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Understanding the Requirements Imposed by Programming
Model Middleware on a Common Communication Subsystem

by
Darius Buntinas and William Gropp

Abstract

In high-performance parallel computing, most programming-model middleware libraries
and runtime systems use a communication subsystem to abstract the lower-level network
layer. The functionality required of a communication subsystem depends largely on the
programming model implemented by the middleware. In order to maximize performance,
middleware libraries and runtime systems typically implement their own communication
subsystems that are specially tuned for the middleware, rather than use an existing com-
munication subsystem. This situation leads to duplicated effort and prevents different
middleware libraries from being used by the same application in hybrid programming mod-
els. In this paper we describe features required by various middleware libraries as well as
some desirable features that would make it easier to port a middleware library to the com-
munication subsystem and allow the middleware to make use of high-performance features
provided by some networking layers. We show that none of the communication subsystems
that we evaluate support all of the features.

1 Introduction

In high-performance parallel computing, most programming-model middleware libraries and
runtime systems use a communication subsystem to abstract the lower-level network layer,
providing portability to different architectures and interconnects and simplifying implemen-
tation. The functionality required of a communication subsystem depends largely on the
particular programming model implemented by the middleware. For example, a middleware
library for the message-passing model would require operations that optimize data transfer
of objects located anywhere in a process’s address space, whereas a middleware runtime
system for a global address space language would require optimized transfer of smaller data
objects located in a special memory region allocated at initialization.

Because of these differences, most middleware libraries and runtime systems implement
their own communication subsystems, rather than use one from another middleware library.
But, despite the differences in requirements, the communication subsystems have many
common features, such as bootstrapping and remote memory access (RMA) operations.
Implementing and maintaining a different communication subsystem for each middleware
system lead to duplicated effort. Furthermore, a common communication subsystem would
be needed for hybrid programming models, where, for example, a program would use both
MPI and UPC operations. A common communication subsystem would provide the best
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Figure 1: Software layers of current high-performance computing systems

performance to both programming models and avoid possible deadlocks when the different
middleware libraries block for messages.

In this paper we describe features required by various middleware libraries as well as
some desirable features that would make it easier to port a middleware library to the com-
munication subsystem and allow the middleware to make use of high-performance features
provided by some networking layers. We evaluate whether existing communication subsys-
tems support these features efficiently. We show that none of the existing communication
subsystems that we evaluated support all of the features. Furthermore, we found no conflict-
ing requirements, a result that indicates that a communication subsystem can be designed
to efficiently support all of the programming models examined in this paper. In [7] we
present our design of such a common communication subsystem.

The rest of this paper is organized as follows. In Section [2] we introduce the communi-
cation subsystems that we will evaluate. In Section Bl we identify the critical design issues
necessary to support the various programming models. We conclude and present future
work in Section Ml

2 Typical Communication Subsystems

In this section, we first describe the software layers of a typical high-performance paral-
lel computing system, then describe several communication subsystems used by different
programming models.

Figure [ shows the software layers of a typical high-performance parallel computing
system. The application, at the top layer, is written by using a particular programming
model, for example, message passing, remote memory, or a global address space (GAS) lan-
guage. The middleware, in the next layer, is the implementation of the programming model
and defines the programming interface, for example, MPICH2 [I} I1], Global Arrays (GA)
toolkit [I8], or the Berkeley UPC runtime system [I4]. The middleware often implements
a standard API, such as MPI-2 [10], GA [I6], or UPC [§].

In order to provide portability to different interconnects, middleware typically is imple-
mented over a communication subsystem, in the third layer, which abstracts the low-level in-



terconnect API. Examples of communication subsystems are CH3 for MPICH2, ARMCI [17]
for the Global Arrays toolkit, and GASNet [5] for the Berkeley UPC runtime. At the lowest
layer is the interconnect library, which is usually provided by the interconnect vendor, such
as GM/Myrinet [15, 3] and InfiniBand (IBA) [12].

We now describe the communication subsystems that we examine in this paper. These
are ARMCI [17], GASNet [5], LAPI [13], Portals [6], and MPI-2 [10].

ARMCI — The Aggregate Remote Memory Copy Interface (ARMCI) library [17] is the
communication subsystem for Global Arrays.

GASNet — GASNet [0] is designed to support parallel global address space (GAS)
languages and is the communication subsystem for the Berkeley UPC runtime system.

LAPI — IBM’s Low-level Application Programming Interface (LAPI) [13] is a propri-
etary message-passing API that provides RMA and active message operations.

Portals — Portals is the communication subsystem for the CPlant project at Sandia
National Laboratories [20]. The main focus of the design of Portals [6] was to support MPI.

MPI-2 — MPI-2 [I0] is an extension of the original Message Passing Interface (MPI)
standard, providing one-sided remote-memory operations.

While MPI-2 can be considered a programming model middleware, we are including
it as a communication subsystem because it has many features that would make it an
attractive candidate for a common communication subsystem. In fact, for this reason,
some communication subsystems, such as GASNet, have been implemented on top of an
MPI implementation.

3 Design Features for Communication Subsystems

In this section, we identify important features in designing communication subsystems to
support different programming models. We also discuss how each communication subsystem
described above either supports or fails to support the features. We concentrate on the
features required by MPI-2, Global Arrays, and UPC.

It is not our intention to decide whether one communication subsystem is better than
another, as each is very well suited for the particular purpose for which it was written.
Rather, we want to demonstrate that none of these communication subsystems is able to
efficiently support all of the programming models.

We make certain assumptions about the architecture. First, we assume that the in-
terconnect is reliable. This is a reasonable assumption as most modern networks provide
reliable message delivery. Second, we assume that the system is cache-coherent. Although
the MPI-2 RMA model was designed to support non-cache-coherent systems, we won’t
consider those in this paper.

We divide this section into two parts: required features and desired features. Com-
munication subsystems that lack a required feature cannot effectively support a particular
programming model. Desired features are features that, when implementing a programming
model on top of the communication subsystem, make the implementation simpler or more
efficient.



3.1 Required Features
3.1.1 Remote Memory Access Operations.

RMA operations allow a process to transfer data between its local memory and the memory
of another remote process without involving that remote process. These operations are
especially important for global address space and remote-memory programming models, as
well as for message-passing applications that have irregular communication patterns.

Important RMA operations are Put, Get, and Accumulate. In a Put operation data is
transferred from the initiating process’s memory to the target process’s memory. Data is
transferred in the opposite direction in a Get operation. An Accumulate operation is similar
to a Put operation, except an arithmetic operation is performed on the incoming data and
the data is stored at the target buffer.

It is important for RMA operations to be nonblocking to allow for better overlap of
communication and computation. A fence operation is also needed to ensure that RMA
operations have completed at a particular remote process. Also useful is a global fence
operation, which would be collective and ensure that all RMA operations have completed
at every process.

All of the communication subsystems we examined support RMA operations; however,
some impose restrictions on the memory that can be used for those operations. We identify
four classes of RMA memory from most restrictive to least restrictive.

1. RMA memory defined collectively at initialization time
2. RMA memory defined collectively at any time during execution
3. RMA memory defined noncollectively at any time during execution

4. All of process memory is RMA memory

ARMCI supports the second class of RMA memory. Memory that is accessible by RMA
operations must be allocated by using a collective memory allocation function.

GASNet supports the third class of RMA memory, when compiled with the GASNET_
SEGMENT _FAST and GASNET_SEGMENT _LARGE flags. These flags allow for optimized implemen-
tations of GASNet but restrict the RMA memory to that which individual processes can
allocate from a pool of memory set aside at initialization. The size of this pool is passed as
a parameter at initialization. If GASNet is compiled with the GASNET_SEGMENT EVERYTHING
flag, it would support the fourth class. But this flexibility may have a performance penalty
in some implementations.

MPI-2 also supports the third class of RMA memory. MPI-2 RMA operations are either
active target or passive target operations. In active target operations, the target process is
actively involved in performing the RMA operation; in passive target operations, the target
process is not. The MPI-2 standard allows the implementation to require that memory used
for passive target operations be allocated with a special memory allocation function.

A group of MPI processes will collectively create a window that identifies the memory
region at each process that can be accessed by MPI-2 RMA operations. The individual
memory regions do not have to be the same size and can even have zero length. This



memory may be statically defined or dynamically allocated, but the allocation is not a
collective operation; in other words, the processes don’t all have to allocate the memory at
the same time.

LAPI and Portals support the fourth class of RMA memory. RMA operations can be
performed by using any process memory.

We next discuss requirements specific to supporting MPI-2 RMA features, GAS language
and remote-memory models, and large two-sided messages in MPI.

3.1.2 MPI-2 RMA Features.

In order to support MPI-2 RMA operations, the communication subsystem needs to support
at least the third class of RMA memory for passive-mode and the fourth class for efficient
active-mode operations. This requirement means that ARMCI RMA operations cannot
support MPI-2 RMA operations, because in ARMCI, RMA memory must be collectively
allocated.

GASNet RMA operations cannot support MPI-2 active-mode RMA operations when
compiled with GASNET_SEGMENT_FAST or GASNET_SEGMENT_LARGE flags. Only when GASNet
is compiled with the GASNET_SEGMENT _EVERYTHING flag would it be able to support MPI-
2 active-mode RMA operations. But, as mentioned before, there may be a performance
penalty in some implementations.

Because both Portals and LAPI support the fourth class of RMA memory, they can
support both active- and passive-mode RMA operations efficiently.

3.1.3 GAS Language and Remote-Memory Model Support.

GAS language and remote-memory model runtime systems require the ability to make
concurrent conflicting RMA accesses to the same memory region. Similarly, they require
the ability to make local load/store accesses to a memory region concurrently with RMA
accesses. The MPI-2 standard makes such concurrent accesses erroneous. Such restrictions
were added to the MPI-2 standard because MPI-2 is implemented as a library and so cannot
guard against accesses of which it is unaware. However, these restrictions make MPI-2
unable to support GAS language and remote-memory models. These issues are discussed
in detail in [4].

Another important feature for very fast interconnects or for shared-memory implemen-
tations is the ability to allow the source of a Put or the target of a Get operation to be
a register, rather than a memory location. This avoids having to copy the value through
memory.

3.1.4 Efficient Transfer of Large MPI Two-Sided Messages.

In MPI, two-sided message operations involve the sender calling MPI_Send() and the re-
ceiver calling MPI Recv(), which matches the MPI_Send() from the sender. The sender
specifies the source buffer, and the receiver specifies the destination buffer. In a typical
MPI implementation, small messages are sent eagerly by the sender and buffered at the
receiver until a matching receive is called and the destination buffer is known. This method
requires that the data be copied several times, thus making it impractical for large messages.



Communication subsystems supporting MPI typically transfer data for large messages by
using RMA operations.

However, RMA operations cannot be used directly because the sender doesn’t know
the destination address at the receiver and because the receiver doesn’t know the source
address at the sender. Hence, rendezvous protocol is used to send either the destination
buffer information to the sender or the source buffer information to the receiver. Once the
send and receive calls are matched, one side can use RMA operations to transfer the data
directly between the two buffers.

Because the source and destination buffers can be located anywhere in a process’s ad-
dress space, in order to be able to use RMA operations to support the efficient transfer
of large two-sided messages, the communication subsystem must support the fourth class
of RMA memory. Only LAPI and Portals are able to support this efficiently. As noted
previously, GASNet can support this class only when compiled with the GASNET_SEGMENT_
EVERYTHING flag, which may impose a performance penalty.

Other methods can be used for transferring large two-sided messages, which most likely
involve a rendezvous-like protocol internal to the communication subsystem. An example
is the active message interface of LAPI. When an active message is received, a handler is
called at the receiver. The handler determines the destination address and passes it to
LAPI, which transfers the data directly into the buffer.

3.2 Desired Features
3.2.1 Active Messages.

Using active messages [21], the sender specifies a function to be executed at the receiver
when the message is received. This handler can perform whatever processing is necessary on
the message data, such as message-matching operations in MPI or an accumulate operation
in Global Arrays.

Before active messages can be used, the active message handlers must be registered. The
registration process sets up the mechanism through which the receiving process identifies
which handler to execute when a message arrives. In order to allow multiple upper-layer
libraries to use the same communication subsystem at the same time, each library needs to
be able to register its own handlers without interfering with the other libraries.

Active messages are provided in GASNet and LAPI. GASNet requires that all handlers
be registered at the same time. This requirement means that only a single library can use
GASNet at a time.

3.2.2 Symmetric Allocation of Shared-Memory Regions.

In GAS languages and remote-memory model runtime systems where shared objects are al-
located collectively, it would be beneficial to allow symmetrically allocated memory regions.
In a symmetrically allocated region, the base addresses for the regions at each process are
the same, allowing the upper layer to optimize remote pointer translation.



3.2.3 In-Order Message Delivery.

In-order message delivery is required for message-passing programming models. However,
for those programming models that don’t require in-order messages, a message-ordering
mechanism can add a performance penalty. In fact, in some cases performance can even
be improved by reordering and coalescing messages. A common communication subsys-
tem would need to provide a way to order messages when required, but allow them to be
reordered otherwise.

In MPI-2, two-sided messages are ordered, but RMA operations are not guaranteed to
be ordered. LAPI, GASNet, and ARMCI do not guarantee message order. While a fence
operation can be used to force ordering of messages, it would not be efficient to perform a
fence after every message. Portals messages are all ordered.

3.2.4 Noncontiguous Data.

Modern interconnects, such as IBA [12] and Quadrics [19], support transferring noncontigu-
ous data. In order to take advantage of this functionality, the communication subsystem
itself must support noncontiguous data.

There are several ways that the upper layer can describe the data layout to the commu-
nication subsystem. The best method depends on how the data is actually laid out. The
most general way is to use an I/O vector (IOV), which is an array of offsets and lengths,
each describing the location of a piece of the data. However, the size of the description
itself can grow with the length of the data and can even exceed the size of the data itself
for sparse data. For specifying data that is distributed in same-sized blocks spaced evenly
apart, a strided description can be more efficient. In a strided description the block length
is specified along with the number of blocks and the distance between them. This descrip-
tion is more compact, but less general. Blockindered describes data that is in fixed-sized
blocks but not necessarily evenly distributed. A block size and an array of offsets define
blockindexed data layout. For data with uniform block size, blockindexed is a more compact
representation than IOV and is more general than strided. These descriptions can also be
nested to describe more complex or multidimensional data distributions.

LAPI, ARMCI, and MPI-2 support transfer of noncontiguous data. In LAPI, noncon-
tiguous data can be specified only by using the I/O vector format. ARMCI supports both
IOV and strided formats. MPI-2 supports MPI datatypes, which allow the application to
describe the data layout recursively from variations of 1/O vector, strided, and blockindexed
formats. GASNet and Portals support only contiguous data transfer.

3.3 Summary of Design Issues

Table [l summarizes the features described above and indicates whether each is supported
by the communication subsystems. Other issues such as supporting dynamic processes,
collective communication, thread safety, and heterogeneous system support, also are im-
portant, but space limitations preclude discussion in detail. We can see from Table [I] that
none of the communication subsystems we studied supports all of the features necessary
for message-passing, remote-memory, and GAS language programming models. The table



Table 1: Feature summary of the communication subsystems.
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also shows a column for portability. While portability is a main goal for ARMCI, GASNet,
Portals, and MPI-2, LAPI is available only on IBM systems.

While the lack of some of the features we described does not necessarily mean that the
middleware cannot be implemented over a particular communication subsystem, the imple-
mentations would be less efficient. In fact, MPI has been implemented over LAPI [2], UPC
has been implemented over MPI [14], and MPI-2 has been implemented over GASNet [1],
but these implementations are not as efficient as they could be if all of the features had
been supported by the communication subsystem.

4 Discussion and Future Work

A common communication subsystem can reduce the duplicated effort to support communi-
cation subsystems for individual programming models. In addition, the development time
for new middleware libraries can be reduced by building the library on top of the com-
mon communication subsystem and allowing it to take advantage of the communication
subsystem’s highly tuned features. In this paper we have demonstrated that no existing
communication subsystem has all of the features we described. Furthermore, we have shown
that there are no mutually exclusive requirements, indicating that a common communica-
tion subsystem can be implemented. We are, in fact, currently working on implementing a
prototype of a common communication subsystem and have described our design in [7].

In this paper we have considered support only for programming models. High-performance
parallel 1/O libraries have different communication subsystem requirements from those of
do programming-model libraries [9]. We intend to examine what additional features a com-
munication subsystem would need in order to support parallel I/O libraries.
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