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ABSTRACT 
An alternative method is developed t o  compute the 

magnetic field from a circular cylindrical magnetic source. 
Specifically, a Fourier series expansion whose coefficients 
are toroidal functions is introduced which yields an alter- 
native to  the more familiar spherical harmonic solution or 
the Elliptic integral solution. 

This alternate formulation coupled with a method 
called charge simulation allows one to  compute the ex- 
ternal magnetic field from an arbitrary magnetic source in 
terms of a toroidal expansion. This expansion is valid on 
any finite hypothetical external observation cylinder. In 
other words, the magnetic scalar potential or the magnetic 
field intensity is computed on a exterior cylinder which en- 
closes the magnetic source. This method can be used to  
accurately compute the far field where a finite element for- 
mulation is known t o  be inaccurate. 

INTRODUCTION 
A method using a Fourier series expansion, derived 

from the free-space Green’s function in cylindrical coordi- 
nates, will be used to  characterize the external magnetic 
field from a circular cylindrical magnetic source. This 
method can be employed for computing the near-field or 
the far-field solution from any source which exhibits circu- 
lar cylindrical symmetry. It is quite useful for computing 
the far-field solution when other methods, such as finite 
element analysis, are not very accurate. 

If the geometry of the source is not cylindrical, then 
a particular technique called charge simu2ation illustrated 
in Kwon et a2. (2004) and Schwab (1988) is used t o  re- 
place the arbitrary magnetic source with fictitious mag- 
netic point charges on a finite circular cylinder. Charge 
simulation is a method by which a configuration of simu- 
lation charges is determined, and whose potential function 
or field function approximates the true potential or field 
of the actual electric or magnetic source. The first type of 
charge simulation is that derived from a known electric or 
magnetic scalar potential function, and the second type of 
charge simulation is that derived from experimental data 
such as the normal component of the magnetic flux density 
measured on a closed hypothetical cylinder surrounding a 
real magnetic source. This paper will consider the former. 

FORMULATION 

Assume that a magnetic scalar potential can be com- 
puted close t o  the magnetic source. For example, a finite 
element analysis is most useful for computing the magnetic 
scalar potential on a hypothetical boundary enclosing an 
arbitrary source. This has been done by Kwon (2004). 
Consider the simplified model shown in Figure 1. 
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FIGURF: 1 Potential cylinder 

Compute the magnetic scalar potential on a chosen 
grid of points lying on the hypothetical cylinder. The hy- 
pothetical cylinder will be called the potential cylinder. 
The basic idea of charge simulation for a magnetic system 
is t o  replace the actual magnetic source with a new source 
made up entirely of fictitious magnetic point charges which 
yields the same computed potentials on the potential cylin- 
der as the original source did. This is shown in Figure 2. 
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FIGURE 2 Charge simuldtion 

The charge cy2inder completely encloses the actual 
source, but lies inside the potential cylinder. Once the 
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charge cylinder is found which reproduces the correct pcr 
tentials on the potential cylinder, then one can use the 
charge cylinder and the magnetic form of Coulomb’s law 
given in Stratton (1941) t o  compute the magnetic scalar 
potential external to  this new source. In contrast to  finite- 
difference and finiteelement methods, the charge simula- 
tion method is well suited for unbounded electromagnetic 
problems, but can be modified to  handle bounded prob  
lemy. The hypothetical surface used in charge simulation 
could be any closed surface surrounding the real source. 
However, choosing the appropriate geometry that fits the 
particular problem may simplify the analysis. 

In order to  perform the charge simulation method, 
one must formulate the correct mathematical steps. One 
can write the magnetic form of Coulomb’s law in matrix 
form as 

1 
T1Z 
- 

1 
T22 
- 

... 

where @ is the magnetic scalar potential, r is the distance 
between the source point and the field point, and is 
the fictitious charge. It is necessary to  choose a grid with 
enough points so that an accurate reproduction of the orig- 
inal computed potentials can be established. This involves 
a bit of trial-and-error. There appears to  be no easy way 
to  predict how many charges would be necessary to prcr 
duce an accurate potential function a’ priori. This is not 
based on any known mathematical law, but on the authors 
research and is subject to  change. In order t o  compute the 
charges, one needs to  compute the inverse of the & ma- 
trix as shown in (1). The inversion process could take 
some time because the number of potential points could 
be large in number. 
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One can now expand the potential of a unit point 
charge in terms of the free-space Green’s function ex- 
pansion given by Jackson (1999), Smythe (1968), and 
Bouwkamp and Bruijn (1947). In cylindrical coordinates, 
the free-space Green’s function leads to  an expression for 

the inverse distance between the source point and the field 
point as shown in Figure 3. 
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FIGURE 3 The circular cylindrical model 

The inverse distance is given by 
1 - 1 

Ir - r’I 
-- 

dp2 + a2 + 2 2  - 2apcos(4 - 4’) 
(3) 

This relation for the inverse distance can be written in 
terms of a Fourier series expansion whose weighting ccr 
efficients are the Legendre functions of the second kind 
and of half-integral degree. These are also called toroidal 
functions of zeroth order found in Lebedev (1965) or Q- 
functions found in Snow (1952), Snow (1949) and in H o b  
son (1900). The expansion is given by 

C o s  [m (4- $791 1 (4) 

Equation (4) is the essential ingredient for calculating the 
magnetic scalar potential external to  a circular cylindrical 

magnetic source where E = p 2 + p l ~ $ z ‘ ) z  > 1, cm is 1 for 
m = 0, and em = 2 ‘d m 2 1. It was shown by Selvaggi et  
al. (2004) that 

(5) 
1 

(a<)“”’ 
When a magnetic field is produced from an arbitrary 

source, the application of charge simulation along with the 
magnetic form of Coulomb’s law will allow one to  com- 
pute the magnetic field external to an equivalent cylin- 
drical source. Coulomb’s law for hypothetical magnetic 
charges is shown by Stratton (1941) to be 



Table 1: Magnetic field intensity componen 

where &(ampers. meters) are the hypothetical magnetic 
charges. The units for magnetic scalar potential are in 
amperes. 

From (4), (5), and ( 6 ) ,  one can compute the corre- 
sponding magnetic scalar potential at some observation 
point given in cylindrical coordinates. This is written as 

. N ,  m 

(7) 

where ( k  = P 2 f p 2 f ( Z - Z k ) 2 .  &2ppk The magnetic field intensity at 
any point in space external t o  the charged cylinder can be 
found from 

H = -V@p (P, 4, z)  7 

where the gradient is taken in cylindrical coordinates. The 
magnetic components of HP (p,  4, z )  can be tabulated for 
quick reference as shown in Table 1 

magnetization given by M = M y  as shown Figure 4. 
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FIGURE 4 A cylindrical charged source 

This example is based upon the author's research in 
permanent magnet motors. In particular, it was shown 
by Selvaggi et al. (2004) that the external field from per- 
manent magnet motors can be determined by employing 
charge simulation. If the magnet is cubic in shape, with 
a side of length 0.1 m, and centered inside a hypothetical 
cylinder( charge cylinder) then the application of charge 
simulation will produce hypothetical magnetic charges at 
selected grid points on the cylinder. In other words, the 
magnet is replaced with an equivalent point charge distri- 
bution on a cylinder and this charge distribution is used 
t o  calculate the scalar potential using (7) on another hy- 
pothetical cylinder (observation cylinder) located outside 
and concentric to  the charged cylinder. Employing (8) 
gives the magnetic field intensity external t o  the charged 
cylinder. 

Let the charged cylinder have a maximum radius, 
pmax, of 1 m, and a length, L, of 3.0 m, and let the 
magnetization, (MI, of the magnet be lo5 A / m  in the 
x-direction as shown in Figure 4. Figure 5 is a plot of 
the magnetic scalar potential on the observation cylin- 
der for the m = 1 term in (7). This cylinder has a 
length of 3.5 m and a maximum radius of 1.5 m. The 
m = 1 component turns out to  be the dominant contrib 
utor to  the magnetic scalar potential. The components 
m = 2, 3, 4 and higher contribute substantially less t o  
the total potential. Figures 6 - 8 are the components of 
the magnetic field intensity for the m = 1 component. 

VALIDATION 
EXAMPLE 1 : Consider a permanent magnet cen- 

tered at the origin and oriented along the x-axis with a 
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uniform current loop shown in Figure 9. as 

Z 

I 

h 

where the unit vector, 4;, has been replaced by its Carte- 
sian equivalent. Using (4), the denominator of (12) can be 
written as 

. m  

I 
I 
I 
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FIGURE 9 Filamentary current loop 

I2 
- 1  

X 

FIGURE 10 Two filamentary current loops 

The differential magnetic vector potential at the field 
point, P, is given by 

where 

1 
- (11) -- - 

1 
I R  - Jpz + u2 + 2 2  - 2apcas(4 - 4;) 

The magnetic vector potential at some arbitrary point in 
space not coincident with the current loop can be written 

. Substituting (13) into (12) yields: '+a2+z2 where t1 = Pap  

1 

Equation (14) is integrated to  

Equation (15) is also derived in Snow (1954). Equation 
(15) gives a mathematically alternative form for the mag- 
netic vector potential valid for any arbitrary field point not 
coincident with the source. Using (5 )  with m = 1, Q ;  (6 )  
can be represented by the series 

The magnetic vector potential is now given by 

( p2 + ap a2 + 2 2  p. 
A few terms in the expansion are 





compute the far field from a circular cylindrical magnetic 
source where a purely finite element solution is known t o  
be inaccurate. Another simple example was introduced in 
order to  validate the toroidal expansion by comparing it 
to  the solution found by a more well-known formulation. 
Specifically, the mutual inductance between two filamen- 
tary current loops was used to  compare the known solution 
found in terms of an Elliptic integral with that found by 
using a toroidal expansion. 

This paper has concentrated on a magnetostatic for- 
mulation, but there is a much wider range of topics for 
which the Q-function is applicable. For example, the Q- 
function can be applied t o  time-dependent magnetic field 
problems. Also, boundary value problems have not been 
studied in this paper. The Q-function formulation has 
been applied t o  problems whose boundary is at infinity. 
In fact, the free-space Green’s function was directly used 
to  formulate the inverse distance function in terms of a 
Fourier series expansion. However, all free-space Green’s 
functions can be modified to  handle finite boundaries. This 
would allow one to  use a Q-function formulation where 
only a Bessel function approach existed. This adds an- 
other tool t o  the engineer’s arsenal for tackling circular 
cylindrical electromagnetic problems. 

The range of engineering applications which involve 
cylindrical geometries is immense. Areas such as elec- 
trodynamics, acoustics, continuum mechanics, dynamics 
of structures, and others can all benefit from adding an- 
other powerful mathematical tool which can be used to  
help solve problems which exhibit circular cylindrical sym- 
metry. There is no theoretical reason prohibiting the a p  
plication of the Q-function t o  electrodynamic problems 
such as electromagnetic radiation problems given in Over- 
felt (1996) and Werner (2000), eddy current formulations 
given in Hagel, Gong, and Unbehauen (1992), and Fawzi, 
Ali, and Burke (1983), and Dodd and Deeds (1968). Also, 
one could employ Q-functions for time varying electric and 
magnetic field formulations given by Lahart (2004) and 
Avilia (2003), etc. One could employ the Q-function for- 
mulation for computing electromagnetic forces in cylindri- 
cal coils shown in Kim et al. (1996) and Groom (1997). 
The author has already applied the Q-function approach 
to  superconducting cylindrical disks given by Badia and 
Freyhardt (1998). These are just a few of the research 
areas which the author believes could benefit fiom a Q- 
function formulation. 
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