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ABSTRACT

Yttrium calcium oxyborate (YCOB) is a newly developed nonlinear optical crystal used 
for second harmonic generation in the Mercury laser. As with any new crystal, optical 
characterization of the material properties needs to be fully investigated. We are 
developing two new techniques to detect inclusions and measure optical absorption. With 
the side illuminating detection examination (SIDE) method, we hope to identify and map 
the size, density, and the morphology of inclusions. The multi-pass absorption technique 
(MPAT) will be used to help determine the absorption coefficient of various finished 
crystalline pieces at near-infrared wavelengths. 

I. INTRODUCTION

The National Ignition Facility (NIF) plays an important role in the future of fusion 
energy.  NIF will be able to demonstrate energy gain and fusion ignition with 192 laser 
beams directed towards a target about the size of a BB. While NIF will demonstrate the 
science of fusion ignition, the Mercury laser showcases the next generation of laser 
technology that will enable commercialization of fusion energy production. It is designed 
as a high average power repetitively pulsed diode-pumped solid-state laser. The goal is to 
produce 100-J, 5-10 ns pulses at 10 Hz at wavelength of 1047 nm.  The Mercury laser is a 
prototype of a potential inertial confinement fusion (ICF) power plant driver. Within the 
Mercury laser, frequency conversion plays an intricate role in producing the ideal laser 
wavelength output. YCOB or DKDP crystals are used to achieve high average power 
second harmonic generation (SHG). YCOB crystals are ideal for frequency conversion 
because they have a low optical absorption, high nonlinear coupling (3x), and high 
thermal conductivity (3x) compared to DKDP.  The crystals are grown with the 
Czochralski method temperatures above 1500°C. The manufacturer, Crystal Photonics, 
has gradually been improving the quality of the crystals by changing the stoichiometry, 
rotation rate and the pulling rate. Qualitative observation of YCOB crystals has identified 
inclusions (1-10 microns diameter) that appear throughout the boule. Using the SIDE 
method, we hope to measure the size, density, and morphology of the inclusions. Using 
these measurements and knowledge of the existing growth conditions, Crystal Photonics 
can adjust the crystal growth parameters to reduce the number and size of the inclusions 
in the YCOB crystals.  MPAT will be used to measure the absorption of a variety of 
crystals at different wavelengths. Although there are other techniques to measure small 
optical absorption, we hope to verify that this technique will improve the accuracy and 
consistency of existing measurements.
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II. THEORY

2.1 SIDE

The SIDE method uses dark field microscopy to detect the inclusions. The fixture holding 
the crystals has LED light coming into one edge of the crystal, there are three mirrors 
positioned on the three other sides of the mount (See figure 1). Since the diode light is 
propagating transversely across the crystal bulk, only light scattered from defects such as 
scratches and inclusions, will be redirected out of the plane of propagation and onto the 
detector.  

Figure 1. Schematic of the SIDE apparatus.

2.2 MPAT

The MPAT is used to measure the absorption coefficient of different crystals. The 
increased optical path length increases the absorption signal so that even a crystal with a 
small absorption coefficient can be measured accurately. The setup consists of a 
collimated laser, three mirrors, a Faraday isolator, and a detector.  As seen in Figure 2, 
the collimated beam will travel through the Faraday isolator, towards two parallel six 
inch mirrors.  The laser light will make multiple passes between the mirrors. The beam 
will come out of the parallel mirrors and is retro-reflected through a third mirror back to 
the polarizer.  It will then be directed to the detector by the polarizer where a 
measurement will be made.  A measurement will be taken with and with out the test part 
in-between the mirrors at Brewster’s angle, giving a measurement of the differential loss.
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Figure 2. MPAT setup.  The test samples are 1.5 cm by 6 cm. 

MPAT relies on measuring the difference of the returned signal with and without 
the test part. It assumes that the return signal is reduced exclusively from absorption of 
the light multi-passed through the test part. As a result, the test part must be well polished 
in order to minimize surface scattering. Furthermore, the light must be s-polarized and 
the test part should be rotated at Brewster’s angle 
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The measurement with and without the crystal will help eliminate errors (mirror loss as a 
example) within the system. Calculations to determine the amount of spacing between the 
mirrors and the angle at which the beam must come in order to have sufficient passes 
between the two mirrors were made in preparation for the setup.  The crystal has a higher 
index of refraction than air, therefore when the light enters the crystal it is bent towards 
the normal. This causes a slight displacement, which needs to be accounted for when 
calculating the number of passes that can be achieved. As seen in Figure 3, the original 
length z is shortened to z` because of the displacement. To calculate z` three components 
are involved, 

32` zzdz ++= . [2]
Mirror spacing, s and test part thickness, T are related by (See Figure 3b)

Ts
zz

i −
+

= 32)tan(θ . [3]



4

Figure 3. Shows the path that a beam takes while entering and exiting a higher and 
lower index of refraction.

where θi is the angle of incident.  The displacement d is calculate using the angle of 
incident inside the crystal, θc

T
d

c =θtan .    [4]

The number of passes M, is related the mirror size, B and z` by, 
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Combining the equations [2]-[5] produces
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Solving for θi along with Snell’s law gives us the equation
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where n1 and n2 are the index of refractions of air and the test part respectively.  The final 
equation was solved in Matlab, making the number of passes and the mirror spacing 
parameters to calculate the angle of incidence. The results were used to help setup the 
system as shown in Figure 4.  
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Figure 4. This graph shows the amount of spacing and the angle of incidence needed to 
achieve 18 bounces without a crystal in position.

To calculate the absorption, the optical path length first needs to be calculated. 
The equation for a single-pass optical path length is 

)]/(sincos[sin/ 2
1 ntL iθ−= , [8]

where L is the optical path length and α is the absorption coefficient.  

III. DATA

3.1 SIDE

The original apparatus is made of white Teflon but this decreases the contrast. Black 
electrical tape was placed on the back surface to help eliminate reflections; the white line 
that appears in the picture is the gap between the tape, and not a crack.  Figure 5 
demonstrates the effectiveness of the SIDE apparatus. With the flashlight, minimal 
defects can be seen on the surface. With the LED light, dust particles and impurities on 
the surface can be seen clearly.  
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Figure 5. SIDE apparatus with flashlight illumination (left side) and with LED light 
illumination (right side) on the YCOB sample for defect inspection.  The red box 
indicates the location of the YCOB crystal.

3.2 MPAT

Initial measurements were taken with various angles to determine if the system was 
correctly polarized (Figure 6).  The experimental data in Figure 6 agrees with the general 
shape of a reflectivity curve for different index of refraction using equation 1.  The 
experimental data lies between the calculated curves for index of refraction of 1.455 and 
1.517. Figure 6 inset shows that the Brewster angle of the test part corresponds to an 
index of 1.455, which is appropriate since the test part was fused silica with a index of 
1.46 at 1047nm.   The deviation of the experimental data from the calculated reflectivity 
curve is partially due to the fact that the absorption signal changes with the angle of 
rotation due to its the optical path length dependence.  
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Figure 6.  Reflectivity vs. test sample rotational angle for experimental data (open circle) 
and theoretical calculation (lines) with different index of refraction.  

IV. DISCUSSION 

A limitation with the SIDE method is that the light appears to only illuminate gross 
defects (> 10 µm) within the crystal.  Nevertheless, the LED light is far more superior to 
regular lighting for optics inspection.  It can also show dust particles and residual 
scratches on the surface.  Its compactness and the speed in which it can be used to 
visually inspect optic make it a very useful tool.  However, it is likely that small 
inclusions will scatter at angles too shallow to detect in the current configuration.

Initial measurements with fused silica test part shown that additional signal losses 
are present in the MPAT system. There seems to be other objects causing additional 
absorption other than from the test part. One source of absorption could be from the poor 
mirror surfaces. When the test sample is placed in position, the beam path will not travel 
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the same path as when there was no test sample, this causes systematic errors if the 
mirror reflectivity is not uniform.  A second problem was the beam was cut off by the 
optics; in particularly, the faraday rotator aperture was not large enough for the retro-
reflected beam.  Significant improvement is expected with replacement of the above 
parts.

V. CONCLUSION

The SIDE method as currently configured cannot be used because the inclusions in the 
YCOB crystal are extremely small.  However, it would be a great tool for crystals that 
have larger defects. The MPAT system is working properly in principal.  However, our 
current configure lacked of accuracy and reliability to measure small absorption 
coefficients (10-3/cm).  Some of the existing shortcomings will be overcome with better 
optics, i.e. dielectric coated mirrors and large aperture faraday rotators.
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