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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government.  Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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ABSTRACT 

Hydrocarbon oxygenate synthesis from photocatalytic reactions of CO2 and H2O over 

various catalysts is a very attractive process.  However, the formation rate of the hydrocarbons 

and oxygenates is significantly lower than conventional catalysis.   One possible reason for the 

low rate of product formation is the presence of oxidation sites which reoxidize the products 

back to OO2 and H2O.  For further improvement of catalytic activity for the reduction process,  it  

is essential to understand the oxidation reaction process.   We have studied photocatalytic 

oxidation of methylene blue and found the oxidation rate is significantly higher than the 

reduction rate.     
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INTRODUCTION  

TiO2 is the most widely studied photocatalyst because of its stability, low cost, and non-

toxicity.  TiO2 exhibits the photocatalytic activity for both oxidation and reduction.  

Photocatalytic oxidation usual involves oxidation of organic species to CO and H2O in the 

presence of H2O or O2 while photocatalytic reduction converts CO2/H2O back to 

hydrocarbons/oxygenates or reduces H2O to H2 and O2.  Examination of literature results shows 

that the rates of photocatalytic reduction are 3 to 4 orders of magnitude lower than those of 

photocatalytic oxidation.  Significant enhancement in the rate of photocatalytic reduction is 

needed to bring this reaction process for practical applications.   

 One possible reason for the low rate of the photocatalytic reduction is the presence of 

oxidation sites on the TiO2 surface which further converts hydrocarbon/oxygenate products back 

to CO2 and H2O.  A fundamental understanding of the reaction mechanism could assist in 

identifying key factors in improving Ti-based catalysts for controlling photocatalytic oxidation 

and reduction.   To develop a better understanding of photocatalytic oxidation, we have studied 

photocatalytic oxidation of methylene blue (MB).  MB is an excellent model compound for 

investigation of photocatalytic oxidation mechanism for (i) easy of determination of it 

conversion with UV-vis spectrophotometry and (ii) existence of abundant rate data for 

comparison.    

 

EXECUTIVE SUMMARY 

This study shows that the photocatalytic oxidation activity of TiO2 – based catalysts is 

significantly higher than their photocatalytic reduction rate.   Selective inhibition of 

photocatalytic oxidation is needed to improve the overall rate of the photocatalytic reduction 
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process.    

 

EXPERIMENTAL   

TiO2 was supplied by Degussa (P-25, surface area ~50 m2/g; mean diameter ca. 30 nm; 80% 

anatase and 20% rutile); Methylene Blue (C16H18ClN3S•3H2O) from Alfa Aesar.  Both 

compounds were used without further treatment.   

 

Catalyst Preparation and Characterization 

0.5 wt % Pt/TiO2 was prepared by photo-reduction of K2PtCl6 onto TiO2 in a solution 

containing ethanol which serves as a sacrificial electron donor.  The specific procedure involves 

(i) bubbling N2 through a 0.1 M ethanol solution containing K2PtCl6 and TiO2 particles to 

remove O2, (ii) illuminating the solution with a 350 W mercury UV lamp (Oriel 6286) for 24 

hours while suspending TiO2 particle in the solution by magnetic bar stirring, (iii) removal of 

Pt/TiO2 from the solution by centrifuging, (iv) washing the particle with deionized water to 

remove Cl and K ion, (v) and drying under vacuum oven at 100 ºC.  TiO2 and 0.5 wt% Pt/TiO2 

were characterized by X-ray diffraction (Phillips APD3700 X-ray diffractometer equipped with a 

Cu Kα radiation source giving a wavelength of 1.5406 A) and UV-Vis spectroscopy UV-Visible 

spectrophotometer (HITACHI U-3010) equipped with a Praying Mantis diffuse reflectance 

accessory.     

 

Photocatalytic Degradation of Methylene Blue in an Aqueous Solution   

Photocatalytic degradation of Methylene Blue was studied with on two different modes.  

The first involves a square quartz reactor containing a 50 ml aqueous solution suspending with 5 
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mg of the catalysts under magnetic stirring; the second involves immobilizing the TiO2 by 

coating it on one side of the reactor wall by a slurry deposition technique.   The concentration of 

MB was determined by UV-Vis spectroscopy.    

 

In situ Infrared Study  

Fig. 1 illustrates the experimental approaches used for the in situ infrared study.  50 mg of 

the reactant/catalyst mixture was placed in a DRIFT (diffuse reflectance) cell and then exposed 

to a light from Xe lamp with an intensity of 16.7 mW/cm2.   DRIFT spectrum was taken by 

closing the movable light collector and interrupting the photocatalytic reaction,    

 

RESULTS AND DISCUSSION 

Characterization  

Figure 2 shows the XRD patterns of TiO2, 0.5 wt% Pt/TiO2, 1 wt% Pt/TiO2, and 3 wt% 

Pt/TiO2.   XRD results shows that TiO2 contains both anatase and rutile, confirming the P-25 

structure; increasing the Pt content leads to an increase in the intensity of the Pt (111) peak at 

39.8º.  The absence of Pt peak in 0.5 wt% TiO2 suggests the Pt particle size on 0.5 wt% Pt/TiO2 

is less than 3 nm.     

Figure 3 shows the results of the diffuse reflectance UV-Vis spectra of the TiO2, 0.5 wt% 

Pt/TiO2, 1 wt% Pt/TiO2, and 3 wt% Pt/TiO2.  TiO2 gave the absorption edge at 450 nm.  The 

addition of Pt shifted the absorption edge to the lower wavelength and decreased the absorption.  

The latter could be resulted from increases in reflection from Pt metal particles.   

 

Aqueous Phase Kinetic Study  
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Figure 4 shows the kinetics of MB photocatalytic degradation in an aqueous solution with 

suspending TiO2 and 0.5 wt% Pt/TiO2 particles.  The rate of disappearance of MB fit well into 

the first order kinetics as shown in Fig. 5.  This could be due to the presence of the significant 

excess H2O which reduces the kinetic rate law into the pseudo first order form.  The rate constant 

obtained from fitting, listed in Table 1, is in the same order of magnitude with those reported in 

literature.   In general, the rate constant depends on the catalyst composition and concentration as 

well as the wavelength and intensity of the illuminating light.  Results in Fig 4 and Table 1 show 

increasing the catalyst concentration increased the rate constant.  The addition of Pt had little 

effect on the MB degradation.     

Figure 5 shows the kinetics of MB degradation in an aqueous solution on TiO2 and 0.5 

wt% Pt/TiO2 coating on the reactor wall.  The objective of this study is to determine the 

photocatalytic oxidation kinetics in the absence of screening effect of the catalyst particles.  The 

initial MB concentration was 30 ppm in the aqueous solution. 1.2 mg catalyst was coated on a 

surface of 4.5 cm2 

 

In situ Infrared Study 

Figure 6 shows the key characteristic IR bands of MB on CaF2, TiO2, and 0.5wt% 

Pt/TiO2.  Methylene blue exhibits the aromatic ring C=C/C=N at 1599 cm-1, C=C at 1488 cm-1, 

C-H at 1388 cm-1, the aromatic amine CAr-N at 1332 cm-1, and the C-H wagging at 1250 cm-1.  

The bands in 1400 – 1600 cm-1 became obscure for methylene blue on both TiO2 and 0.5 wt% 

Pt/TiO2 due to the strong IR absorption background of the TiO2 catalysts.  The IR bands 

observed in Figure 6 are summarized in Table 2.    Both TiO2 and Pt/TiO2 exhibited a number of 

OH groups.  These bands were attenuated after impregnating MB onto the catalysts.     
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Figure 7 shows the DRIFT spectra of MB on TiO2 during photocatalytic degradation.   

Exposure of MB on TiO2 to the UV illumination led to: (i) decrease in IR intensity of all the 

above bands as well as C-H at 2931 cm-1 and C=C in the aromatic ring at 1488 cm-1; (ii) increase 

in IR intensity of the bands of C=O at 1718 cm-1 and N-H at 1576 cm-1.  The IR results suggested 

that MB photocatalytic oxidation proceeded the intermediates containing carbonyl functional 

group (C=O) and produced ammonium ion (NH4+).    Figure 8 shows photocatalytic degradation 

of MB on 0.5 wt% Pt/TiO2.  To compare the difference in the rate of change in IR intensity for 

both TiO2 and 0.5 wt% Pt/TiO2, the IR intensity of the MB bands was plotted in Figure 9.  The 

presence of Pt accelerated the rate of decreases in the CAr-N band at 1332 cm-1 and increased the 

rate of formation of the N-H band at 1576 cm-1.    

CONCLUSIONS 

Pt has been shown to be effective in promoting photocatalytic reactions.   This study 

shows that Pt promotes photocatalytic oxidation of MB on TiO2. However, the presence of the 

aqueous phase diminishes the Pt effect.   The high rate of photocatalytic oxidation suggests that 

the electron and hole separation do take place at an appreciable rate.   The low rate of 

photocatalytic reduction reaction process can not be attributed to the low efficiency of electron 

and hole separation.   The low rate of photocatalytic reduction process could be due to lack of the 

site to transfer of electron and hole to the desirable adsorbed species.    
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Fig. 1. Schematic diagrams of MB photocatalytic oxidation on Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy reactor. 

(a) IR scanning mode (b) oxidation reaction mode
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Fig. 2. XRD patterns of pure TiO2, 0.5 wt% Pt/TiO2, 1 wt% 

Pt/TiO2 and 3 wt% Pt/TiO2. A and R designate anatase and rutile 

respectively.  
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Fig. 6. IR backgrounds of CaF2 and MB/CaF2, TiO2 and MB/TiO2, 0.5 

wt% Pt/TiO2 and MB/ 0.5 wt% Pt/TiO2. The insert shows the different 

types of isolated hydroxyl group over TiO2 and 0.5 wt% Pt/TiO2 surfaces.   
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Fig. 7. In situ DRIFTS spectra and band assignments of MB 

photocatalytic oxidation over pure TiO2 with 5 wt% MB at 1 atm 
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Fig. 8. In situ DRIFTS spectra of MB photocatalytic oxidation 

over 0.5 wt% Pt/TiO2 with 5 wt% MB at 1 atm and 25 ºC. 
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Fig. 9. Decrease rates of MB characteristic bands as a function of 

time in the MB photocatalytic oxidation over pure TiO2 (dash line 

and empty symbol) and 0.5 wt% Pt/TiO2 (black line and solid 

symbol) with 5 wt% MB at 1 atm and 25 ºC. 
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Table 1: literature review for MB photocatalytic oxidation in aqueous solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

catalyst Reaction conditions: 
CMB0, Ccat, I 

Kinetics model and 
reaction constant, k 

reference 

P25  
(30nm) 

CMB0=93.8 µmol/l 
Ccat=0.2 g/l 
I=16.7mW/cm2 

first-order kinetics 
k=0.048 min-1 

This paper 

P25  
(30nm) 

CMB0=100 µmol/l 
Ccat=2 g/l 
I=4.7mW/cm2 

first-order kinetics 
k=0.032 min-1 

1 

P25 
(30nm) 

C0=84.2 µmol/l 
Ccat=0.5 g/l 
I= N/A 

first-order kinetics 
k=0.053 min-1 

2 

P25 
(30nm) 

C0=25 µmol/l 
Ccat=2 g/l 
I: N/A 

first-order kinetics 
k=0.078 min-1 

3 

P25 
(30nm) 

C0=6.6 µmol/l 
Ccat=0.67 g/l 
I: N/A 

first-order kinetics 
k=0.0288 min-1 

4 

TiO2 
(50 nm) 

C0=20 µmol/l 
Ccat=0.218 g/l 
I=N/A 

first-order kinetics 
k=0.004 min-1 

5 

TiO2 
(20 nm) 

C0=31.3 µmol/l 
Ccat=1 g/l 
I=N/A 

first-order kinetics 
k=0.025 min-1 

6 

TiO2 
(29.5 nm) 

C0=39.1 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.0188 min-1 

7 

TiO2 
(20 nm) 

C0=46.9 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.0672 min-1 

8 

0.75 wt% Pt/TiO2 
(40-80 nm) 

C0=46.9 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.1042 min-1 

8 

TiO2  
(18.3 nm) 
 

C0=62.6 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.0955 min-1 

9 

0.5 wt% Au/TiO2 
(11.8-14.2nm) 

C0=62.6 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.1752 min-1 

9 

TiO2 
(18.3 nm) 

C0=37.5 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.0144 min-1 

10 

0.5 wt% Au/TiO2 
(19.4 nm) 

C0=37.5 µmol/l 
Ccat=1.2 g/l 
I=N/A 

first-order kinetics 
k=0.052 min-1 

10 
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CMB0: initial concentration of MB in solution. 

Ccat: concentration of catalyst in reaction solution. 

I: light intensity. 

 

 

Table 2: assignment of the FTIR bands observed in MB  

photocatalytic oxidation over TiO2 at 1 atm and 25 ºC. 

Frequency 
(cm-1) 

Vibration mode of functional 
group 

3668 -OH 
3511 -NH 
3247 Absorbed water 
3158 -NH3

+ 

3033 Aromatic C-H 
2931 -CH3 asymmetric stretching 
2855 -CH3 symmetric stretching 
1718 -C=O 
1600 C=N/C=C 
1576 -N-H 
1488 C=C 
1438 -CH3 asymmetric deformation 
1388 -CH3 symmetric deformation 
1333 Aromatic amines, CAr-N 
 

 

 

 


