ 2 at m = n2/ 2, equals (n-1)log 1
2

�n
n at the minimum m of n - 1, equals n(n-1)log 1�n

n at the maximum m of n(n - 1),
is 0 at m = n2, has positive slope in [(n-1), n2/e) and has negative slope in (n2/e, n2]. Thus for n sufficiently large there is
an initial interval from n-1 to a value less that n2/ 2 for which n

n
log

2
> mlog m

n2
, a second interval containing n2/ 2 for which

n
n

log
2

< mlog m
n2

 and possibly a third interval from a value greater than n2/ 2 to n(n-1) for which n
n

log
2

> mlog m
n2

 since such

a third interval exists within (n2/ 2, n2).

Since for m < n2/ 2, mlog m
n2

> m, the interval from n-1 to n2/ 2 for which mlog m
n2

< n
n

log
2

is contained in the interval in

which m < n
n

log
2

. Therefore, since
��n

lim 2

2

)1(
)1(log/

�

��

n
nnn = 0, the ratio of first of the three intervals length to the range of m

has a limit of 0 as n → ∞.

If we let n(ε) be the value of n at which n
n

log
2

= mlog m
n2

 when m = (1 - ε)n(ε)2, then n(ε) =
�
�

�
�
�

�
�

��)1)1log(()1(
1

2 �� ,
0

lim
��

n(ε) = ∞,

and for n(ε)2/ 2 < m < (1 - ε)n(ε)2, mlog m
n 2)(� > n

n
log

)(2
� . The third interval from (1- ε(n))n2 to n(n-1), where ε(n) is the

inverse of n(ε) for n > 4 (corresponding to 0 < ε < 1/2), is contained in the interval from (1- ε(n))n2 to n2. Hence the
third interval has a length < n2-(1- ε(n))n2. Note that n(ε) has an inverse for n > 4 since n(ε) has a negative derivative in
the range 0 ≤ ε < 1/2. Also note that

��n
lim ε(n) = 0. Therefore the limit as n → ∞ of the ratio of the third interval to the

range of m is ≤
��n

lim (n2-(1- ε(n))n2)/n(n -1) =
��n

lim ε(n) = 0.

Since the limits as n → ∞ of the ratios of the first and third intervals to the range of m are both zero, the limit of the ratio
of the interval for which n3/ logn < nmlog m

n2
 is 1. Hence MTMP1's maximum flow algorithm is superior in the limit to

the algorithm whose complexity is O(nmlog m
n2

).

 C-1

APPENDIX C. INTEGER MESSAGE SEGMENTS REQUIREMENT

C.1 IMPACT ON QUICKEST MULTIPATHS

The path table generation discussed in the body of this report allowed messages to be arbitrarily divided among
paths of a multipath (i.e., a path's segment did not have to be an integer number of message units). We shall
discuss in this appendix the impact of requiring integer length path segment assignments. We shall refer to the
situation allowing non-integer segments as the unrestricted case and refer to the situation requiring only integer
segments as the restricted case.

The definition of multipath MP's, end-to-end delay for a message length σ can be generalized from equation
(8), on page 3 in Section 1, to be:

TMP, σ = �
�

�
�
�

� �
���

))()(/(maxmin
0: iiiPPΨ

PDPRσ
ii ��

�

where φ = (σ1, σ2, …, σp), p is the number of paths in P (where MP = (P, R)), D(Pi) and R(Pi) are respectively

path Pi's delay and MP flow rate and Ψσ = {φ satisfying a set of conditions: �
�

p

i
iσ

1
= σ }. This definition

provides a multipath's unrestricted case end-to-end delay when the set of conditions defining Ψσ
is� i, i = 1, 2, …, p, σi ≥ 0 and its restricted case end-to-end delay when the set of conditions defining Ψσ
is� i, i = 1, 2, …, p, σi is a non-negative integer. The multipath unrestricted case end-to-end delay is defined
by a unique segment assignment φ in which the end-to-end delay of all paths with non-zero segments is equal
to the multipath end-to-end delay (i.e.,� Pi � MP: σi > 0, σi /R(Pi) + D(Pi) = TMP, σ). However such a segment
assignment isn't always possible in the restricted case.

It is obvious that the unrestricted case minimum end-to-end delay for a message is a lower bound
for the restricted case minimum end-to-end delay. The multipath MP1 = ((P1),(6)) = (([s, u, t]), (6)) in
Figure 3 on page C-2 is an unrestricted case quickest multipath for any message length σ in the range
0 < σ ≤ 6 where each such σ corresponds to a minimum end-to-end delay T in the range 3 < T ≤ 4.
MP2 =((P1, P2, P3), (6, 6,6)) =(([s, u, t], [s, v, w, y, t], [s, v, x, y, t]), (6, 6, 6)) is an unrestricted case quickest
multipath for σ ≥ 6 corresponding to T ≥ 4. MP1 is a restricted case quickest multipath for integer message
lengths of 1 to 6. However MP2 is not a restricted case quickest multipath for all integer σ ≥ 6. It is a restricted
case quickest multipath for message lengths σ = 6, 9, 12, 15, 18, 21, 24, 27 ... corresponding to T = 4, 6

14 ,

3
14 , 2

14 , 3
24 , 6

54 , 5, 6
15 , ... having the same restricted case as unrestricted case end-to-end delays (since

unrestricted case message segment assignments are all integers for these message lengths). For σ = 10, MP2's
unrestricted case end-to-end delay is 9

24 but its restricted case end-to-end delay is 3
14 (with e.g., 7, 2 and 1

message units being assigned respectively to P1, P2 and P3). MP2 is not a restricted case quickest multipath for
σ = 10, for consider the multipath MP3 = ((P1, P2, P3), (6, 8, 4)) which is also an unrestricted case quickest
multipath for σ ≥ 6. Its restricted case end-to-end delay for σ = 10 is 4

14 (with 7, 2 and 1 message units being
assigned respectively to P1, P2 and P3). MP2 is also a restricted case quickest multipath for σ = 8, 11, 14,
However its restricted case end-to-end delay for these message lengths is greater than its unrestricted case end-
to-end delay.

MP3 is a restricted case quickest multipath for σ = 6, 15, 24, 33, ... corresponding to T = 4, 2

14 , 5, 2
15 , ...

having the same restricted case as unrestricted case end-to-end delays. However it is not a restricted case
quickest multipath for σ = 12. Its restricted case minimum end-to-end delay for σ = 12 is 8

34 (with 8, 3, and 1
message units being assigned respectively to P1, P2 and P3) while MP2's is 3

14 (with 8, 2, and 2 message units

 C-2

being assigned respectively to P1, P2 and P3). MP3 is also a restricted case quickest multipath for message
lengths σ = 7 and 10 where in each case its restricted case end-to-end delay is greater than its unrestricted case
end-to-end delay.

Fig. 3. First network for illustrating integer message segment requirement impacts.

A restricted case quickest multipath for a message length isn't necessarily an unrestricted case quickest
multipath for that message length. Consider MPa = ([s, u, v, t], (5)) and MPb = ([s, u, v, t], [s, v, t], [s, u, t]),
(4, 1, 1)) in Figure 4 below. MPa is the restricted case quickest multipath for σ = 6 with an end-to-end delay
of 5

14 . MPb's restricted case end-to-end delay for σ = 6 is 4
14 . However MPa is not an unrestricted case

quickest multipath for σ = 6. MPb whose unrestricted case end-to-end delay for σ = 6 is 6
14 is the unrestricted

case quickest multipath for σ > 5.

Fig. 4. Second network for illustrating integer message segment requirement impacts.

An unrestricted case quickest multipath path table produced by an MTMP algorithm contains a finite number
of multipaths and each such multipath is a quickest multipath for a single continuous interval of message
lengths. Table 3 on page C-3, in which X = 5,6, 7, ... , lists a complete set of the Figure 3 network's restricted
case quickest multipaths for integer message lengths38. It also includes the restricted case quickest multipath

38 The table was developed by noting that the maximum number of message units that can be “communicated” over P1 in
time T is X1 = 6(T -3) and over the combination of P2 and P3 is X2 + X3 = 12(T -4). Hence for an integer message length
 σ > 6, 3

23 + 18
� is a lower end-to-end delay bound where X1 = 3

� + 4 and X2 + X3 = 3
2� - 4. X1 is an integer and X2

+ X3 is an even integer for σ = 9, 12, 15, ... , so MP2 = ((P1,P2, P3), (6,6,6)) is a restricted case quickest multipath for
these message lengths. For other integer σ > 6, X1 or X2+X3 has to be increased with the other reduced accordingly so X1
and X2 + X3 are integers to obtain a quickest restricted case multipath. For σ = 8, 11, 14, ... , increasing either to the next
higher integer adds 18

1 to the end-to-end delay so MP2 is a restricted case quickest multipath for these message lengths

also. For σ = 7, 10, 13, ..., increasing X1 to the next higher integer adds 9
1 while increasing X2 + X3 to the next higher

integer adds 36
1 to the end-to-end delay, so X2 + X3 is increased for a restricted case quickest multipath. The table’s values

for X2 and X3 and flow rates for P2 and P3 given the increased X2 + X3 lead to equal end-to-end delays for P2 and P3
thereby minimizing the end-to-end delay for the message lengths σ = 10, 13, 16, 19, ... (with σ = 7 being a special case).

(6,1)

s

u

t v

w

x (6,1)

(8,1)

(12,1)

(8,1)

(6,2)

(12,1)

(6,1)

s

t

v

u

(5,1)

(1,3)

(5,1) (5,1)

(1,2)

 C-3

segment assignments and minimum end-to-end delays for the associated integer message lengths. We note the
following aspects of the table:

1. it has an infinite number of multipaths
2. it has multipath flow rates that are non-integer for message lengths σ = 13, 16, 19, …, despite the

integer capacities of the network links
3. multipaths are not limited to be quickest multipaths for “uninterrupted” ranges of integer message

lengths

Table 3. Quickest figure 3 network multipaths
message
length

quickest
multipath

segment
assignments

end-to-end
delay

1 ((P1), (6)) 1
6
13

2 ((P1), (6)) 2
3
13

3 ((P1), (6)) 3
2
13

4 ((P1), (6)) 4
3
23

5 ((P1), (6)) 5
6
53

6 ((P1), (6)) 6 4
7 ((P1, P2), (6, 8)) 6, 1

8
14

8 ((P1, P2, P3), (6, 6, 6)) 6, 1, 1
6
14

9 ((P1, P2, P3), (6, 6, 6)) 7, 1, 1
6
14

10 ((P1, P2, P3), (6, 8, 4)) 7, 2, 1
4
14

11 ((P1, P2, P3), (6, 6, 6)) 8, 2, 1
3
14

12 ((P1, P2, P3), (6, 6, 6)) 8, 2, 2
3
14

13 ((P1, P2, P3), (6, 5
36 , 5

24)) 8, 3, 2
12
54

.

.

.
.
.
.

.

.

.
.
.
.

3X - 2 ((P1, P2, P3), (6, 52
)2(12

�

�

X
X , 52

)3(12
�

�

X
X)) X + 3, X – 2, X - 3

12
432 �X

3X – 1 ((P1, P2, P3), (6, 6, 6)) X + 4, X – 2, X - 3
6

22�X
3X ((P1, P2, P3), (6, 6, 6)) X + 4, X – 2, X - 2

6
22�X

.

.

.
.
.
.

.

.

.
.
.
.

All of the aspects noted are contrasts to a MTMP generated unrestricted case path table (see Table 4 on page
C-4). The infinite number of multipaths results from different quickest multipaths for message lengths of the
form 3X - 2, for39 X ≥ 5.

39 A quickest restricted case multipath for σ = 13, 16, 19, ... requires that P2 and P3 together communicate (2(σ + 2)/ 3) -
5 message units and that P2 and P3's flow rates and message assignments lead to these paths having equal end-to-end
delays. This requires that P2's flow rate be 12X2 /(2X - 5), where X = (σ + 2)/ 3 and, in order for the sum of P2 and P3's
flow rates to be 12 without either exceeding its path capacity, (2X - 5)/ 2 ≤ X2 ≤ 2(2X - 5)/ 3. Hence X2 < 2X – 5. If σ is
such that 2X - 5 is a prime ≥ 5, then, since X2 < 2X - 5, 2X - 5 can't be a factor of 12X2 (for otherwise 2X - 5 would be a
product of proper factors of 12X2). Therefore the flow rate cannot be reduced to a fraction with a smaller denominator
than 2X - 5. Hence if X is an integer ≥ 5 and 2X - 5 is a prime, then no restricted case quickest multipath for a message
length other than σ = 3X -2 has a flow rate 12X2 /(2X - 5). The range of 2X - 5 for X ≥ 5 includes all prime numbers ≥ 5.
Therefore there must be an infinite number of multipaths in the table.

 C-4

We shall conclude this subsection by stating a sufficient condition for a MTMP generated unrestricted case
quickest multipath to be a restricted case multipath in the situation where all of the network link delays are
non-negative integers and all network link capacities are positive integers. The flow rate and delay of any path
of a multipath generated by the MTMP algorithms are positive integers in this situation. Hence for an integer
time greater than its path delay, such a path will transmit and have received at its terminal node (i.e.,
communicate) an integer number of message units. Further the end point times of the end-to-end delay interval
over which the multipath is an unrestricted case quickest multipath correspond to generalized path delays and
therefore are integers. Hence an integer length message whose end-to-end delay over the multipath is equal to
an end-point time for the multipath can be transmitted over the multipath in integer length segments.

Suppose MP = ((P1, P2, ..., Pr), (R(P1), R(P2), ..., R(Pr)) is a MTMP generated quickest unrestricted case
multipath for σe1 in a network whose link delays are all non-negative integers and link capacities are all positive
integers. Further suppose that MP's end-to-end delay for σe1 is Te1, where Te1 is the lower end-point time for
MP, R(Pi) = aiM and ai is a positive integer for i = 1, 2, ..., r, M is a positive integer and is the greatest

common factor of the R(Pi) and a = �
�

r

i
ia

1
. Then MP will be able to communicate a message of length

σe1 + pa in integer segments with end-to-end delay of Te1 + p/M, where p is any positive integer. Thus if
σe1 + pa is in the range of message lengths for which MP is an unrestricted case quickest multipath, then MP
is a restricted case quickest multipath for σe1 + pa (for MP2 in Figure 3 on page C-2, M = 6 and a = 3 while
for MP3, M = 2 and a = 9).

C.2 COMPLEXITY

The MTMP algorithms (applicable to the unrestricted case) effectively produce a table like Table 4 on this
page. The more complicated nature of Table 3 on page C-3 (e.g., where multipaths are quickest multipaths for
more than a single message length interval) suggests that problems requiring restricted case solutions may have
greater complexity than those allowing unrestricted case solutions.

Table 4. MTMP produced table
message length quickest time quickest multipath

0 T0 Nill
σ1 T1 MP1
σ2 T2 MP2

.

.

.
.
.
.

.

.

.
σmax Tmax MPmax

no entry no entry MPmax + 1

We define the path table multipath problem, PTMPP, (solved by the MTMP algorithm) as follows: Given a
network N and nodes s and t in N, develop a table with message length, time and multipath (from s to t)
columns where:

1. the first row's message length is zero and time is the minimum path delay from s to t
2. in any row, other than the first and last row (if there is a last row), the multipath is an unrestricted case

quickest multipath for this row's message length and all message lengths between the previous row's
message length and this row's message length

3. if the table is finite, the last row's multipath is an unrestricted case quickest multipath for any message
length greater than the next to last row's message length

4. the time in each row other than the first and last row is the unrestricted case quickest multipath end-to-
end delay for the row's message length

 C-5

We shall refer to a corresponding problem requiring a restricted case solution as the restricted path table
multipath problem, RPTMPP, and define it as follows: Given a network N and nodes s and t in N, develop a
table with message length, time and multipath (from s to t) columns where:

1. the first row's message length is zero and time is the minimum path delay from s to t
2. in any row, other than the first and last row (if there is a last row) each row's message length is an

integer, its multipath is a quickest restricted case multipath for the row's message length and for all
integer message lengths that are less than or equal to this row's and greater than the previous row's
message length

3. if the table is finite, the last row's multipath is a quickest restricted case multipath for any integer
message length greater than the next to last row's message length

4. the time in each row other than the first or last row is the quickest restricted case multipath end-to-end
delay for the row's message length.

Corresponding to the MTMPP (defined in Section 1 on page 3) we define the restricted minimum time
multipath problem, RMTMPP to be: Given a network N and nodes s and t in N, and a positive integer message
length, find a restricted case quickest multipath from s to t for the message length. The “decision version” of
MTMPP, which we shall refer to as the bounded time multipath problem, BTMPP, is the problem: Given a
network N, two nodes s and t in N, a positive message length, σ, and a positive time T, determine if there is a
multipath in N from s to t which has an end-to-end delay for σ that is ≤ T and, if there is,
determine one such multipath. Its corresponding restricted case problem, the restricted case bounded
time multipath problem, RBTMPP, is the problem: Given a network N, two nodes s and t in N, a
positive integer message length, σ, and a positive time T, determine if there is a restricted case multipath in
N from s to t which has an end-to-end delay for σ that is ≤ T and, if there is, then determine one such multipath.

We shall in the rest of this subsection limit consideration to networks having integer link capacities. Any
PTMPP meeting this limitation will admit to a solution in which the number of table rows is ≤ nCmax (see
Subsection 5.3, page 21). If in addition we restrict Cmax so that Cmax ≤ P(n,m), where P(n,m) denotes a
polynomial in n and m, then PTMPP can be solved in polynomial time (e.g., via the MTMP algorithm40). For
any positive message length σ, the position of σ relative to the PTMPP table's message lengths can be found via
a binary search type algorithm (a “squeeze algorithm”41) in log(nCmax) time. Therefore (in networks with the
above restrictions) an MTMPP can be solved via its corresponding PTMPP in polynomial time and a BTMPP
can be solved via its corresponding MTMPP in polynomial time.

If a RPTMPP can be solved in polynomial time, then the table it produces must have a finite number of rows.
Hence, through the reasoning corresponding to the unrestricted case, the corresponding RMTMPP and
RBTMPP can be solved in polynomial time. Conversely if an RBTMPP cannot be solved in polynomial time
then its corresponding RMTMPP and RPTMPP can't be solved in polynomial time. Since Kagaris et. al.
proved that the RBTMPP (for integer link capacities) is NP-complete (Kagaris et. al. 1999), it can't be solved

40 We in general follow Ahuja et. al. (Ahuja et. al. 1993) in considering a network oriented problem to be a polynomial
time problem if it can be solved with an algorithm whose run time is bounded by a polynomial in n, m, logCmax and
logDmax and a pseudopolynomial time problem to be one which can be solved with an algorithm whose run time is
bounded by a polynomial in n, m, Cmax and Dmax. The more general notion of a polynomial time problem, as used for
example in a later footnote, is a problem that can be solved by an algorithm whose complexity is O(ri) for some integer i,
where r is the number of problem inputs.
41 If σ ≥ σmax then a quickest multipath can be found immediately. Otherwise set IL = 1 and IH = imax and successively do
the following: set I = � �))(2/1(LH II � and then, if σI ≥ σ, set IH = I or otherwise set IL = I. Halt when

HIσ = σ or IH =

IL + 1. The quickest multipath is then
HIMP .

 C-6

in polynomial time (assuming P ≠ NP). Hence the RMTMPP and therefore the RPTMPP can't be solved in
polynomial time42.

The proof in Kagaris et. al.(Kagaris et. al.1999) reduces a known NP-complete problem43 to an RBTMPP in
which all link capacities are one and all link delays are 1/K where K is a positive integer ≥ 5. Thus the
NP-complete result in the Kagaris reference doesn't directly apply to the subclass of RBTMPP problems in
which the delays are additionally constrained to be integers44 (though it might be considered suggestive that
this subclass of problems is NP complete). However the result of the problem of Figure 3 on page C-2, shown
in Table 3 on page C-3, demonstrates that all RPTMPPs in the class in which all link delays and capacities are
respectively non-negative and positive integers and Cmax ≤ P(n, m) are not solvable in polynomial time, since
the required table is infinite in length45.

Xue defined a problem that is closely related to the RMTMPP (Xue 2003). The following definitions are used
in our statement of this problem.

1. N = a network whose link delays and capacities are all positive integers
2. S = { MP in N: MP is a multipath from node s to node t in N with integer flow rates}
3. T(Pi, σ) = path Pi's end-to-end delay for message length σ
4. MP

MPp
MPMP PPP)(21 ,...,, are multipath MP's paths

5. Ψ(MP, σ) = {(σ1, σ2, ..., σp(MP)): σσ
MPp

i
i ��

�

)(

1
 and σi is a non-negative integer� i, i = 1, 2, ..., p(MP)}

6. δ(MP, σ) = �
�
�

�
�
�

��

),(maxmin
)(,...,2,1),(),...,,()(21

i
MP

iMPpiMPΨ
PT

MPp

�

����

42 Here: 1. NP is the class of problems for which a proposed problem solution can be checked for correctness in
polynomial time. 2. a problem A can be reduced to a problem B, if A can be solved by a “small” set of calls to an
algorithm that solves B, where a “small” set could mean e.g., a set whose number of elements has a polynomial bound. 3.
any problem that is in NP and to which any other problem in NP can be reduced is NP complete. 4. P is the class of
problems that can be solved in polynomial time - the conjecture that NP ≠ P is as yet unproven but usually accepted.
43 This known NP-complete problem is: Given a graph G(V,E), two nodes in the graph, s and t, and two integers J and K,
where 5 ≤ K < |V|, are there at least J mutually edge-disjoint paths from s to t with every one of these paths having K or
less links.
44 If RPTMPPs in networks of the proof could be reduced to RPTMPPs in networks with non-negative integer link delays
and integer positive link capacities, then it would follow that the RPTMPP in such networks is NP-complete. It is
therefore relevant to consider two types of PTMPP equivalence classes in which the network graph is the same for each
problem in a class and the link delays and link capacities of any two problems in the class are related by a single positive

constant K > 0. For the first type, � ei � E, D2(ei) = K
eD i)(1 and C2(ei) = KC1(ei), while for the second type� ei � E,

D2(ei) = K
eD i)(1 and C2(ei) = C1(ei), where D1(ei) and C1(ei) and D2(ei) and C2(ei) represent respectively the link ei's delay

and capacity for problem 1 and problem 2. A problem 1 path table can be converted to a problem 2 path table for the
first type by multiplying all times by K

1 and all multipath path flow rates by K (leading to the same message segment

assignments). For the second type the problem 1 path table times and message lengths are multiplied by K
1 to yield the

problem 2 path table (yielding message length assignments that are K
1 times the problem 1 assignments). These

equivalence classes however don't provide the required reduction. No problem with positive integer capacities and non-
negative integer delays is type 1 equivalent to a problem for a network used in the proof in Kagaris et. al.(Kagaris et.
al.1999) (since obtaining fractional delays from the first problem requires link capacities be > 1). Further the type 2
equivalence doesn't carry over to RPTMPPs since a multiplication to obtain fractional delays might convert integer to
non-integer segment assignments.
45 The requirement that the RPTMPP produce the table is crucial here. It might be argued that we have a solution to the
Figure 3 network quickest path problem that can be expressed in finite terms, i.e., for σ ≤ 6 MP1 is a quickest multipath,
for σ > 6 and either � �33

��
� or � �3

1
3

1 ��
�

�� MP2 is a quickest multipath, and for σ > 6 and � �3
2

3
2 ��
�

�� , ((P1, P2, P3),

(6, � �112
412
�

�

�

� , � �112
712
�

�

�

�)) is a quickest multipath.

 C-7

7. MP's integer end-to-end delay for message length σ is � �),(�� MP

The problem is: Given a network N with nodes s and t, and an integer message length σ, find a multipath
MP �S with minimum integer end-to-end delay.

Since the network delays as well as the network capacities in Xue’s problem are limited to be integer
values, the multipaths determined by an MTTP algorithm for such a network are all restricted case
multipaths at integer end-to-end delays. Therefore its PTMPP solution provides solutions to the Xue
problem of for all message lengths. If the condition requiring integer flow rates is removed, i.e., now
S = {MP in N: MP is a multipath from node s to node t in N}, then the PTMPP solution still provides solutions
to the problem (with integer flow rates). It follows from the above discussion that Xue’s problem can be
solved in pseudopolynomial time, or if Cmax ≤ P(n,m) in polynomial time, via the PTMPP46.

We note that a solution of Xue’s problem isn't necessarily a solution of an RMTMPP. This can be seen from
the network of Figure 3 on page C-2 e.g., by comparing solutions for a message length of 13. The multipath
MP1 = ((P1, P2, P3), (6, 6, 6)), with a delay of 18

74 is an MTMPP solution. This multipath's end-to-end delay
in the restricted case is 2

14 so it is a solution Xue’s problem with an integer end-to-end delay of 5. However
the multipath ((P1, P2, P3), (6, 7.2, 4.8)) is an RMTMPP solution with an end-to-end delay of 12

54 (see Table 3
on page C-3) which is less than MP1's restricted case end-to-end delay.

C.3 ADJUSTING THE UNRESTRICTED CASE SOLUTION

A unrestricted case quickest multipath MP = (P,R) = ((P1, P2, ..., Pr), (R (P1), R(P2), ..., R(Pr)) for an integer
length message might be considered an approximation to a restricted case quickest multipath. Here the path
segment length assignments (i.e., the segment assignments) can be adjusted to be non-negative integers so the
multipath communicates the message with an end-to-end delay equal to its restricted case end-to-end delay for
the message. The multipath's restricted case end-to-end delay for the message will be less than

))(/1(max iPP
PR

i�
greater than the end-to-end delay of a restricted case quickest multipath for the message47.

46 Xue provided an algorithm using a “squeeze” technique that solves the problem in polynomial time where the
polynomial bound includes a log σ term (Xue 2003). Here he assumed that a set of general minimal cost flow problems,
for integer times, are solved by a polynomial time linear programming routine. We can modify his algorithm so the
resulting algorithm has a bounding polynomial in n, m and logDmax, i.e. is independent of σ. We do this by letting its
initial larger time be nDmax rather than the sum of σ and the shortest path delay, and having it recognize that if σ > σmax,
where σmax is the maximum message length that can be communicated in nDmax, then a solution multipath is the same as a
solution multipath for σmax.
47 Suppose MP = (P, R) is an unrestricted case quickest multipath for the integer message length σ that communicates
such a message in time T* and has two or more non-integer assignments for σ. Further suppose that after the assignments
are rounded up they sum to σ1. Rounding up adds less than))(/1(max iPP

PR
i�

to MP's end-to-end delay and σ1 > σ. Now

suppose that MP's restricted case end-to-end delay for a message of length σ1 is T1 and T̂ is the end-to-end delay of a
restricted case quickest multipath for σ, then T̂ ≤ T1 < T* +))(/1(max iPP

PR
i�

. Hence, since the end-to-end delay of a

unrestricted case multipath for a message is a lower bound for the end-to-end delay of a restricted case multipath for the
message, T* ≤ T̂ < T* +))(/1(max iPP

PR
i�

. We note further that when MP is such that there is a unique maximum 1/R(Pi),

then the restricted case quickest multipath end-to-end delay is bounded by))(/1(max
: jPPPP

PR
ijj ��

. Therefore in this case T*

≤ T̂ < T* +))(/1(max
: jPPPP

PR
ijj ��

.

 C-8

We discuss in this subsection an algorithm, Adjust, shown below on this page, that returns such adjusted
segment assignments and the increase in the multipath's end-to-end delay resulting from the adjustment
(though from the discussion of the network of Figure 3 on page C-2 it is clear that the resulting multipath isn't
necessarily a restricted case quickest multipath).

__

Algorithm Adjust(MP, L)
1. if � Pi � P such that L(Pi) isn't an integer do
2. Call Fractional_Adjust(MP, L, τ, LIST, ∆T);
3. Call Integer_Adjust(MP, L, τ, LIST, ∆T);
4. return (L, ∆T);
__

Adjust starts with a multipath, MP = (P, R), and a set of message assignments, L. If the message assignments
aren’t all integers, it calls two subroutines, Fractional_Adjust shown below on this page and Integer_Adjust
shown on page C-9. The first of these subroutines adds fractional message units (up to one full message unit)
to and subtracts fractional message units from unrestricted segment assignments to achieve all integer
assignments. It does it in a manner that provides the minimum end-to-end delay that the multipath can achieve
for the message when each multipath path's segment assignment is an integer that differs by no more than one
from its unrestricted case segment assignment. The second subroutine adds and subtracts integer values to the
segment assignments to achieve the best end-to-end delay that the multipath can achieve for the message for
any all integer segment assignments. (Note that �̂ in Integer_Adjust is the empty list.)

The correctness of Adjust can be shown by:

1. noting that no adjustment is required if the unrestricted case assignments are all integers (line 1) since
the unrestricted case quickest multipath end-to-end delay is a lower bound for the minimum restricted
case end-to-end delay

2. showing that with the input determined by Fractional_Adjust, Integer_Adjust creates assignments that
provide the multipath's minimum end-to-end delay of any integer assignments for σ

For the second item we must show that the final adjusted assignments are all integer assignments for the
message length and that any other all integer assignments for the message length cannot reduce the multipath's
end-to-end delay. Toward that end, we note that in Fractional_Adjust and Integer_Adjust τ(Pi) and)(ˆ iPτ are
additions to Pi's end-to-end delay that would result from increasing Pi's segment assignment to some integer
values above its unrestricted case quickest multipath assignment. In Fractional_Adjust τ(Pi), computed at
line 1, is the addition from an assignment increase to the next higher integer. In Integer_Adjust for Pi � LIST,
τ(Pi) is the addition from assignment increases in Fractional_Adjust and Integer_Adjust (Fractional_Adjust
lines 3 and 5 and Integer_Adjust lines 2 and 7) and)(ˆ iPτ is the sum of τ(Pi) and the end-to-end delay addition
from another one unit increase in Pi's assignment (Integer_Adjust lines 2 and 7).

Algorithm Fractional_Adjust(MP, L, τ, LIST, ∆T)
1. � Pi � P, τ(Pi) ← � �

)(
)()((1

i

ii
PR

PLPL �� ;

2. U ← � �� �� �
�PPi

iPLiPL)()((; ∆T ← 0;

3. Create an array LIST, of all Pi � P ordered by ascending τ(Pi);
4. � Pi � LIST do
5. if Pi is the Uth or earlier element of LIST then L(Pi) ← � �)(iPL + 1;
6. else L(Pi) ← � �)(iPL ;
7. Remove from LIST all Pi after the Uth Pi in LIST;
8. if LIST ≠ � then ∆T ← τ(Pk) where Pk is the last path in LIST;
9. return (LIST, L, ∆T);

 C-9

Let MP =(P, R) = ((P1, P2, ..., Pr), (R (P1), R(P2), ..., R(Pr))) with message assignments LS(MP) =
(LS(P1), LS(P2), ..., LS(Pr)) be an unrestricted case quickest multipath for a message of integer length σ and let
W = � �� ��

�PP
i

i

PL)(. If MP and LS are the inputs to Fractional_Adjust then U = σ - W, where

U = � �� �� �
�PP

i
i

i PLPL)()(((lines 1 and 2). Let LF(Pi) be the value of L(Pi) and LIST be LIST on exit from the

subroutine (where LIST is created at line 3 and reduced at line 7). Then LF(Pi) = � �)(iPL if Pi � LIST and
LF(Pi) = � �)(iPL + 1 if Pi � LIST (lines 5-7). Hence � Pi � P, LF(Pi) is a non-negative integer (since
LS(Pi) ≥ 0) and �

�PP
i

i

PLF)(= �
�LISTP

i
i

PLF)(+ �
�LISTP

i
i

PLF)(= � ��
�LISTPi

iPLS)(+ � �� �� �
�LISTP

i
i

PLS 1)(

= � ��
�PP

i
i

PLS)(+ U = W + U = σ. Therefore Fractional_Adjust modifies the segment assignments to be non-

negative integer assignments for σ. Further ∆T is the increase in MP's end-to-end delay for σ from
Fractional_Adjust's adjustments to the message assignments. This is so because Pi's assignment will have been
increased only if Pi � LIST , such an increase for Pi's assignment will have increased its end-to-end delay by
τ(Pi), ∆T = τ(Pk) where Pk is the last element of LIST and LIST is ordered by increasing τ(Pi) (see lines 3, and
5-8).

Let LI(MP) = (LI(P1), LI(P2), ..., LI(Pr)) be the MP integer assignments for σ created by Integer_Adjust. Any
change made by Integer_Adjust to an L(Pi) is made as a coupled change of +1 and -1 unit with an L(Pl), l ≠ i,
(at lines 7 and 11). Hence the changed assignments remain integers and �

�PP
i

i

PLI)(= �
�PP

i
i

PLF)(

 = �
�PP

i
i

PLS)(= σ. Further, changes are made only to L(Pi)'s for which Pi � LIST and hence for which

L(Pi) ≥ 1 on entry into Integer_Adjust (Fractional_Adjust lines 4, 5 and 7). Since any L(Pi) that is reduced is
reduced only once (because its Pi is removed from LIST at line 9 before the reduction) and each reduction is
only a one unit reduction (line 11), therefore all assignments remain non-negative integers.

__

Algorithm Integer_Adjust(MP, L, τ, LIST, ∆T)
1. �Pi � LIST do
2.)(ˆ iP� ← τ(Pi) + 1/R(Pi);
3. LST ← LIST; Restructure LST into a heap with element values 1/)(ˆ iP� ;
4. Restructure LIST into a heap with element values τ(Pi);
5. if LIST ≠ �̂ then Pk ← root of LIST; Q ← root of LST;
6. while LIST ≠ �̂ and)(ˆ Q� < ∆T do
7. L(Q) ← L(Q) + 1; τ(Q) ←)(ˆ Q� ;)(ˆ Q� ← τ(Q) + 1/R(Q);
8. Restructure LST into heap with element values 1/)(ˆ iP� ;
9. Remove Pk from LIST;
10. Restructure LIST into heap with element values τ(Pi);
11. L(Pk) ← L(Pk) - 1;
12. Pk ← root of LIST; ∆T ← τ(Pk); Q ← root of LST;
13. return (L, ∆T);
__

Let Prt be the root of LIST and Qs be the root of LST at the beginning of an iteration of the line 7-12 loop.
Then at the beginning of the iteration ∆T = τ(Prt) (Fractional_Adjust lines 3 and 8 and Integer_Adjust lines 4,5,

 C-10

10 and 12) and �Pl � LIST, τ(Pl) ≤ τ(Prt)48. Only τ(Qs) is changed during the iteration49 and at the end of the
iteration τ(Qs) is less than ∆T at the beginning of the iteration (lines 6 and 7). Therefore after Prt is removed
from LIST and LIST is restructured (lines 9 and 10), �Pl � LIST, τ(Pl) ≤ τ(Prt). Hence, if Prnew is the root of
LIST after the restructuring, τ(Prnew) ≤ τ(Prt). Since ∆T is set to τ(Prnew) after LIST is restructured (line 12), ∆T
either is decreased or remains the same as a result of the iteration. Therefore ∆T is never increased during
Integer_Adjust.

Let T = MP's unrestricted case end-to-end delay for σ, X = ∆T at the end of Fractional_Adjust and Y = ∆T
and TSIL ~~~~ be LIST at the end of Integer_Adjust. Then Y ≤ X and Y is the minimum value of ∆T since ∆T never
increases during the execution of Integer_Adjust. Now let L(Pi) = LI(Pi) + 1 and L(Pj) = LI(Pj) - 1 for some j
 ≠ i, where 1 ≤ i, j ≤ r. Also � k, 1 ≤ k ≤ r and k ≠ i, j let L(Pk) = LI(Pk). If Pi � LIST then
L(Pi) = � �)(iPLS + 1 and hence Pi's end-to-end path delay will be T + τ(Pi) ≥ T + X ≥ T +Y
(Fractional_Adjust lines 3-8). If Pi � LIST and Pi � TSIL ~~~~ then L(Pi) will not have been reduced during
execution of Integer_Adjust (since if it were reduced, at line 11, it would previously have been removed from
LIST at line 9). Therefore Pi's end-to-end delay will be T +)(ˆ iPτ ≥ T +Y, since any path in LIST is also in
LST (line 3) and at the conclusion of Integer_Adjust no Pi in LST has)(ˆ iPτ < Y (lines 3, 5, 8, 12 and 6).
Finally Pi � LIST and Pi � TSIL ~~~~ 50, then Pi's end-end delay will be T + τ(Pi) ≥ T +Y, since the addition of a
message unit to L(Pi) restores the message unit subtracted from it after it is removed from LIST (lines 9 and
11) and when Pi is removed from LIST, τ(Pi) = ∆T ≥ Y. Hence, since in all cases the unit increase of LI(Pi)
and corresponding decrease in LI(Pj) doesn't reduce MP's end-to-end delay (i.e., cause MP's end-to-end delay
to be < T + Y), and since any change in LI that maintains the MP segment assignments as non-negative
integers summing to σ requires at least one segment assignment be increased by at least one unit, LI minimizes
MP's end-to-end delay in the restricted case for σ.

Adjust's complexity depends upon the number of paths in the multipath MP and that number is ≤ m, since non-
restrictive case multipaths produced by MTMP have no more than m paths. Fractional_Adjust's line 1, 2 and
line 5-6 loops have no more than m iterations and since each iteration has complexity O(1), the loops'
complexities are O(m). The creation of LIST as an ordered array of m elements at line 3 has complexity
O(mlogm) = O(mlogn) if the array is created by a heap sort algorithm, see Cormen et. al. (Cormen et. al. 1990)
for heap operations. So Fractional_Adjust's complexity is O(mlogn).

Integer Adjust's line 2 and lines 7-12 loops have less than m iterations (the later loop because it removes a path
from LIST in each iteration). Creating heap LST at line 3 has complexity O(mlogm) and restructuring LIST into
a heap at line 4 has complexity O(m) since it is ordered by ascending τ(Pi) prior to line 4. Restructuring LST

48 Here we are viewing the heap as consisting of paths where the values of the elements are the elements' τ(·). Hence if
LIST's elements j, 2j and 2j + 1 are respectively Pi, Pk, and Pl, then in conformance with the heap property, τ(Pi) ≥ τ(Pk)
and τ(Pi) ≥ τ(Pl), see Cormen et. al. (Cormen e.t. al. 1990).
49 The root of LST has the lowest value of)(ˆ �τ of any path in LST since a LST element value is its)(ˆ1 �τ/ (lines 3 and 8).
Hence the iteration adds a unit to the segment assignment of the path whose end-to-end delay is increased least by such an
addition (lines 5, 12 and 7).
50 If LIST ≠ �̂ , then TSIL ~~~~ ≠ �̂ . We shall prove this by showing that if, at the beginning of an iteration of the lines 7-
12 loop, Q is the root of LST, then Q � LIST and Q ≠ Pk, where Pk is the root of LIST. Since only Pk is removed from
LIST during an iteration, this implies that LIST is never emptied. At the beginning of an iteration Q � LIST, because
i) LST is a restructured copy of LIST , i.e., LIST on entry to Integer_Adjust, (line 3) and ii) Q wasn't previously removed
from LIST by Integer_Adjust. The latter is true since if Q were previously removed, then τ(Q) would have had to equal
the value of ∆T at the time of the removal (Fractional_Adjust line 8 and Integer_Adjust lines 5, 12, 9), but τ(Q) <)(ˆ Q� <
∆T (lines 2, 7 and 6) and Integer_Adjust never increases ∆T or decreases τ(Q). Finally, since τ(Q) < ∆T and ∆T = τ(Pk),
Q ≠ Pk.

 C-11

at line 8 can be accomplished with a “heapify” operation beginning at the root since the root path, Q, is the
only path in LST that has undergone a change of its)(ˆ �τ . Restructuring LIST at line 10 is required because of
the change of τ(Q) and the removal of Pk. It can be accomplished by moving Q to the root of LIST51, then, if Q
hadn't been childless, moving what had been a childless decedent of Q to Q's old position and performing a
heapify operation beginning at that position, and, finally, performing a heapify operation beginning at the root.
Thus both restructurings in the lines 7-12 loop have the complexity of a heapify operation which is O(logm),
hence the totality of loop iterations has complexity O(mlogm). Consequently, since an iteration of the line 2
loop has complexity O(1), Integer_Adjust's complexity is O(mlogm) = O(mlogn). Since Adjust's line 1 has
complexity O(m) and Fractional_Adjust and Integer_Adjust have complexity O(mlogn), Adjust has complexity
O(mlogn).

51 Here we assume that an array of path positions in LIST ordered by path index is created when LIST is restructured into
a heap and modified with each path movement within and from LIST. Creation and maintenance of this array allows
finding Q's position in LIST in one O(1) operation and hence does not add to the complexity of the LIST restructuring.

 D-1

APPENDIX D. COMPLEXITY OF GENERATING QUICKEST MULTIPATHS

D.1 FLOW DECOMPOSITION MTMP COMPLEXITY IMPACT

The multipath flow decompositions dominate the complexity of MTMP2 and determine the asymptotic
complexity of MTMP1. Hence a reduction of the complexity of the MTMP operations for generating quickest
multipaths would reduce MTMP's complexity or asymptotic complexity. We shall examine the potential for
such a reduction by first considering the particular case where all link delays are positive. Then we shall
consider generating the multipaths in a manner that doesn't involve flow decomposition.

D.2 NETWORKS WITH ONLY POSITIVE LINK DELAYS

Decompose_to_Path_Flows on page 20 in Subsection 5.2 that carries out the decompositions is constructed to
deal with flow loops. However any network flow for which an MTMP flow decomposition takes place will
have no loop flow on a link with a non-zero delay (see Lemma 2 in Section 3 on page 8). It is instructive to
analyze the network of Figure 5 below on this page to see potential impacts of zero delay links. Here if
D(u, v) = D(v, u) = 0, then MTMP will create multipath MP1 = ([s, v, u, t], 10) as a quickest multipath for
message lengths greater than 0 and less than or equal 40 (corresponding to end-to-end delays greater than 3 and
less than or equal to 7). In maximizing the flow on the next Nf , it might choose flow along path [s, u, v, t]
resulting in a flow of 10 along each network link and therefore a loop flow of 10 along loop [u, v, u]. A flow
decomposition could then lead to the multipath MP2 = (([s, v, t], [s, u, t]), (10, 10)) as a quickest multipath for
message lengths greater than or equal 40 (corresponding to end-to-end delays greater than or equal to 7).
However if D(u, v) = D(u, v) = 1, then, while MTMP will again first create multipath MP1 (as a quickest
multipath for messages greater than 0 and less than 20 corresponding to end-to-end delays from 4 to 6), it will
next choose generalized path [[s, u, v, t][1, -1, 1]] to maximize the flow on the next Nf resulting in a new flow
on N in which f(u, v) = f(v, u) = 0, i.e., there will be no loop flow (as Lemma 2 indicates). Note that the
resulting quickest multipath for message lengths greater than or equal to 20 (corresponding to end-to-end
delays of 6 or more) will be MP2.

Fig. 5. Network illustrating augmenting flow choices.

If a network whose link capacities are positive integers has network flow f* where f* may contain flow loops,
the upper bound on the number of iterations of Decompose_to_Path_Flows main loop is m, where m - f*,
iterations may lead to flow loop detections rather than path generations. However when all network link delays
are greater than zero, the number of iterations is bounded above by f*. In this case
Decompose_to_Path_Flows' complexity is O(nf*). Since:

1. f* is bounded above by nCmax

u v
t s (10, 3)

(10, 2)

(10, 1)

(10, 4)

(10, D(v, u))

(10, D(u, v))

 D-2

2. there are less than nCmax decompositions in MTMP
3. the complexity of Decompose_to_Path_Flows' main loop is O(n)

therefore, the complexity of the totality of MTMP's decompositions is O(n3C2
max). This complexity expression

is neither superior nor inferior to O(n2mCmax), the complexity expression we derived for the totality of the
decompositions when loop flows are taken into consideration. Taking both complexity expressions into
account, the complexity of the totality of the decompositions is O(n2Cmax (min(m, nCmax))) when all link delays
are greater than zero. Hence the decompositions, even in this case, dominate all other aspects of MTMP2 (see
Table 1 in Subsection 5.3 on page 21) as well as determining the asymptotic complexity of MTMP1.

D.3 MULTIPATH GENERATION ONE GENERALIZED PATH AT A TIME

We noted in Section 4 (on page 11) that if an MTMP flow maximization led to only positive link flows, i.e.,
positive g(u, v), then a multipath created from the g(u, v) could be “added” to the previous MTMP generated
multipath to create the next MTMP multipath. Thus it might be fruitful to contemplate modifying the generic
MTMP to combine the flow maximizations and multipath constructions. Each multipath could then be
constructed by adding one flow augmenting generalized path at a time to the evolving multipath. Here if the
flow augmenting generalized path is a path, then its addition has complexity O(n) and hence the path's
selection that has complexity O(m), if done by a breadth first search, dominates its addition. Therefore, if all of
the flow augmenting generalized paths generated by MTMP are paths, then MTMP's complexity will be
determined by Min_Path's complexity. Hence, for a network with non-negative integer link delays and
positive integer capacities, MTMP's complexity will be O(n(nlogn + m)min(Cmax, Dmax)).

However we also have to be able to deal with flow augmenting generalized paths that have one or more counter
flow links, i.e., cfl's. When incorporating such a generalized path into the existing multipath, the generalized
path and multipath must be converted to a set of paths. Here the sum of the flow rates of the new set of paths
must equal the sum of the multipath paths' flow rates plus the generalized path's flow rate. We present below
on this page an algorithm, Supplement_Multipath, that does that. We assume for the subsequent discussion
that all link capacities are positive integers.

__

Algorithm Supplement_Multipath(Pq, R(Pq))
1. CLIST ← list of Pq cfls in order of appearance in Pq;
2. clength ← length of CLIST; CPs ←�

~
; � (u, v) � E, PF((u, v)) ← 0;

3. � (u, v) � CLIST do
4. PF((u, v)) ← R(Pq); CPu ←�

~
; CPv ←�

~
;

5. i ← 1;
6. while i ≤ clength do
7. (u, v) ← CLIST (i);
8. while PF((u, v)) ≠ 0 do
9. find Pj such that (u, v) is in Pj and R(Pj) > 0;
10. (CFF, PF) ← Create_Subpaths(Pj, R(Pj), PF, Pq, CP);
11. R(Pj) ← R(Pj) - CFF;
12. if R(Pj) = 0 then Remove_from_Structures(Pj);
13. i ← i + 1;
14. Create_New_Paths(Pq, CLIST, clength, R(Pq), CP);
__

Supplement_Multipath's approach is an expansion of a technique that can be used to combine a simple
generalized path P with a single cfl link (u, v) and a number of simple paths that contain link (u, v), where P
and the paths have the same initial and final nodes, e.g., s and t. As an example of the technique's result,

 D-3

suppose P's flow rate is FR and (u, v) is a link in paths Q1 and Q2 where each path has flow rate 3
2 FR. Let

P1
s = P(s, v) + Q1(v, t), Q1

s = Q1(s, u) + P(u, t), P2
s = P(s, v) + Q2(v, t) and Q2

s = Q2(s, u) + P(u, t), where
P(s, v) is the subpath of P from s to v and P(u, t), Q1(s, u), Q1(v, t), Q2(s, u) and Q2(v, t) are analogously
defined. Then the paths P1

s and Q1
s each with flow rate 3

2 FR, P2
s and Q2

s each with flow rate 3
1 FR and Q2 with

flow rate 3
1 FR have the same total flow rate and data flow (for sufficiently large time) as P, Q1 and Q2 with

their respective flow rates of FR, 3
2 FR and 3

2 FR.

Operating in the context of an MTMP algorithm, Supplement_Multipath, starts with a multipath of r
paths, P1, P2, …, Pr from s to t with flow rates R(P1), R(P2), …, R(Pr) and with a simple generalized path
Pq = (u0, u1, d1), (u1, u2, d2)…, (up-1, up, dp) with flow rate R(Pq) where p ≥ 3, u0 = s and up = t (and
d1 = dp = 1). Pq has between 1 and p -2 cfls and is a flow augmenting generalized path for the residual network
created by the flow that results from the composition of the multipath's path flow rates. Hence there is
sufficient forward flow in the multipath paths to “account for” the counter flow in the cfls of Pq.
Supplement_Multipath deals with this more general case by identifying a set of multipath paths that account
for the flow in Pq's cfls. It determines subpaths of these paths and subpath flow rates, storing the subpaths and
their flow rates in a set, CP, of stacks (the CP value it passes to its subroutines is a pointer to CP stack
pointers). Then it joins those subpaths and subpaths of Pq to create a subset of a new set of paths where the
new set's flow rates sum to the sum of the multipath and Pq's flow rates. Here the multipath is initially
presented to the Supplement_Multipath in a set of structures (that will be discussed in the next subsection) that
facilitate the algorithm operation.

Supplement_Multipath first executes an initialization procedure in which it creates a list of the generalized
path's, i.e., Pq's, cfls, sets the “unaccounted for” counter flow in each of Pq's cfls to Pq's flow rate of R(Pq) and
creates a set of empty subpath stacks (lines 1 - 4). Here PF((u, v)) is the unaccounted for counter flow in
(u, v), and Cv is a stack for subpaths and flow rates where the subpaths originate at v. Then starting from the
first cfl in Pq (line 5) the algorithm progresses through all the cfls moving to a succeeding cfl only after it has
accounted for all the counter flow in a “current” cfl (lines 8, 13 and 7). It identifies one or more multipath
paths for each cfl that together account for the remaining unaccounted for counter flow in the link (line 8 and
9). It, via a call to Create_Subpaths (line 10), creates a set of subpaths of each such path, then appropriately
reduces the path's flow rate and, via calls to Remove_from_Structures (not shown here), removes the path from
the structures if its flow rate has been reduced to zero (lines 10-12).

Create_Subpaths, shown on page D-4, uses the path Pj and path flow rate R(Pj) passed to it to develop a set of
subpaths that account for as much of the remaining counter flow in Pq's cfls as possible. It begins its execution
by creating a list, FLIST, of its links that are cfls in Pq with remaining unaccounted for counter flow (line 1).
Then it successively accounts for the counter flow in a decreasing set of cfls in each iteration of its main loop
(lines 4 - 11). At each iteration it first determines a flow rate FP that will either fully account for the remaining
counter flow in the cfl in FLIST with the minimum unaccounted for counter flow or will utilize the remaining
unused Pj flow (line 4). Then it creates the subpaths of Pj from s to the first link in FLIST, between links in
FLIST and from the last link in FLIST to t and it reduces by FP the unaccounted for counter flow in each link
in FLIST, i.e., it reduces PF((w, x)) for each (w, x) in FLIST, (lines 5 - 9). At the end of each iteration it
recreates FLIST, where this recreation will have at least one less cfl than the previous FLIST, reduces the
remaining unused flow in Pj, i.e., UFF, and increases the consumed Pj flow, i.e., CFF (lines 10-11).

When Supplement_Multipath exits its main loop, the result of its operation is:

1. for each (w, x) that is a cfl in Pq:
a) CPx contains subpaths originating at x whose flow rates sum to R(Pq)
b) the CPv contain among them subpaths terminating at w whose flow rates sum to R(Pq)

 D-4

2. the CPs contains subpaths originating at s whose flow rates sum to the sum of the multipath path flow
rate reductions made by the algorithm

3. the CPv, v ≠ s contain among them subpaths terminating at t whose flow rates sum to the multipath
path flow rate reductions made by the algorithm

__
Algorithm Create_Subpaths(Pj, R(Pj), PF, Pq, CP)
1. FLIST ← list of Pq cfls (w, x) in Pj with PF((w, x)) > 0 ordered by their link order in Pj;
2. flength ← length of FLIST; UFF ← R(Pj); CFF ← 0;
3. while flength ≠ 0 and UFF > 0 do
4. PF ←),(min

),(
xwPF

FLISTxw �

; FP ←),min(PFUFF ;

5. (w, x) ← FLIST(1); Push (Pj, s, w, FP) onto CPs; (w, x) ← (y, z); j ← 1;
6. while j < flength do
7. (w, x) ← FLIST(j); (y, z) ← FLIST(j + 1);
8. Push (Pj, x, y, FP) onto CPx; PF((w, x)) ← PF((w, x)) - FP; j ← j + 1;
9. Push (Pj, z, t, FP) onto CPz; PF(y, z)) ← PF((y, z)) - FP;
10. FLIST ← list of Pq cfls (u, v) in Pj with PF((u, v)) > 0 ordered by their link order in Pj;
 flength ← length of FLIST;
11. UFF ← UFF - FP; CFF ← CFF + FP;
12. return (CFF, PF, CP);
__

Given the situation described above, it follows that subpaths of CP and subpaths of Pq provide a total flow rate
of R(Pq) into and out of each Pq intermediate node (maintaining the required flow rate balance without resort to
counter flow in Pq's counter flow links). Also the flow rates of the CP subpaths from s and to t exactly
compensate for the reduction in flow rates of the original multipath paths. Therefore, via a call to
Create_New_Paths, shown below on this page, Supplement_Multipath “splices” the CP subpaths together with
subpaths of Pq to create a set of paths from s to t whose flow rates sum to R(Pq) plus the sum to the multipath
flow rate reductions made by the algorithm.

Algorithm Create_New_Paths(Pq, CLIST, clength, R(Pq), CP)
1. (u, v) ← CLIST(1); Push (Pq, s, v, R(Pq)) onto CPs;
2. (w, x) ← CLIST(clength); Push (Pq, w, t, R(Pq)) onto CPw; k ← 2;
3. while k ≤ clength do
4. (w, x) ← CLIST(k); Push(Pq, u, x, R(Pq)) onto CPu; (u, v) ← (w, x);
5. k ← k + 1;
6. � cfls (u, v) in Pq, order CPu and CPv in ascending order of element flow rates;
7. while CPs ≠ �

~
 do

8. (LIST, length, FR) ← Determine_Path(CP);
9. (P, u, v, FP) ← LIST(1); FP ← FP - FR;
10. if FP > 0 then top of CPs ← (P, s, v, FP);
11. else Pop CPs;
12. k ← 2;
13. while k ≤ length do
14. (P, u, v, FP) ← LIST(k); FP ← FP - FR;
15. if FP > 0 then top of CPv ← (P, u, v, FP) ;
16. else Pop CPv;
17. P ← Expand(LIST); P ← Untangle(P); Enter (P, FR) into structures;
18. return;

 D-5

Create_New_Paths, after it performs its initialization steps, operates somewhat like the algorithm
Decompose_to_Path_Flows on page 20 in subsection 5.2. However Create_New_Paths deals with subpaths
rather than links. In its initialization steps it determines subpaths of Pq that consist of only ffls, assigns them
the flow rate R(Pq) and pushes them onto appropriate CP stacks (lines 1- 5). These subpaths connect s to the
first cfl of Pq, each cfl to its subsequent Pq cfl and the last cfl of Pq to t. Create_New_Paths also orders the
subpaths in the CP stacks (line 6) by descending flow rate (to possibly reduce the number of paths generated).
Then its main loop (lines 8 - 17), via calls to Determine_Path, shown below, successively connects subpaths to
construct paths from s to t (line 8). Determine_Path returns an ordered list, LIST, of subpaths of a constructed
path and the path's flow rate FR. Here each CP subpath in LIST is the top of its stack.

__

Algorithm Determine_Path(CP, PQ, Pq);
1. length ← 0; l ← 0; � v � V, γ(v) ← 0; y ← s;
2. while y ≠ t do
3. (PP, y, z, RR) ← Top of CPy;
4. while z = y do
5. Pop CPy; (PP, y, z, RR) ← Top of CPy;
6. length ← length + 1; LIST(length) ← (PP, y, z, RR); RR (length) ← RR;
7. if z = t then y ← t;
8. elsif γ(z) ≠ 0 then l ← γ(z);
9. else γ(y) ← length; y ← z;
10. if l ≠ 0 then
11. FP ←

lengthil
iRR

��

)(min ; i ← l;

12. while i ≤ length do
13. (P, w, x, RR) ← LIST(i); RR ← RR - FP;
14. if RR ≠ 0 then top CPw ← (P, w, x, RR);
15. else Pop CPw
16. γ(x) ← 0;
17. length ← l - 1; l ← 0; y ← z;
18. FR ←

lengthi
iRR

��1
)(min ;

19. return(LIST, length, FR);
__

On return from Determine_Path, Create_New_Paths' main loop reduces the flow rate of each CP subpath in
LIST by the path flow rate (lines 9 and 10 and 14 and 15) or pops the stack of the subpath if its flow rate equals
the path flow rate, thereby removing the subpath from the stack, (lines 11 and 16). It then, via Expand (which
is not shown here), expands the subpaths of LIST into a node sequence representation of the constructed path,
removes, via Untangle (not shown here), any remaining path loops and enters, via Enter (not shown here), the
path and its flow rate into the structures (line 17). Note that Determine_Path detects via γ(·) indicators (line 8)
and eliminates (lines 11-17) “subpath loops”. It eliminates such a loop by reducing the flow rates of subpaths
in the loop by the minimum loop subpath flow rate, i.e., the loop flow rate, and removing from the CP stacks
any loop subpath whose flow rate equaled the loop flow rate.

Create_New_Paths will generate a null subpath, i.e., a subpath that has the same starting and ending node and
no links, when two Pq cfls are consecutive links in Pq. Create_Subpaths will also generate a null subpath if Pj
has consecutive links that are Pq cfls that both have remaining unaccounted for counter flow. Determine_Path
deals with these subpaths by removing those it encounters from the CP stacks (lines 4 and 5).

 D-6

Each initial and final node of the subpaths used by Create_New_Paths is in Pq and, as noted above, these
subpaths initially provide total flow rates of R(Pq) into and out of each Pq cfl node. Each subtraction of flow
into such a node is accompanied by a subtraction of flow out of the node. Thus the flow balance at the nodes is
maintained and hence Determine_Path will never reach an intermediate node and not have a subpath available
from that intermediate node. Each construction attempt succeeds in reaching t since “subpath loops” are
eliminated during the attempt and only a finite number of subpaths exist (so the routine can't loop indefinitely).
Further each path construction leads to the reduction of a CPs subpath flow rate by at least one unit and a CPs
subpath whose flow rate would be reduced to zero is removed from CPs (lines 9-11 of Create_New_Paths).

The paths constructed by Determine_Path will have a total flow rate equal to the sum of the flow rates of
subpaths in CPs at the initiation of the subroutine, since Create_New_Paths will not terminate until CPs is
empty (line 4). At the initiation, this sum is R(Pq) plus the total of the flow rates removed from the original
multipath paths. Hence the new multipath in the structures at the conclusion of Supplement_Multipaths has a
flow rate equal to the sum of the original multipath and R(Pq). Further, since Supplement_Multipath never
increases the flow on a link, the new multipath provides at least the same data flow for times equal to or greater
than the delay of Pq as the original multipath plus Pq

52
 (see equations (17) and (19) in Section 3 on page 7).

However since Supplement_Multipath is being run in the context of an MTMP, the original multipath and the
original multipath plus Pq both provide maximum data flow for an end-to-end delay equal to D~ (Pq), the delay
of Pq. Hence the new multipath provides the same data flow as the original multipath and Pq for times equal
to or greater than D~ (Pq) and per Lemma 2 in Section 3 on page 8 has no path with delay > D~ (Pq). Therefore
at the end of Create_New_Paths' execution, the required new multipath is in the structures (i.e.,
Supplement_Multipath is correct)53.

D.4 COMPLEXITY OF SUPPLEMENT_MULTIPATH AND RELATED OPERATIONS

The following set of structures is utilized by Supplement_Multipath and its subroutines:

1. S1, a matrix with m + 2 columns and (n -1)Cmax rows.
2. S2, a two row m + 1 column matrix
3. S3, an n column matrix containing paths from s to t
4. S4, another n column matrix where each row is related to the path in the corresponding row of S3
5. S5, a five column array where each row is related to the path in the corresponding row of S3 and

where the first column element is a flow rate, second column element an indicator/pointer, the third
column a pointer to an S1 row and the fourth and fifth columns pointers of a linked list of non-zero
flow rate rows (though the first row will always be in the list even if it has a zero flow rate).

The primary purpose of the first two structures is to allow the rapid determination of a multipath path
containing a cfl of the generalized path. The elements of the matrix are pairs that in the first m +1 columns
consist of a preceding row pointer and a succeeding row pointer. The last column's elements consist of a row
number and a NILL. The first m columns of S1 correspond to the links of the network. The pointers in the first
m columns form a linked list of paths containing the column's link. The next to last column's pointers form a
linked list of unused S1 rows and the last column of an S1 row contains the row number of the S3 path
corresponding to the S1 row. The second structure's columns correspond to the first m + 1 columns of S1.
The first row contains the head S1 row number and the second row the tail S1 row number of the column's

52 Here we are assuming for convenience of exposition that data can be transmitted over Pq though it cannot actually be
due to Pq's cfls.
53 A variation in the multipath construction approach of this subsection collects all the generated flow augmenting paths
for a residual network, i.e., an Nf. Then it enters all the paths from this set of generalized paths into the structures and
applies a generalized Supplement_Multipath approach to the subset of generated generalized paths that have cfls,
collectively accounting for all the counter flow in this subset. Here CLIST contains the cfls of all the generalized paths of
the subset.

 D-7

linked list. S1 is initialized by MTMP so that its first m columns and last column are all NILL pairs and its
next to last column forms a circular list of all the matrix's rows.

The path Pj determined at line 9 of Supplement_Multipath (in Subsection D.3 on page D-2) is found by
selecting the head row of the S1 column corresponding to the cfl link (u, v) then finding the path's S3 row
number in the last column of this S1 head row. Here the S1 head row is found from the corresponding S2 link
column so that determining Pj is an O(1) complexity operation.

The third structure, S3, as noted above, contains paths. Each non NILL element of S3 is a pair consisting of a
node (i.e., a node number) and the link number of the path's link to the node (the link number corresponds to
the link's S1 column and the first element has a NILL link number). The first n~ elements of a row are
node/link numbers and the last n - n~ elements are NILL pairs (where the n~ nodes are unique, 2 ≤ n~ ≤ n and n~
varies from row to row). S4's columns correspond to network nodes and an S4 entry is the path position of the
column's node in the corresponding S3 path (if the node is in the path). S4 is used by Expand in line 17 of
Create_New_Paths (in Subsection D.3 on page D-4) to develop the sequence of nodes of P. Locating the first
node of the subpath in S3 is, through use of S4, an O(1) operation54.

The flow rates of the last structure, S5, complete the definition of a multipath. The S5 indicator/pointers
do not effect the operation of Supplement_Multipath. They are set to “new” by the algorithm any time
their corresponding path is newly entered into S3 (for a purpose we shall go into after the algorithm
discussion).

The subroutine Enter at line 17 of Create_New_Paths always appends a row to the S3, S4 and S5 when saving
a new path in these structures. S1 however is never expanded beyond (n - 1)Cmax rows, where (n - 1)Cmax is an
upper bound for the maximum number of paths in a quickest multipath.

S1 is the only structure initialized prior to other operations of an MTMP algorithm that uses
Supplement_Multipath and, since S1 has m+2 columns, the complexity of such an initialization is O(nmCmax).
An addition to the structures made by Enter, at line 17 of Create_New_Paths, occurs as follows:

1. the row number for the last row used in the S3, S4, and S5 structures is found from a length variable
maintained by the algorithms, the variable is incremented, the path is entered into S3 and its node
locations are entered into S4 at the new last row of these structures

2. the head row of the unused S1 row linked list is found from S2 and entered into the S5 row for the
path along with the path flow rate, a “new” indicator and links to the previous tail and the head of the
“non-zero flow rate path linked list” (with the previous tail “succeeding” and the head “preceding”
values being modified to point to the path's row)

3. link entries are added in the path's S1 row in the columns corresponding to the path's links and each
such column's head and previous tail entries are modified to make the path's row the tail of the
column's linked list (yielding < 3n entry changes in S1)

4. head and tail entries of the linked list of unused S1 rows (in S1 column m + 1) are changed, to reflect
that the path's S1 row is in use, and the S3, S4, S5 row number of the path is entered into the last
column of the path's S1 row

5. entries in the S2 columns corresponding to the path's links and the S2 column corresponding to the
unused S1 rows are changed to reflect the changes to S1

A removal of a path from the structures is carried out by Remove_from_Structures at line 12 of
Supplement_Multipath as follows:

54 When Create_New_Paths constructs CLIST it also constructs an array for Pq that is analogous to an S4 row so the start
of a Pq subpath can be similarly found in an O(1) operation.

 D-8

1. the flow rate in the path's S5 row is set to zero and, if the path's row isn't the first S5 row, its preceding
row's and succeeding row's entries are modified so the path's row is removed from the linked list of
non-zero flow paths

2. the path's link entries in its S1 row (whose row number is found from the path's S5 third column entry)
are set to NILLS and appropriate changes are made to what had been its preceding row's and
succeeding row's entries to remove the path's row from the linked list of each column corresponding to
a link of the path (requiring < 3n S1 entry modifications)

3. the path's entry and the head and previous tail entries in the linked list of unused S1 rows is modified
to make the path's row the tail of this linked list

4. entries in the S2 columns corresponding to the path's links and the S2 column corresponding to the
unused S1 rows are changed to reflect the changes to S1

Each of the enumerated addition and removal steps can be carried out with complexity O(n) (and some with a
superior complexity). Hence Enter and Remove_from_Structures both have complexity O(n).

The initialization steps of Supplement_Multipath (lines 1-5) have complexity O(m) since the operation that sets
all the links PF((·, ·)) values to zero dominates the initialization. The number of Supplement_Multipath main
loop iterations (lines 7-12) is < n since there < n cfls in Pq, and the number of inner loop (lines 9-13) iterations
is < nR(Pq), since each inner loop iteration reduces a path flow rate by at least one unit and the total reduction
of flow rate is no more than R(Pq) units per cfl of Pq. The main loop instructions exclusive of the inner loop
have complexity O(1) hence the complexity of the totality of the main loop iterations exclusive of its inner loop
is O(n). Create_Subpaths initialization steps (lines 1 and 2), see page D-4 in Subsection D.3, have complexity
O(n) since determining if a Pj link should be in FLIST requires only checking if its PF((·, ·)) value is greater
than zero. Thus, since the choice of Pj (at line 9) is an O(1) operation and the complexity of
Remove_from_Structures (called at line 12) is O(n), the complexity of the totality of iterations of
Supplement_Multipath's inner loop exclusive of Create_Subpaths' main loop (lines 4-11) is O(n2R(Pq)).

Each iteration of Create_Subpaths' main loop and each iteration of its inner loop (lines 7-8) accounts for at
least one unit of counter flow and therefore the number of iterations of either loop is < nR(Pq). The only
operations within these loops that aren't O(1) operations are the FP calculation at line 4 and the FLIST
regeneration at line 11 both of which have complexity O(n). Therefore the complexity of the totality of
Create_Subpaths' loop iterations is O(n2R(Pq)).

Create_New_Paths' initialization (lines 1-6), see page D-4, is dominated by the reordering of the CP stacks that
has complexity O(nR(Pq))55. Each iteration of Create_New_Paths main loop (lines 8-17) creates a path and
reduces the flow rate of a Cs subpath by at least one unit (lines 9-11). Since the total of the Cs stack flow rates
is < (# of Pq cfls + 1) R(Pq), the number of iterations, and hence paths created, < nR(Pq). Each iteration of the
main loop's interior loop (lines 14-16) reduces the flow rate in a CP subpath by at least one unit (lines 14-16).
Since the total flow rates of the CP subpaths is ≤ 3(n - 3)R(Pq) + R(Pq) (a maximum of 3R(Pq) for each cfl link
of Pq, i.e., R(Pq) each for the set of created path subpaths into and from each cfl and the Pq subpath from the
cfl, and R(Pq) for the Pq subpath from s to the first Pq cfl) the number of each loop's iterations is < 3nR(Pq).

55 The sum of the flow rates of each nonempty stack's entries is R(Pq) (or 2R(Pq) if the stack's index is a node between two
counter flow links) except for CPs where the sum is < nR(Pq). Hence the length of the nonempty stacks is O(R(Pq))
except CPs's length that is O(nR(Pq)). In ordering the stacks, the algorithm determines the unique flow rates of stack
entries. Then it orders the unique flow rates, copies the stack entries to arrays for each flow rate and then copies them
back into the stack in flow rate order. The complexity of the ordering operation is O((number of unique flow rates)2) and
the maximum number of unique flow rates is less than the square root of the length of the stack. Hence for stacks other
than CPs the ordering's complexity is O(R(Pq)) and that is also the complexity of the other operations. Since there are
less than n stacks other than CPs and the ordering complexity of CPs is O(nR(Pq)), the total ordering of CP's stacks has
complexity O(nR(Pq))).

 D-9

Therefore, since all operations in the loops except subroutine calls are O(1) operations and Determine_Path’s
initialization (line 1), see page D-5 in Subsection D.3, is dominated by the initialization of the γ(·) whose
complexity is O(n), the complexity of the totality of the executions of Create_New_Paths' loops, exclusive of
Determine_Path’s post initialization operations and Create_New_Paths’ calls to Expand, Untangle and Enter
(line 17), is O(n2R(Pq)).

Each iteration of Determine_Path’s main loop (lines 3-17) is associated with the flow rate reduction of at least
one unit of a CPs subpath (by Create_New_Paths at lines 9-11). Further each iteration of the main loop's inner
loops (line 5 and lines 13-16) causes either the discarding of a CP subpath or the reduction of a CP subpath’s
flow rate by at least one unit. Therefore the number of iterations of the main loop < nR(Pq) and the number of
iterations of each of its inner loops is < 3nR(Pq). Since all of these loops' operations except the loop and path
flow rate computations (lines 11 and 18) are O(1) operations56, the complexity of the totality of the main loop
and interior loop iterations, exclusive of the loop and path flow rate computations, is O(nR(Pq)). Further the
number of elements over which a minimization in a flow rate computation is made is ≤ the number of iterations
in a corresponding loop execution. The corresponding loop execution is the succeeding execution of the line
13-16 interior loop in the case of the loop flow rate computation (line 11) and the preceding execution of the
main loop in the case of the path flow rate computation (line 18). Therefore the totality of these computations
has complexity O(nR(Pq)).

The totality of executions of Expand and Untangle has a complexity of O(total number of nodes in created
paths). Let NF = the sum over the nodes of the total flow into all the nodes of the subpaths in the CP stacks.
Then NF < (# of nodes in Pq)R(Pq) + � �

paths
jj PinnodesofPR))(#(where paths is the set of paths used to

account for Pq’s counter flow and)(jPR� is the resulting decrease in Pj’s flow rate. Then NF < nR(Pq) +

� �
paths

jPRn)(≤ nR(Pq) +)()(# qq PRPincflsofn < nR(Pq) + n2R(Pq). Hence, since any path generated by

Determine_Path has a flow rate of at least 1, the total number of nodes in all the created paths < nR(Pq) +
n2R(Pq). Therefore the complexity of the totality of the executions of Expand and Untangle is O(n2R(Pq)).
Since there are < n(R(Pq) new paths and Enter has complexity O(n), the totality of the executions of Enter is
also O(n2R(Pq)). Hence, since all portions of Supplement_Multipath have complexity O(n2R(Pq)) (and some a
superior complexity), Supplement_Multipath's complexity is O(n2R(Pq)).

Every time that the last augmenting generalized path for an MTMP generated Nf is processed, the multipath
paths in S3 along with their S5 flow rates must be saved. Here the S5 columns defining a linked list of non-
zero flow rate paths allows each multipath path to be identified in an O(1) operation57. The direct copying of
all such MTMP multipaths has complexity O(n3Cmax

2) (since there are < nCmax multipaths each having
< nCmax paths and copying a path has complexity O(n)).

The complexity of saving paths can be reduced by maintaining a list, S6, of all multipath
paths and saving S5 flow rates and pointers rather than the multipath paths themselves. Each time
a new path is added to the structures, its S5 indicator/pointer is set to “new”. Then after a
complete set of paths for a residual network, a Nf, has been determined, those paths with a S5
“new” indicator are appended to S6 (which begins as a null array) and the S5 indicators are

56 Supplement_Multipath, when it creates empty subpath stacks at line 1, also creates a temporary array indexed by node
number. Each node, that is the start of a subpath, has as its entry in the array a pointer to the stack for subpaths starting
at that node. Therefore any required stack can be found in an O(1) operation.
57 The first S5 row is always the head of the list though it may contain a zero flow rate. Therefore its flow rate must be
checked to determine if it should be included in the multipath. However all other paths in the list always have non-zero
flow rates.

 D-10

changed to pointers to their respective S6 paths. The complexity of copying the multipath paths
to S6 and saving the MTMP produced path table multipaths is, with this approach, O(n2Cmax(n + Cmax)). (Here
less than n2Cmax paths are produced by all MTMP's flow maximization and multipath generations.
This together with the complexity of a copy to S6 being O(n) yields the first complexity term. Also
less than n2(Cmax)2 pointers and flow rates need be copied to save multipaths, since there are less than
nCmax multipaths each having less than nCmax paths. Hence we have the second term.) Therefore the
MTMP complexity is O(n2Cmax(n + Cmax)), since the complexity of the totality of all other MTMP
operations is superior to O(n3Cmax). If in addition to all link capacities being positive integers, all link delays
are non-negative integers then, since there are less than nDmax multipaths, the MTMP complexity58 is
O(n2Cmax(n + min(Cmax, Dmax))).

D.5 DUPLICATE MULTIPATH PATHS

A disadvantage of the previous section's Supplement_Multipath approach is that it, unlike the flow
decomposition approach, may generate multipaths that contain duplicate paths59. For example, in the network
of Figure 1 in Section 2 on page 5, the multipath for message lengths greater than or equal to 40
(T ≥ 7) that would result from this approach is (([s, u, t], [s, v, t], [s, u, t], [s, v, t]), (8, 8, 2, 2)), in which both
[s, u, t] and [s, v, t] appear twice. If we choose to remove duplicates after each Nf set of paths has been
generated, then we can compare paths in S3 before copying any to S6. If we find a set of duplicate paths, then
we can set the flow rate of one of the duplicate paths in S5 to the sum of all the duplicate path flow rates and
set all of the other duplicate path flow rates to zero (removing those paths whose flow rates were set to zero
from the linked list of non-zero flow rate paths maintained in S5). The complexity of this approach for all
saved MTMP multipaths is O(n4(Cmax)3) (since there are < nCmax multipaths and <n2(Cmax)2 pair wise path
comparisons per multipath and a comparison has complexity O(n)). Therefore, if this approach is used, it will
apparently cause the altered MTMP's complexity to be inferior to the MTMP complexity when flow
decomposition is used.

We shall conclude this appendix by considering an approach that eliminates duplicate paths without increasing
the MTMP complexity. It does this through use of three additional structures and an added S5 column. These
structures are:

1. S7, a n column array of paths from s to t and subpaths of paths from s to t
2. S8, a vector of pointers linking paths in S7 to paths in S3 (and rows of S4 and S5)
3. S9, a set of n column vectors in which each vector position represents a node

S7 is the main structure for relatively efficient avoidance of duplicate paths in multipaths. An S7 element is a
triplet, containing a path node, an indicator, and an index. The indicators and indices join sets of rows at
particular columns. Here joined rows all have the same subpath in the columns preceding the column at which
the join is made but different nodes in the joined column, see Figure 6 on page D-11 (in which only the node
portion of each entry is indicated in the main portion of the figure but the full triplets for four entries are
displayed to the side of the main portion). An indicator takes one of three values: unjoined, base, or non-base.
If the value is base, the index is to an S9 vector, i.e., a “join vector”. If the value is non-base, the index is the
row number of an S7 element in the join column that contains a base indicator. An S9 vector element value is
either an S7 row number in which the corresponding node can be found in the join column or “Nill”. A Nill
indicates that the node can't be found at the join column in a row “joined” to the element whose index is to this
S9 vector. An S8 element is the row number in S3 (and S4 and S5) of the path in the corresponding S7

58 The complexity of an MTMP using the variation described in the footnote 53 on page D-6 is the same.
59 Duplication will not occur when flow decomposition is used, because for each path that is generated one or more of
the path’s links are removed from further consideration and therefore cannot be part of any subsequent path that is
generated for the multipath.

 D-11

row. It will be Nill if the S7 row isn't a complete path from s to t. The added column in S5 contains S7
row numbers. The entry for an S5 row is the S7 row of the path (which is also in S3) corresponding to the S5
row.

An S7 element that has a base indicator is a “base” and one with a non-base indicator is a “non-base”. A base
and the set of non-bases whose indices are the base are a join (examples of joins are the connected circled
elements of Figure 6). The base of a join is always in the earliest row of the join and each row other than the
first row has one and only one non-base element. Also any row, other than the first, has a non-base at an
earlier column than any bases in the row. The routine Determine_if_Duplicate_Path, shown on page D-12,
determines if a path is in S7. It starts at the first row and first column and moves out along the row comparing
S7 elements' nodes to the path's nodes (line 5). When a “non-match” is found, a check is made to see if the
current element's row is joined at the current column to a row who’s joined element's node is the path's node
(line 6). If it isn't, then a “block” has occurred at the current row and column and the path isn't in S7 (line 7).
If it is, the process continues at the joined row containing the path's node in the join's column (line 9). Either
node t will be reached through this process or the process will be blocked indicating that the path isn't in S7.
Each operation in the main loop (lines 5 - 14) has complexity O(1) and since the number of main loop
iterations is < n, the routine's complexity is O(n)(here the S9 array allows the line 6 determination of whether
the path node is in the array's join in an O(1) operation).

When a multipath path and its flow rate have been determined during an MTMP execution, a check is made for
the path's existence in S7. If the path is in S7, then the path's flow rate in its S5 row is increased by the
determined flow rate. Here the S8 entry for the path's S7 row contains the S5 row number for the path. Hence
the flow rate increase requires a fixed number of O(1) operations. When a path flow rate is reduced to zero by
Supplement_Multipath (line 11) then the path is removed from S7. The added column in S5 contains the S7
number row number of the path. Hence the path's S7 row can be found in an O(1) operation.

Addition of a path to S7 occurs only after an attempt to find the path in S7 has been blocked. If the block
occurred at a Nill entry, the remaining subpath of the path is entered into the row in which the block occurred
(followed by a Nill in the row if the path isn't n nodes long). Otherwise, the path is appended to S7. In either
case, the S3 row number of the path is entered into the S8 position corresponding to the path's S7 row. When
the path is appended a join must be altered or constructed. If the block occurs at an unjoined element, then the
element at the block's row and column is converted to a base indexed to the next available S9 join vector (and
the block's row number is entered into the position of the element's node in the join vector). Otherwise the

a9
“non-base”

5

s u1 u2 u3 u4 u5 u6 u7 t Nill Nill Nill

s v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 t

s w1 w2 w3 w4 w5 w6 w7 w8 w9 t Nill

s w1 w2 b3 Nill b5 t Nill Nill Nill Nill Nill

s w1 w2 x3 x4 x5 x6 x7 x8 x9 t Nill

s w1 w2 x3 x4 x5 y6 y7 y8 t Nill Nill

s w1 w2 x3 x4 x5 x6 x7 x8 a9 Nill t

s w1 w2 x3 x4 x5 z6 z7 z8 z9 t Nill

s w1 w2 c3 c4 c5 t Nill Nill Nill Nill Nill

w1
“non-base”

1

Fig. 6. S7 structure.

x9
“base”
join ptr

u1
“base”
join ptr

 D-12

block is already a base. In either case, the path's S7 row number is inserted into the join's S9 vector at the
position of the path's node (i.e., the node whose position corresponds to the block's column number). The
indicator of the path's element in the block's column is set to non-base, and the element's index is set to the
block's row (which is the join's base). Note that the complexity of an addition is O(n) since < n elements need
to be entered into the path's S7 row, and the additional steps beyond the path entry are made up of a set of O(1)
operations whose number is less than some fixed value60.

__

Algorithm Determine_if_Duplicate_Path(P)
1. row ← first row; column ← first column;
2. element ← row and column's element; row_node ← element's node;
3. path_node ← s; not_blocked ← 1; found = 0;
4. while(found = 0 and not_blocked = 1) do
5. if path_node ≠ row_node then
6. if element not in join or join doesn't include element with path_node then
7. not_blocked ← 0;
8. else
9. row ← row in join with element containing path_node
10. if not_blocked = 1 and path_node ≠ t then
11. column ← next column;
12. element ← row and column's element; row_node ← element's node;
13. path_node ← path P's next node;
14. if (path_node = row_node = t) then found ← 1;
15. return(not_blocked, row, column)

__

The deletion of a path occurs as follows: The last column for which the path is joined is found. If its element's
node isn't t, a Nill is placed in the triplet node position of the next column's element in the path's row. If the
element's node is t, both the t in the element's node position and the path's row number in the join's S9 vector
are overwritten with a Nill. Finally the S8 entry for the row is set to Nill. Note that the complexity of a deletion
is O(n) since < n O(1) operations are required to find the last join in the path's S7 entry and the additional steps
beyond finding the last join are made up of a set of O(1) operations whose number is less than some fixed
value.

The maximum number of paths created by Supplement_Multipath in all of an MTMP execution is < n2Cmax.
Thus checking all “new” paths and adding paths to and deleting them from S7 when required has complexity
O(n3Cmax). Hence the S7 operations to deal with duplicate paths don't add to the complexity of
Supplement_Multipath. Therefore the complexity of saving the multipaths will not increase.

S9 must be initialized with Nills (while S7 requires that only its first row and column's element be initialized
with a Nill node). S9's size is limited by the maximum number of paths created for multipaths during an
MTMP execution. Since the number of created paths is < n2Cmax and each S9 vector is n elements, the
required number of S9 elements is < n3Cmax. Thus S9's initialization (with Nills) has complexity O(n3Cmax) and
therefore doesn't increase Supplement_Multipath's complexity.

60 The first path generated by MTMP is inserted into the first row of S7 and each path row element's indicator is set to
non-joined. S8's indicator is set to 1 corresponding to the first row position of the path in S3, but no S9 operations are
needed. A path that is subsequently added to S7 possibly, as noted above, additionally requires the creation of a base
(which in turn requires the obtaining of a S9 join pointer and updating the next join pointer value) and requires adding its
S7 row number to a S9 join vector.

 D-13

The MTMP complexity of O(n2Cmax (n + Cmax)), when the full process of adding one flow augmenting
generalized path at a time to evolving multipaths, saving the multipaths at appropriate times and assuring that
each set of multipath paths contain no duplicates is included, is neither superior nor inferior to the MTMP
complexity of O(n2mCmax) when flow decompositions are used. Further the corresponding one path at a time
complexity of O(n2Cmax (n + min(Cmax, Dmax)) when link delays are limited to be non-negative integers (as well
as link capacities being limited to be positive integers) is neither superior nor inferior to MTMP1's complexity
of O(n2((n2/logn)+ m)min(Cmax, Dmax)) or MTMP2's complexity of O(nm(Cmax + nmin(Cmax, Dmax)))61.
However readily derived upper bounds on the number of distinct paths for all the MTMP multipaths are n2Cmax
for the “one generalized path addition at a time” approach (less than nR(Pq) paths created for a flow
augmenting path Pq with the sum of all the flow rates of the generated flow augmenting paths being less than
nCmax) and nmCmax for the flow decomposition approach (less than nCmax multipaths each having no more than
m paths since Decompose_to_Flows creates no more than m paths per decomposition). These upper bounds
on the number of distinct paths for all the MTMP multipaths might be interpreted as an advantage from the
“one generalized path addition to a time” approach.

61 We have made algorithm comparisons in this report based only upon complexity measured in terms of execution time
related bounds. However we recognize that other factors including memory requirement bounds and some practical
aspects of algorithms may be at least of equal importance in determining which algorithm among a set of algorithms is
“the best”. In the case of the above approach to adding one generalized path at a time, the approach is neither inferior
nor superior (from a complexity standpoint) to the flow decomposition approach described in the body of the report.
However it is much more “computationally involved” in terms of the algorithms and structures that are used.

 ORNL/TM-2004/3

INTERNAL DISTRIBUTION

 1. J. Barhen
 2. T. Dunigan
 3. W. Grimmell
 4. J. Nichols
 5. N. Rao
 6. W. Wing

 7. Q. Wu
 8. Central Research Library
 9. ORNL Laboratory Records-RC
 10. ORNL Laboratory Records-OSTI

EXTERNAL DISTRIBUTION

11. Dr. Admela Jukan, Network Systems Cluster, Division of Computer and Network Systems,
 4201 Wilson Boulevard, Suite 1175, Arlington, Virginia 22230

12. Dr. Sri Kumar, DARPA / IPTO, 3701 Fairfax Drive, Arlington, VA 22203-1714

13. Dr. Thomas D. Ndousse, Mathematical, Informational, and Computational Sciences Division,
 Germantown Bldg/SC-31, Office of Science, U.S. Department of Energy,
 1000 Independence Avenue, SW, Washington DC 20858-1290

14. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831

15. Professor Sridhar Radhakrishan, School of Computer Science, University of Oklahoma, Norman,
 OK 73019

16. Professor Guoliang Xue, Department of Computer Science/Engineering, Room 347 Goldwater Center,
 Arizona State University, Tempe, AZ 85287-5406

