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Executive Summary 
 
On July 22, 23, 24, 2003, three one day workshops were held in Gaithersburg, Maryland. Each 
was attended by about 30 computational biologists, mathematicians, and computer scientists who 
were experts in the respective workshop areas The first workshop discussed the data 
infrastructure needs for the Genomes to Life (GTL) program with the objective to identify gaps in 
the present GTL data infrastructure and define the GTL data infrastructure required for the 
success of the proposed GTL facilities. The second workshop discussed the modeling and 
simulation needs for the next phase of the GTL program and defined how these relate to the 
experimental data generated by genomics, proteomics, and metabolomics. The third workshop 
identified emerging technical challenges in computational protein structure prediction for DOE 
missions and outlining specific goals for the next phase of GTL. The workshops were attended by 
representatives from both OBER and OASCR. 
 
The invited experts at each of the workshops made short presentations on what they perceived as 
the key needs in the GTL data infrastructure, modeling and simulation, and structure prediction 
respectively. Each presentation was followed by a lively discussion by all the workshop 
attendees. The following findings and recommendations were derived from the three workshops. 
 
A seamless integration of GTL data spanning the entire range of genomics, proteomics, and 
metabolomics will be extremely challenging but it has to be treated as the first-class component 
of the GTL program to assure GTL’s chances for success. High-throughput GTL facilities and 
ultrascale computing will make it possible to address the ultimate goal of modern biology: to 
achieve a fundamental, comprehensive, and systematic understanding of life. But first the GTL 
community needs to address the problem of the massive quantities and increased complexity of 
biological data produced by experiments and computations. Genome-scale collection, analysis, 
dissemination, and modeling of those data are the key to success of GTL. Localizing these 
activities within each experimental facility that generates the data will ease integration and 
organization. However, integration and coordination of these activities across the facilities will be 
extremely critical to assure high-throughput knowledge synthesis and engage the broader biology 
community.  Ultimately, the success of the data infrastructure will be judged by how well it is 
accepted by and serves the biology community. 
 
Recommendations: 
 

• DOE should lay the groundwork for a GTL data infrastructure composed of a distributed 
but integrated suite of facilities databases, through the cooperative development of data 
models and database schemas. This process should seek to identify shared or common 
data elements, objects, concepts and identifiers that can lead to metadata types that are 
sharable across existing GTL projects and future facilities.  

• Data management issues of the infrastructure need to be addressed from the start of GTL. 
Among those issues are the types of GTL-generated data, support for long-term data 
curation, data quality control, mechanisms for accessing the data for analysis, and 
standardized ways of disseminating the data to the GTL community. 

• The data infrastructure needs to be flexible to allow data analysis and storage strategies to 
evolve over time in an organized and timely way. 

• A data analysis framework should be a part of the data infrastructure and provide 
transparent access to distributed data sources, analysis tools, and computational resources 
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across the GTL community. The framework should include tools for testing the 
coherency of disparate bodies of data and allow individual sites to customize the data 
analysis tools and available databases to match their research needs.  

• Mathematical models are needed that are ultimately developed from fundamental 
biological principles. These models must be tested and verified through integrated wet 
lab experimentation using multiple analytical methods and based on well-characterized 
statistical designs. 

• Establish working groups to define modeling and simulation data and experimentation 
requirements for validation equivalent to a CASP competition for systems biology. 

• Establish stable, production-oriented high-performance computing capabilities for long 
time-scale biological modeling and simulation computational experiments. 

 
 
 

 
 
Figure 1.  GTL requires and new synergy between computing and biology  

and data is at the center of it all. 
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Introduction
A workshop was held July 22, 2003, in Gaithersburg, Maryland, to identify the needs and gaps in 
the existing Genomes to Life (GTL) data infrastructure and to suggest short and long term actions 
to close these gaps. The meeting was supported by DOE’s Office of Advanced Scientific 
Computing Research and Office of Biological and Environmental Research. The workshop 
included a diverse collection of scientists from DOE laboratories and other organizations (see 
Appendix A for a complete list of participants). The agenda (see Appendix B) was designed to 
facilitate discussions on the data research and infrastructure needed to achieve the long-term 
goals of the GTL program.  
 
The Genomes to Life facilities plan and previous workshop reports place considerable emphasis 
on developing methods for a large community of biologists to analyze large, distributed, 
biological data sets and develop models and simulations related to complex biological 
phenomena. They stress the need for integrated approaches to software and hardware 
infrastructure to accomplish these objectives. An organized approach to coordination and 
planning in computing will guide data standards, data management, large-scale development of 
analysis tools, implementation, and support of analysis on specialized hardware environments, 
including massively parallel computers and distributed grid systems. 
 
To facilitate wide usage of GTL infrastructure in computing, very simple user environments must 
be created that “know” where to get the necessary data and where an application should run, 
based on availability and best use of resources, without the user having to specify these details.  
  
Because of the very distributed nature of biology and the biological databases, no one site can 
hope to cover all the needs of this new science frontier. There are currently about 335 genomic 
and molecular biology databases distributed around the country with large quantities of data 
being added daily.  
 
The data problem is getting much worse as proteomics data is generated from arrays and mass 
spectrometers.  Whereas the genome is static, proteomics data is time-dependent and dependent 
on the initial conditions.  Much more experimental biological data about conditions, etc. must be 
carried with the proteomics data.  In addition, the proteomics data often has a qualitative part that 
must be also available, e.g., the raw visual data from microarrays.  The amount of data that will 
be generated from microbial community studies promises to be staggering.  It will be necessary to 
establish the data storage infrastructure and formats for biological data. The data itself needs to be 
stored and made available to the GTL and broader biological communities.  Thus, investments in 
the data storage and access infrastructure need to be made early so that the GTL facilities and 
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individual experimental and computational groups can benefit from an integrated storage 
infrastructure and related analysis tools. 
 
Summary of Talks and Discussions
The Department of Energy’s (DOE) GTL program has laid out an ambitious plan to use genomic 
data and high-throughput experimental technologies combined with ultrascale computing 
resources to study the proteins encoded by the genome throughout the lifecycle of the organism. 
A series of facilities will be created which will produce biological data on an unprecedented 
scale. The GTL Program will enable an extensive assembly of experimental and computational 
devices, including numerous mass spectrometers, imaging devices (X-ray, electron, neutron 
scattering), and complex mixtures of the biophysical characterization devices and tools (such as 
gel-electrophoresis, NMR, various binding assays, protein chips). 
 
The scale, their high-throughput operation, and the diversity of types of data and associated 
analyses present an extreme challenge to traditional approaches to genomic data processing. At 
present, most of the software on which the analysis pipelines are built are relatively inflexible, 
and are not designed for use in a high-throughput environment. In other words, the tools for 
analysis, modeling, and simulation are not readily adapted to the variations in processing dictated 
by the availability of multiple types of experimental data, and they are not designed to function in 
the distributed computational environment that will be required to support the GTL needs, mixing 
large databases, stand-alone and parallel computers, and remote resources. 
 
Data Standards and Integration in the GTL Data Infrastructure   
 
Data integration has always been a foster-child of bioinformatics. As a result, integration in the 
field of genomics is historically spotty at best, with a few monolithic and asymmetric cross-
references. A consequence of this poor integration is the propagation of unreliable, incomplete, 
and noisy information in databases. Many data resources use their own data formats and custom 
interfaces; navigating between sources and transferring data between interfaces is usually more 
complicated than a simple mouse click or cut and paste operation. The situation is getting much 
worse by technological advances that allow data to be created from the wet-lab at an ever-
increasing rate, and by the growing need to combine these data in new and interesting ways. 
 
A core requirement of any large-scale production enterprise such as the GTL Program is the 
management, manipulation, integration and presentation of the data. With the unique scientific 
challenges associated with each of the GTL projects and experimental facilities it will not be 
possible to have a centrally located data infrastructure, due in large part to the distinct research 
agenda. A seamless integration of GTL data spanning the entire range of genomics and 
proteomics will be extremely challenging but it has to be treated as the first-class component of 
the GTL program to assure GTL’s chances for success. 
 
The GTL data integration enterprise should attempt to lay the groundwork for a distributed but 
integrated suite of facilities databases, through the cooperative development of data models and 
database schemas. This process should seek to identify shared or common data elements, objects, 
concepts and identifiers that can lead to metadata types that are sharable across the GTL projects 
and facilities. In this way at the highest level the independent systems can evolve to meet the 
local conditions of domain experts effectively, while being able to share a common intellectual 
layer of process and information. This will permit the unique knowledge acquired at each facility 
to be used across the DOE complex and eventually permit users to mine data from the combined 
sites.  
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A key goal of the GTL distributed experimental collaboration is the availability of a common 
frame of reference (data standards) for both experimental observations of biological phenomena 
and the representative counterparts within the data model. There is a need to develop a framework 
of both controlled vocabularies and common ontological definitions of the basic GTL objects as 
well as low-level data-interchange and access methods to permit the experimental facilities to 
communicate effectively. Furthermore, this will permit the development of complex inferential 
knowledge based on the wealth of experimental data, the construction of data driven components 
of large-scale biological modeling and simulation efforts, as well as effective data mining tools 
for the GTL data resources.  
 
Recommendations include finding common data needs and patterns between the GTL projects. 
Thus, leveraging from existing GTL projects, and ongoing biology programs in the community to 
start the definition phase now and work towards solutions that are capable of evolving.  
 
The recommended plan is to build on what exists to provide useful tools from the beginning and 
provide analysis end users with familiar interfaces. To ensure real requirements are met, the plan 
would be that each GTL would produce one or two use cases of the biology questions to be 
answered.  The biologists in the GTL teams would generate the biology questions and potential 
solutions worked on jointly with computer scientists. 
 
The GTL data infrastructure should aim to support the following data standards creation tools: 

• Schema description tools with domain-specific schemas (lab experiments, microarray, 
pathways, etc.) as well as standard schemas whenever possible (e.g., MIAME) 

• Database federation tools to use data from multiple independent databases 
• Schema evolution tools for rapid prototyping of new data types and data transformations 
• Non-standard data formats including sequences, graphs, three dimensional structures, 

images, etc. 
• Data format interchange by utilizing standard format technology (e.g., XML) as well as 

schema interchange tools (e.g., XML translators) 
• Operations (e.g., equality, range & imprecise operators) over non-standard data including 

sequence similarity, pattern-matching queries, pattern finding queries 
• Development and deployment of standard ontologies in database systems and ontology 

tools 
 
GTL should award efforts for information-integration services and tools and actively promote the 
development and dissemination of data standards in the larger community. Data integration 
design principles should permit the utilization of any form of local integration methods including: 
language-based approaches; flat file, text retrieval, and search engines; data federation and 
distributed databases; classical data warehousing; centralization; and web robots/agents. They 
should also provide mechanisms for all forms of higher order global integration.  
 
Data Management Infrastructure 
 
The exponential growth of genomics and proteomics data will far exceed the capabilities and 
capacities of any single institution. The workshop participants agreed that a distributed, but 
highly coordinated, data management infrastructure is needed. Due to the unique research agenda 
of each institution, it will be neither possible nor desirable to have a centralized data 
infrastructure. However, to effectively and efficiently, serve the GTL data management needs, 
regular coordination is needed between the sites.  
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The group emphasized that management issues need to be addressed with high priority from the 
start of GTL. Among those issues are the types of GTL-generated data, the means of long-term 
support of data curation, the mechanisms for capturing the data (publicly accessible, central vs. 
dispersed repositories, grid-based replicas, and federations), the mechanisms for filtering the data 
that needs to be stored, and the ways of disseminating the data.  
 
The group emphasized the need for developing middleware components of a distributed search 
infrastructure that addresses the scale, heterogeneity, and distributed nature of biological data. 
Data integration infrastructure should enable search services to interoperate across domains by 
providing user-configurable tools for mapping between metadata schemas, performing search 
queries against multiple data sources, and performing query pre-and post-processing. 
 
Finally, the group concluded that a GTL data management infrastructure must make the growing 
body of biological data available in a form suitable for study and use by: 

• Developing a methodology necessary for seamless integration and interoperation of 
distributed data resources co-located with major experimental facilities that will enable 
linking both experiment and simulation,  

• Providing mechanisms for automated data deposition and automated and manual data 
annotation and curation by local and remote experts, and 

• Developing life sciences enabling database frameworks that provide complex and multi-
database queries, new data models natural to life science, enhanced operations on these 
data types, and optimized performance.  

 
Data Quality Control   
 
Data quality control emerged repeatedly during the workshop. It was identified as an obstacle to 
sharing data across GTL. Current databases are often incomplete and contain erroneous 
information. Furthermore, such spurious information in databases is being propagated 
increasingly fast. For example, functional information is transferred from proteins annotated in 
databases to unknown proteins based on their sequence similarity. However, these transfers can 
be extremely uncertain and misleading due to the complex evolutionary and structure-function 
relationships among genes. This functional information is then stored in a database that may be 
used in other analysis and the cycle of propagation continues.  
 
The data quality problem in GTL will get much worse as proteomics data is being generated. 
Whereas the genome is static, proteomics data is time-dependent and dependent on the initial 
conditions.  The correct interpretation and summarization of such data will depend on how well 
such additional biological context is being captured. Since experimentally obtained data often 
provides higher strengths of evidence, the quality control in GTL experimental facilities will be 
even more important. For example, in order to reduce erroneous information it will be extremely 
critical for GTL experimental facilities to have analysis tools for robust statistical validation of 
identified protein complexes as the ones existing in the cell rather than artifacts of the purification 
and separation procedures. Likewise, routine checks for completeness of the “complexome” 
coverage will be needed in order to minimize the amount of incomplete information. Especially 
problematic could be the experiments capturing transient complexes corresponding to the weak 
binding between subunits but constituting critically important regulatory pathways in the cell.    
 
The workshop emphasized that databases and experimental data repositories should be designed 
with data quality control in mind. They should include: 
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• Data provenance or the history of the origin and ownership of data. 
• The thorough collection of “meta-data” that describes the data itself with a wide range of 

attributes that must be tracked (e.g., cell type, position in the cell cycle, growth 
conditions, or computational tools and parameters used) in order to accurately evaluate 
the experimental or computationally derived data. 

• Evidence attribution including source and strengths of evidence (e.g., experimentally 
verified vs. computationally predicted, statistical significance of predictions). 

• Automated and manual data annotation and curation as well as systematic detection and 
correction of annotation errors by local and remote experts. 

• Every sequenced organism central to a DOE mission have a Model Organism Database 
(MOD). MODS are powerful platforms for global analysis of an organism. 

 
Data Analysis Infrastructure   
 
The GTL Program promises to create innovative technologies for high-throughput production of 
biological data at a rate that will outpace that of any program currently under way. We expect 
GTL to embark on interesting experiments for 1000’s of organisms by 2008. Global proteomics is 
currently generating ~1.0 terabytes (or 1012 bytes) a day and scaling up now with 5-10 fold 
increases per year. This data is not only massive but also very complex. It spans many levels of 
scale and dimensionality, including genome sequences, protein structures, protein-protein 
interactions, and metabolic and regulatory networks. The strategic problem is to make biological 
sense of this data. Current applications allow, at best, data acquisition and cataloguing by 
organizing the data dump into a tidier pile. However, this does not solve the problem. There is a 
strong need for “smart” data analysis and modelling tools that will enable the transformation from 
data through information to knowledge. 
 
 

 
 
There remain significant research challenges in systematic incorporation of different data types 
into the analysis in order to construct predictive models of microbial organisms.  For example, 
putative functional sites retrieved using the patterns extracted from motif databases can be false 
positive. Given the few positions involved in a pattern, the statistical significance of a match can 
be also low. It is often the case, that additional “context” including a protein structure, protein 
family, or protein function can be utilized to further filter out such false positive predictions. 
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Therefore, an appropriate “fusion” of various types of data can have significant impact on 
accomplishing the stated goals of the GTL program.  

The data analysis infrastructure should promote compute-experiment cycles. Performing 
experiments in silico will offer a clear benefit to complement experimental laboratory methods by 
providing fast and inexpensive initial analysis to guide further experimentation. In addition to 
high-sensitivity analytical tools for interpreting experimental data, there is a strong need for 
developing experience-based systems for predicting optimal experimental design strategies. 

The participants concluded that there is a need to develop the next-generation algorithms and 
tools that will allow biologists to derive inferences from massive amounts of complex, 
heterogeneous, and distributed biological data. Specifically, there is a need for: 

• Developing data analysis and interpretation systems that will provide inference 
capabilities for establishing relationships across data sources generated by the GTL 
Program (genomic sequence, gene/protein expression, protein-protein interactions, 
protein structures and complex structures, and biological pathways) leading to new 
scientific discoveries. 

• Creating computational tools and capabilities to assimilate, understand, and model the 
data on the scale and complexity of real living systems, to build a dynamic knowledge 
base from this information. 

• Enabling distributed analysis of ever-increasing databases of diverse biological data for 
inclusion into simulations models. 

• Developing algorithms for integration of noisy, incomplete, and inconsistent data from 
heterogeneous sources to comprehensively characterize "cellular working parts”. 

• Evaluating and optimizing the performance of computer-intensive data analysis 
algorithms so that the targeted computer codes may achieve higher percent of peak on 
systems such as Cray X1 and clusters. Then making these optimized tools available to the 
broader biological community. 

Workflow Environments for Data Collection 
 
The workflow environments should be seen as open extensions to LIMS systems that will be 
integrated with robotic equipment to capture data in real-time and direct instrument workflow.  
High-end automation of all steps will be required to reduce experimental costs and to make all 
data available in real-time to GTL researchers, and the scientific community. There is a strong 
need in developing a workflow-based environment that will provide the flexibility and generality 
required to run the complex synchronous and asynchronous scientific experiments and analyses 
for the GTL activities. There are several requirements imposed on the development of such 
workflows: 
 
• They should provide fast prototyping capabilities via various interfaces including GUI based, 

flow chart formulations like OpenDX or Labview, combined with data mining algorithms 
embedded to a programming language like Perl but easier to use by biologists. 

• Unlike traditional “web services” environments, they should work more effectively in the 
type of computational environment envisioned for GTL such as web services plus local data 
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plus local parallel and sequential computing plus production level reliability and fault-
tolerance. 

• Workflow definition languages should be expressive enough to meet the needs of GTL data 
acquisition and analysis processing. Relative merits of different ways of expressing the 
applications within analysis pipelines should be investigated. Specifically, the trade-offs in 
terms of implementation, performance, fault-tolerance, and flexibility should be assessed for 
different forms of workflow components including (local or remote) web services, data 
transformation services, locally invoked “wrapped” executables, or components in the sense 
of a component model, such as the Common Component Architecture (CCA). 

 
The development of such workflow capabilities should be done in close collaboration with 
biologists and computer scientists in order to understand and define workflow and to capture the 
ways the biologists approach the problems. 
 
Transparent Access to Data and Computational Resources. 
 

The Internet is by far the most preferred method for disseminating biological data. The 
informational interface is crucial for the relevance of the GTL activities to DOE and the national 
scientific agenda. By definition the GTL Program will have many users (including remote users) 
with diverse needs. For example, some academic researchers will be interested only in protein 
complexes related to particular metabolic pathways, while others may be interested in groups of 
pathways, or complexes that show elevated expression level under certain conditions. Users will 
not be interested in, and will not be able to handle, the enormous flow of raw data produced by 
GTL. Therefore, a wide array of bioinformatics tools will have to be deployed to process, filter, 
and present data according to the user’s needs. In some cases, the computational post processing 
requirements will be quite extensive. As mentioned above, sophisticated semantic and context 
support will be required.  
 
Thus, the accessibility and high quality presentation of all available biological data to the end-
user will be critical to GTL’s success. User-friendly interfaces are needed that will allow 
biologists to effectively access and manipulate the vast amount of data at their disposal. Along 
with a user-friendly interface, the biologist needs to know the intrinsic quality of the data (i.e., 
provenance, completeness, noise). Hence, the integration of front-end interfaces with data quality 
control engines must be supported.  
 
Combining visualization and data mining for powerful exploratory and pattern recognition 
capability. Case study: Combining visualization and data mining applied to mass spectrometer 
proteomic data used for early cancer detection in collaboration with NIH and NCI. 
 
Collaboratories and computational grids collect resources under a common set of middleware. 
The details of specific distributed resources are not apparent. Biology already has grids that come 
from a natural method of scientific investigation (i.e., inference from many data sources and 
analyses). However, the biology community neglected to use computer science terminology for 
this environment. An explicit GTL grid would encompass data and computational resources as 
well as collaboration technologies. Common technologies would enable annotation jamborees 
and other intensely interactive and computer-enabled biological investigations without scientists 
having to be physically at one site. A GTL grid would include several experimental devices, such 
as mass spectrometers, NMR systems, light and neutron sources, and other experimental 
facilities. This grid would tightly couple the experimentalists with computational experts and 
resources.  
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Data Infrastructure Workshop Conclusions 
Technically, GTL will need a flexible data framework because biology is moving at a fast pace. 
The types of data will be determined by experiments and also will impact infrastructure 
requirements. For this reason, the data-analysis and -storage strategies should be allowed to 
evolve over time in an organized and timely way.  
 
There were a number of common issues that surfaced in the presentations and subsequent 
discussions. Most prominent were the issues of data integration, data mining, derivation of 
knowledge from diverse data sources, data management, and challenges associated with data 
quality, statistical analysis, variability of assays, and, in general, data-set reproducibility.  
 
An important step is to address and resolve serious issues concerning data resources and access 
methods. The current state of the art for biology is less than desirable. There are a myriad of data 
silos and a few monolithic, asymmetric cross-references. A consequence of this poor data 
integration is the propagation of spurious information in databases. Many data resources have 
limited, idiosyncratic querying capabilities that are designed mostly for browsing human data. 
There is a lack of accepted standards for defining, querying, and transmitting common data 
objects nor are there effective strategies for discouraging data hoarding (delayed releases of data 
are not uncommon). Ultimately, the success of GTL will be judged by how well the program is 
accepted and serves groups within DOE and, just as importantly, the broader life sciences 
community. To achieve this success, the GTL program needs a new paradigm on data ownership 
in which the data is openly available. 

 
Scaling is a huge challenge for GTL, but scaling of data volume is only one part of the problem. 
An equally difficult challenge will be the seamless integration of such data resources as genomic 
sequence, protein analysis, genomic and protein expression arrays, and pathway information. 
Accomplishing the scaling among multiple laboratories will be even harder. Integration in the 
field of genomics is historically spotty at best, and GTL will bring in different disciplines, each 
with its own agenda.   
 
GTL needs to be more than the sum of independent, lab-centric projects bolted together. DOE 
could impact significantly a set of interoperability standards for the biology community. GTL’s 
chances for success will be seriously compromised if its informatics and computational biology 
infrastructure is not treated as a first-class component of the program from the beginning.  
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Introduction 
Biological modeling and simulation are key to the next phase of Genomes to Life (GTL). Most 
dynamic features and of metabolomics and protein interactions within microbes are impossible to 
measure experimentally today. Modeling and simulation offer the potential to explain both 
experimental observations as well as help guide future experiments. Experiments in turn help 
validate the simulated models in a symbiotic cycle of computation and experiment. Because of its 
leadership in biological and computational science and its vast computational infrastructure, the 
U.S. Department of Energy (DOE) is uniquely positioned to make fundamental contributions to 
modern cellular biology.  But a focused research effort is an essential step toward accomplishing 
the goals of the Genomes to Life program.  
 
To help identify and characterize this research effort, a workshop supported by DOE’s Office of 
Advanced Scientific Computing Research and Office of Biological and Environmental Research 
was held in Gaithersburg, Maryland on July 23, 2003. The workshop focused on the defining the 
modeling and simulation needs for the next phase of the GTL program in sufficient detail to guide 
R&D activities. The main objectives of the modeling and simulation workshop were to: 
• Provide a clear definition of how modeling and simulation relate to experimental data generated 

by genomics, proteomics, and metabolomics. The connection to biological relevance and 
integration of the modeling and simulation with experiment are important. There need to be 
well characterized experimental data sets that can drive modeling and simulation benchmarking 

• Discuss potential benchmark paradigm problems that could lead to sufficient detail of the 
specific mathematical and computational problems to be addressed. And discuss metrics for 
models linked to experimental data. Of particular interest will be those biologically relevant 
modeling and simulation problems that drive efficient use of tera-scale computer systems. 

• Provide a clear definition of the role for high-performance ultra-scale computing. 
 
Uses of Modeling and Simulation to Accomplish GTL’s Goals 
Participants gave the following recommendations for areas in which DOE needs to invest to 
accomplish its GTL goals.  
 
Molecular simulations of protein function and macromolecular interactions  
 
Molecular simulations of protein function are necessary in many situations where direct 
observations are difficult or impossible. Typical simulations of cellular biochemistry require 
substantial input of protein behavior, some of which is difficult to obtain experimentally. For 
example, the binding and unbinding rates of proteins in complexes can affect the more 
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“important” functions of those complexes, such as signal transduction.  The alternatives seem to 
be to develop new experimental technologies, exploit old experimental technologies more 
thoroughly, and to develop molecular dynamics simulations to try to avoid the experimental 
avenue. 
 
Simulation and modeling of cellular biochemistry  
 
Modeling of cellular biochemistry will increasingly involve accurate, or at least plausible, models 
of cellular structures, volumes, and gross mechanics.  This increasingly important spatial 
component has concomitant visualization needs and opportunities.  Just constructing a large-scale 
simulation with complex spatial structures demands flexible visualization tools, while the value 
of powerful visualization tools in analyzing results of such simulations has already been 
established.  This is another area where the computational strengths and expertise of the National 
Laboratories can be applied, both by making high-performance software available and by 
providing computational infrastructure for its actual use in extremely large-scale applications. 
    
Development of better qualitative methods  
 
Tools in this category prove their worth daily in biology and should not be overlooked by the 
GTL program simply because they may not seem like simulation or even, in the conventional 
sense, “applied math.” Some of these tools, such as hidden Markov models, offer built-in 
inferential capabilities. Their application to system behavior, as exemplified in the theory of 
qualitative ODEs and dynamic Bayesian networks, are again modeling technologies that are in 
their infancy, compared to simulation technologies of high-energy physics, or compared with 
their current use in sequence analysis.  These modeling techniques present an opportunity for 
applying DOE expertise that should not be neglected because of their unorthodox modeling 
approaches. 
 
Summary of Talks and Discussions  
There’s a flood of experimental data being generated; however, there’s a paucity of data that can 
be used with the existing modeling methods. There’s a mismatch between the experiment needs 
or design approaches by modelers versus biologists. For example, Yeast now have >20,000 
measured protein-protein, protein-DNA, protein-small molecule interactions. Similar networks 
will soon be available for a variety of bacteria and the worm, fly, mouse, and human. There is a 
pressing need for computational models and tools able to integrate molecular interaction networks 
with molecular states on a cellular scale. 
 
Simulation-driven experimentation is missing. Mathematical models are needed that are 
ultimately developed from fundamental biological principles. These models must be tested and 
verified through integrated wet lab experimentation using multiple analytical methods and based 
on well-characterized statistical designs. Presently there is a lack of data to validate models and 
simulations and a lack of whole genome/proteome data to construct large-scale models. Most 
existing models are for small-gene or protein systems. 
 
It’s still a significant challenge to infer regulatory networks from metabolites, expression data, or 
protein-protein interactions. Modeling integration frameworks that allow multiple cellular system 
models to be easily combined into a single simulation are critically needed. 
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The participants suggested that a competition similar to Critical Assessment of Protein Structure 
Prediction (CASP) but focused on the computational challenges faced by the Genomes to Life 
program would inspire the community and provide metrics for success. 
 
A number of tools were identified as critical to the next phase of GTL and that support for their 
development should be established. There is the need for analysis tools that test the coherency of 
disparate bodies of data.  Network inference tools because most of the problems of concern will 
come down to modeling the interactions of a number of different interacting species. 
Visualization tools since good visualization tools allow experts in biology to find patterns or 
artifacts in the large data sets not easily detected other ways. Development of modeling and 
simulation toolkits and libraries would provide a means of integrating and distributing these and 
other tools needed within the GTL facilities and across the GTL program. 
 
Many of today’s molecular biophysics simulations are limited by the quality of the force fields. 
Research is needed in the creation of high-quality force fields for biophysics simulations. Multi-
scale mathematical research on a wide range of dynamical systems both spatial and temporal is 
needed. This finding concurs with recommendation from the GTL Report on the Mathematics 
Workshop, March 18 and 19, 2002.  
 
 
General Infrastructure needs identified in the Modeling and Simulation workshop. 
 
The participants identified a number of needs common across the GTL community and vital to 
exploring biology problems. As such there solution was suggested to be one of the highest 
priority efforts for DOE. There is a need for new types of databases (both hardware and operating 
system) that can accommodate large data volumes and high schema complexity and rapid query 
retrieval. Along with this research is needed on new scalable storage hardware/software systems 
that can accommodate petabyte-scale data volumes and provide rapid analysis, data query, and 
retrieval. With rapid retrieval will come the need for environments for large-scale data analysis 
on clusters and massively parallel programming technology for tools, libraries, and repositories. 
Support is needed for the development of re-usable component/middleware for analysis codes. 
One computational challenge of reverse engineering is to rigorously solve a network model that 
best matches known data/knowledge of the biology modeled. Data mining is an essential first step 
in solving the reverse engineering problem.  Much existing information is hidden in the often-
noisy, incomplete, and sometimes conflicting data. Computational prediction/modeling and data 
collection through experiments should be one integrated process; computation should be a key 
driver for designing experiments. 
 
Networking and computing hardware are also required across the community. Robust network 
technologies are needed to support GTL facility-oriented community access, analysis, and 
archival activities. Stable computing power (i.e., in a production-oriented environment) is needed 
to run long time-scale biological simulations as well as real-time experiment drivers that the GTL 
facilities will require.  
 
Recommendations from the modeling and simulation workshop 
The modeling and simulation workshop participants identified infrastructure needs that span the 
entire GTL community as well as some needs specific to GTL modeling and simulation. They 
recommended support for the following actions:  
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• Support and develop plans for storage, community access, and analysis of the sometimes-vast 
amounts of GTL facility-oriented experimental data produced by a variety of high-throughput 
technologies. To this, we will gradually have to add similar data coming from simulations, 
and we will have to develop analyses that test the coherency of disparate bodies of data. 

• Establish stable, production-oriented high-performance computing capabilities for long time-
scale modeling and simulation computational experiments. 

• Mathematical models are needed that are ultimately developed from fundamental biological 
principles and incorporate the above analyses for whole cell simulation uniting genomics, 
proteomics, and metabolomics complexity. It’s advanced computing and systems biology 
facilities and expertise put DOE in a unique position to help develop new modeling and 
simulation theory and to implement it in ways that leverage some of the world’s most 
powerful computers. 

• These models must be tested and verified through integrated wet lab experimentation using 
multiple analytical methods and based on well-characterized statistical designs. A specific 
call for model/simulation-driven experimentation is needed. 

• Develop algorithms for scalable stiff/differential-algebraic integrators, multi-objective 
constrained optimization, and multi-parameter bifurcation and sensitivity analysis, statistical 
graph models, stochastic optimization, and computationally intensive operations. 

• Research on model analysis methods including model abstraction, version management, 
model transport, reduction, parametric sensitivity, and parameter development using 
collaborative data filtering for data constraints: large matrix manipulation, optimization. 

• Develop plans for establishing a modeling and simulation infrastructure centered on 
metabolism both for improved understanding and engineering of metabolic systems.  

• Support development of hybrid simulation systems that would integrate methods for mixed 
deterministic and stochastic, mixed discrete and continuous, and mixed differential and 
algebraic, or mixed-scale simulations. 

• Establish working groups to define modeling and simulation data and experimentation 
requirements for validation equivalent to a CASP competition for systems biology. 
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Introduction  
Prediction of three-dimensional structures of proteins from their amino acid sequences via 
computational methods is a well-studied problem in modern computational biology. This is due 
not only to the problem’s technical challenge, but more significantly, to its importance. Protein 
and protein complexes are the biological machinery which carry-out the biological functions in a 
cell; understanding the functional mechanisms of biological activity requires knowing the 
fundamental atomic structure and dynamic behavior of proteins and complexes dynamic 
behavior. Ultimately a protein’s structure provides much more functional information then its 
amino acid sequence. 
 
The arrival of high throughput genomic sequencing has led to an explosion of genomic 
information yet experimental methods for solving protein structures; including x-ray 
crystallography or NMR, remain slow and expensive. Furthermore, many proteins are expressed 
at very low rates making them difficult to obtain in experimentally useful quantifies. Other 
proteins are difficult to crystallize (a requirement for x-ray crystallography methods) due to their 
physical-chemical attributes (e.g., low solubility) associated with their function. For example, 
membrane proteins are largely insoluble yet are thought to comprise 30% of all proteins! Such 
limitations also often apply to protein complexes; thus experimentally resolving the structure of a 
single protein complex often requires many months of work. Finally, microbial genomes can now 
be sequenced and annotated within days providing the amino acid sequences of a microbe’s 
proteome yet establishing functional annotation of the proteome as a key bottleneck in high 
throughput microbial biology. 
 
In meantime, computational protein structure prediction has become increasingly powerful with 
the availability of an increasingly large number of solved protein structures (due to the successes 
of experimental methods) as well as the realization that in nature, the number of unique structural 
folds is quite small compared to the number of proteins. Thus, many proteins can be accurately 
modeled based on homologous structures via threading or homology modeling technique and the 
potential applicability of such techniques is estimated to be as high as 50-60% of all proteins in a 
newly sequenced microbial genome. Furthermore, computationally predicted structures lower in 
resolution than experimental measurements have significant utility, e.g. to suggest protein 
functions and mechanisms or for genome-scale annotation work. More accurate structure 
predictions, on the other hand, provide the basis for protein complex structure prediction and 
understanding of dynamics of the protein complexes. 
 
For all of these reasons, computational methods of predicting protein structure are widely seen to 
hold the most promise for estimating the structure of most proteins in all genomes at various 
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levels of resolution. However significant new mathematical, computer science, and high end 
computing tools and capabilities are needed to enable these methods to realize their potential. 
More specifically, computational structural genomics presents a class of challenging 
computational problems involving searching an enormous conformational space. High 
performance computing, sophisticated new algorithms, and parallel implementations are key to 
address these challenging problems. For these reasons, the US Department of Energy (DOE), 
with its collection of high performance computing facilities, will play a key and unique role in 
addressing the challenging issues of computational prediction and modeling of protein/complex 
structures, especially for the proteomes of microbes with relevance to DOE’s missions in energy 
production, global climate change mitigation, and environmental cleanup. 
 
The State of the Art 
Computational prediction/characterization of protein structures and complexes can be classified 
into the following categories: 1) predicting the structure of individual proteins, 2) predicting the 
structure of protein complexes, and 3) and understanding the dynamics protein complexes. While 
protein structure prediction provides a foundation for all three, understanding the dynamic 
behavior of protein complexes is key to understanding their functions and fundamental 
mechanisms and often employs methods drawn from computational molecular 
biophysics/biochemistry. 
 
In general, computational methods for elucidating molecular structure and processes can be 
classified into three major categories depending on the similarity of the target (the protein for 
which a structure is desired) to proteins with known structure: 1) comparative modeling, 2) 
threading, and (3) de novo or ab initio structure prediction. Because these methods have varying 
levels of computational complexity, their boundaries are becoming become more and more 
blurred as each class of methods employs techniques and ideas from other classes, ultimately 
yielding hybrid methods. 
 
Comparative modeling involves carrying out sequence alignment between the target protein and 
one or more other template proteins or proteins with known structure. The three-dimensional 
structure for the target protein is then constructed from the coordinates of the template protein. 
For regions where there is little or no overlap or gaps in the sequence alignment, coordinates are 
obtained from other models. Statistical analysis has shown that comparative modeling can 
provide reliable atomic coordinates with a low root mean square deviation (rmsd) from a high-
quality experimentally obtained structure for about 20% of all proteins in a genome. Furthermore, 
in analyses of the fourth community-wide Critical Assessment of Protein Structure Prediction 
(CASP), Moult et al. (1) and Schonbron et al. (2) observe that the key element to the success of 
comparative modeling is sequence alignment: “loop modeling and further refinement are futile 
without a reasonably accurate initial alignment.” In addition, multiple sequence alignment and 
using multiple proteins as templates for different regions of the target sequence may improve 
results but interestingly, using molecular dynamics or molecular mechanics to refine structures 
predicted by comparative methods has often increased, rather than decreased, the rmsd from the 
experimentally-derived structure. Most agree that a systematic investigation is needed to obtain 
fundamental insight as to why this is true and thus suggest methods for how comparative 
modeling can be improved. Finally, and perhaps most telling, comparative modeling still 
generally predicts structures which are closer to the best available template used for the sequence 
alignment than the experimentally-derived structure. In other words, in most cases, the rmsd 
between a structure predicted by comparative modeling and the experimentally-derived structure 
is larger than that between the comparative modeling prediction and the best available template.  
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In threading a suitable fold from a library of structures is employed as the query sequence 
yielding an alignment between the query protein and the fold. This class of methods is currently 
applicable to some 50-70% of all proteins as long as a protein has a structural homolog and 
analog in the space of known proteins. For this reason, to date, threading has been mainly useful 
for identifying structural folds and predicting backbone structures. 
 
Unlike homology modeling and threading, both of which rely on a known structure template, ab 
initio structure prediction involves predicting structure utilizing physical principles of protein 
structure. The key advantage of this approach is that it does not require a structural template for a 
whole protein, making it broadly applicable. However, because ab initio methods are 
computationally demanding, many recent ab initio approaches use knowledge-based methods in 
combination with high quality force fields. For example, one can use the alignment derived from 
fold recognition in comparative modeling, or assemble partial structures predicted by threading 
before applying ab initio methods. Such combinations currently comprise the primary successes 
of ab inito methods.  
 
Finally, understanding the dynamics of protein complexes is essential for specific phenomena 
such as protein self-assembly, protein-protein interactions or docking, and understanding how 
molecular machines work. The state-of-the art in developing and applying computational methods 
to address these challenges varies greatly with the specific challenge. For example, computational 
methods applied to protein docking can be classified as one of two approaches: rigid-body 
docking and flexible docking, depending on whether or not the models allow the docking regions 
of the proteins to move or flex during the docking process. While it is well-known that the 
conformations of docking proteins can experience significant conformational changes, 
particularly at the docking interface, capturing such molecular phenomena is computationally 
expensive, hence the usefulness of rigid docking. However, while rigid docking has reached some 
level of maturity for practical applications, not does flexible docking remains largely beyond our 
reach, but an increasing amount of data points to flexible docking as the underlying mechanism 
for important and fundamental cellular processes such as signaling. Meanwhile, like the protein 
structure prediction problem, hybrid methods continue to emerge as potentially useful approaches 
to the flexible docking problem such as using sequence-based structure predictions for the 
protein-interaction surfaces followed by molecular models of the flexible docking process, much 
like the of comparative modeling followed by ab initio refinement for protein structure 
prediction. 
 
Goals & Challenges 
The workshop participants discussed the technical challenges to computational protein structure 
determination and worked to identify specific goals. The challenges and goals were grouped into 
three categories depending on their drivers: 1) those driven by biology issues, 2) those driven by 
math and computing science (computer science, computational science, and high performance 
computing) issues, and 3) those driven by other issues. 
 
Biology-Driven Challenges and Goals 
 
During the course of the workshop, two specific metrics were advanced, “successful” methods be 
should able to: 

1. predict structures with 2A rmsd for proteins with 200 residues given 40% amino acid 
alignment with proteins in the database, and 

2. correctly predicted contacts and hydrogen bonds. 
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In addition, seven specific challenges were identified: 
1. Accurate Predictions of Protein Backbone Structures: The fundamental challenges 

identified for predicting backbone structures were the percentage of correctly predicted 
contacts and hydrogen bonds, especially given the lack of adequate sequence alignment. 

2. Membrane Proteins: Experimentally obtaining the structure of membrane proteins is 
very challenging, given the difficulty of crystallizing them. Furthermore, not only due 
membrane proteins play significant roles in important cellular processes (e.g., cell 
signaling), they are thought to comprise some 30% of the proteome of any given cell. For 
these reasons, computational and experimental (e.g., solid state NMR, optical approaches, 
etc.) methods are needed for a variety of applications beyond predicting structure and 
understanding dynamic molecular processes. Examples of such needs include predicting 
membrane type from a membrane protein’s amino acid sequence and elucidating a 
membrane protein’s location in and orientation to the membrane, once again subject to 
the two identified performance metrics discussed above. 

3. “Refining Refinement” or Force-Field Development: The intuitively appealing 
approach of employing more substantial and/or more accurate molecular information to 
improve results is still evolving. Ultimately, the general goal of “40% amino acid 
sequence alignment is sufficient for 2A rmsd for proteins with 200 residues or less,” was 
advanced as the ultimate metric for success in the improvement of refinement methods. 
However, one shorter term metric was advanced as well, “refinement uniformly improves 
the results of coarse-grained models.” Finally, it was agreed that refinement methods 
should be able to accurately predict the thermodynamics of model systems. 

4. Obtaining and Coupling With Needed Experimental Data: The success of 
computational methods could be significantly enhanced with the availability of more and 
varied types of experimental data such as NMR or cryo-EM. Once again, the ultimate 
usefulness of such data should be judged in the context of the two performance metrics. 

5. Protein Assembly/Docking/Molecular Machines: This broad category of challenges 
was identified to capture the essential need for employing computational methods to 
accurately predict biological function and yield fundamental mechanistic understanding 
these molecular processes. 

6. Functional Annotation or Exploiting Evolutionary Relationships was seen as a 
challenge in terms of the current levels of confidence in the predictions of such methods. 

7. Exploiting Peptides Toward the Prediction of Function and Potential Binding Sites 
was identified as an essential goal for computational methods to enable the successful 
development of high throughput experimental proteomics methods where the 
identification of associations is a key requirement. 

 
Math & Computing Science 
 
Six specific math and computing science issues were identified: 

1. Global Optimization, Sampling, and Statistics were identified as a broad area needing 
additional investigation. Examples of needed work put forth included mathematical 
proofs for discrete representations of model systems and a single performance metric was 
discussed, “random starting conditions give uniform results (reproducibility).” 

2. Force-fields, Including the Incorporation of Polarizability were seen as a significant 
need with the ultimate success metric of “parameterizing a new force-field on 20 residue 
proteins gives ‘correct’ results,” with ‘correct’ quantified not only in terms of the two 
performance metrics discussed in the previous section but also the correct prediction of 
secondary structure. Workshop participants agreed that the development and 
implementation of new force-fields would require tackling significant math and 
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computing science issues ranging from mathematical methods to parallel 
implementations. 

3. Incorporating Experimental Data, Knowledge-Based Methods was seen not only as a 
biology-driven challenge but also a math and computing science challenge, primarily due 
to the challenges of integrating methods employing significantly different algorithms and 
approaches. Once again, the performance metrics identified for the biology-drive 
challenges were seen to be appropriate for judging progress in this area. 

4. Algorithm Development and  
5. Simulation Methods/Parallel Implementations were advanced as a math and 

computing science challenge, primarily in the context of developing new models methods 
as well as suitable mathematical representations. Such approaches are likely to range 
from knowledge-based protein structure prediction methods to computationally-intense 
models employing detailed physical and chemical descriptions and data as well as 
combinations. 

6. Domain Parsing (e.g., Large Proteins), as defined by the need for handling multiple 
domains within single large proteins was seen as posing significant math and computing 
science challenges. This is due to challenges: 1) precipitating a “starting point” for 
modular structures that CAN be folded, ultimately enabling a “divide & conquer” 
approach to structure prediction for large proteins, and 2) using experimental data to 
prioritize modular determination. 

 
Additional Challenges to Computational Protein Structure Prediction 
 
Finally, seven additional challenges were identified which fall outside the definitions of “biology-
driven” and “math and computing science-driven.” All were viewed to be issues relative to the 
application of computational tools to science and engineering challenges well beyond biology. As 
such, these challenges were left to other venues for further discussion. 

1. Assessing Model Quality or Confidence,  
2. Methods Verification, 
3. Open Source Software Development Practices, 
4. The Implications of New Algorithms to High Performance Computing Hardware 

Architectures, 
5. Operating Systems Issues (e.g., job submissions, parallel I/O, etc.),  
6. Communication Needs Within the Research Community, and 
7. Code Portability. 
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July 23, 2003 Modeling and Simulation Workshop 
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Appendix B  Agendas 
 
 

July 22, 2003 Data Infrastructure Workshop 
 
 
Tuesday, July 22, 2003 
   8:30      Welcome, Introductions, and Mission of the Workshop (Gary Johnson)  
   8:45      Where we are today, previous meetings, and proposed GTL facilities (Al Geist) 
   9:30      Open discussion of state of the art and potential near term goals for the  

   community in GTL data infrastructure 
10:00    Break  
10:30    Half the participants present their vision of the key data issues for GTL  

   and describe how it complements, adds to, or contradicts the discussion  
         so far (5 minutes each)  
         Each followed by short discussion by attendees (5 minutes)  
 
12:00    Working Lunch  
 
1:00      Second half of participants present  
2:30      Summarize key points made by the participants  
3:00      Break  
3:30      Discuss the creation of whitepaper incorporating the results of the workshop  
5:00      End  
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July 23, 2003 Simulation and Modeling Workshop 
 
Wednesday, July 23, 2003 
 
  8:00 Continental Breakfast 
  8:30  Welcome, Introductions, and Workshop Goals   
  8:45  Summary of Genomes to Life Program   
  9:15  Biological drivers for modeling and simulation   
  9:45   Roundtable discussion of state of the art and potential near term goals for GTL 

modeling and simulation    
10:30  Break   
10:45  Participants present their single slide on their vision of the key modeling and 

simulation issues for GTL.Each followed by short discussion by attendees 
12:00  Working Lunch (provided)   
  1:00  Continued one slide presentations   
  2:30  Summary of key points made by the participants   
  3:00  Break   
  3:30   Discussion of process for development of workshop report, assignments for workshop 

participants    
  5:00       Adjourn 
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July 24, 2003 Computational Protein Structure Prediction Workshop 
 
Thursday, July 24, 2003 
 
7:30  Continental Breakfast   
8:00  Welcome, Introductions, and Mission of the Workshop  
8:15  Overview of the GTL Program and Four Proposed Facilities  
8:30  Computational Protein Structure Prediction: An Overview 
9:00  Discussion 
9:30  Break   
9:45  Single slides: visions & discussions of the key technical challenges of computational 

protein structure prediction for GTL  
11:45  Lunch   
12:15  Single slides: visions & discussions of the key technical challenges of computational 

protein structure prediction for GTL 
2:00  Summary of key points made by the participants   
2:30  Break   
3:00  Discuss the creation of whitepaper incorporating the results of the workshop 
4:00        Adjourn 
 


