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ABSTRACT

An alternative method is developed to compute the
magnetic field from a circular cylindrical magnetic source.
Specifically, a Fourier series expansion whose coeflicients
are toroidal functions is introduced which yields an alter-
native to the more familiar spherical harmonic solution or
the Elliptic integral solution.

This alternate formulation coupled with a method
called charge simulation allows one to compute the ex-
ternal magnetic field from an arbitrary magnetic source in
terms of a toroidal expansion. This expansion is valid on
any finite hypothetical external observation cylinder. In
other words, the magnetic scalar potential or the magnetic
field intensity is computed on a exterior cylinder which en-
closes the magnetic source. This method can be used to
accurately compute the far field where a finite element for-
mulation is known to be inaccurate.

INTRODUCTION

A method using a Fourier series expansion, derived
from the free-space Green’s function in cylindrical coordi-
nates, will be used to characterize the external magnetic
field from a circular cylindrical magnetic source. This
method can be employed for computing the near-field or
the far-field solution from any source which exhibits circu-
lar cylindrical symmetry. It is quite useful for computing
the far-field solution when other methods, such as finite
element analysis, are not very accurate.

If the geometry of the source is not cylindrical, then
a particular technique called charge simulation illustrated
in Kwon et al. (2004) and Schwab (1988) is used to re-
place the arbitrary magnetic source with fictitious mag-
netic point charges on a finite circular cylinder. Charge
simulation is a method by which a configuration of simu-
lation charges is determined, and whose potential function
or field function approximates the true potential or field
of the actual electric or magnetic source. The first type of
charge simulation is that derived from a known electric or
magnetic scalar potential function, and the second type of
charge simulation is that derived from experimental data
such as the normal component of the magnetic flux density
measured on a closed hypothetical cylinder surrounding a
real magnetic source. This paper will consider the former.

FORMULATION

Assume that a magnetic scalar potential can be com-
puted close to the magnetic source. For example, a finite
element analysis is most useful for computing the magnetic
scalar potential on a hypothetical boundary enclosing an
arbitrary source. This has been done by Kwon (2004).
Consider the simplified model shown in Figure 1.
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FIGURE 1 Potential cylinder
Compute the magnetic scalar potential on a chosen

grid of points lying on the hypothetical cylinder. The hy-
pothetical cylinder will be called the potential cylinder.
The basic idea of charge simulation for a magnetic system
is to replace the actual magnetic source with a new source
made up entirely of fictitious magnetic point charges which
yields the same computed potentials on the potential cylin-

der as the original source did. This is shown in Figure 2.
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FIGURE 2 Charge simulation
The charge cylinder completely encloses the actual

source, but lies inside the potential cylinder. Once the



charge cylinder is found which reproduces the correct po-
tentials on the potential cylinder, then one can use the
charge cylinder and the magnetic form of Coulomb’s law
given in Stratton (1941) to compute the magnetic scalar
potential external to this new source. In contrast to finite-
difference and finite-element methods, the charge simula-
tion method is well suited for unbounded electromagnetic
problems, but can be modified to handle bounded prob-
lems. The hypothetical surface used in charge simulation
could be any closed surface surrounding the real source.
However, choosing the appropriate geometry that fits the
particular problem may simplify the analysis.

In order to perform the charge simulation method,
one must formulate the correct mathematical steps. One
can write the magnetic form of Coulomb’s law in matrix
form as
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where ® is the magnetic scalar potential, r is the distance
between the source point and the field point, and Q is
the fictitious charge. It is necessary to choose a grid with
enough points so that an accurate reproduction of the orig-
inal computed potentials can be established. This involves
a bit of trial-and-error. There appears to be no easy way
to predict how many charges would be necessary to pro-
duce an accurate potential function a’ priori. This is not
based on any known mathematical law, but on the authors
research and is subject to change. In order to compute the
charges, one needs to compute the inverse of the % ma-
trix as shown in (1). The inversion process could take
some time because the number of potential points could
be large in number.
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One can now expand the potential of a unit point
charge in terms of the free-space Green’s function ex-
pansion given by Jackson (1999), Smythe (1968), and
Bouwkamp and Bruijn (1947). In cylindrical coordinates,
the free-space Green’s function leads to an expression for

the inverse distance between the source point and the field
point as shown in Figure 3.
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FIGURE 3 The circular cylindrical model
The inverse distance is given by
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This relation for the inverse distance can be written in
terms of a Fourier series expansion whose weighting co-
efficients are the Legendre functions of the second kind
and of half-integral degree. These are also called toroidal
functions of zeroth order found in Lebedev (1965) or Q-
functions found in Snow (1952), Snow (1949) and in Hob-
son (1900). The expansion is given by
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Equation (4) is the essential ingredient for calculating the
magnetic scalar potential external to a circular cylindrical
ﬁ%"‘_z—):{>l, €n is 1 for
m =0, and €,, = 2V m > 1. It was shown by Selvaggi et
al. (2004) that
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When a magnetic field is produced from an arbitrary
source, the application of charge simulation along with the
magnetic form of Coulomb’s law will allow one to com-
pute the magnetic field external to an equivalent cylin-
drical source. Coulomb’s law for hypothetical magnetic
charges is shown by Stratton (1941) to be

Z |r — rk| ©)

Pp (p,¢,2) =



m=0
0 N
Hé)(p7¢7z):_é72k lJ_S;tT‘:.

[%Q—%(:Bk)-l
m2>1
m N K
H( )(p1¢$z) #Zk:l \'/Y/XJ_p:.

{ai,, (Qmy(80) -
35 @m—3 (Bx) }
cos fm(¢ — ¢y)]
%7 Zi\;l ﬁ’
[lQm—- 1(Br)e
By (oosmls - ¢
— Zk:l ‘\Tp——ﬁ’
2 (Qm-y(8)
cos [m(¢ — ¢,

Table 1: Magnetic field intensity components
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where € (amnpers - meters) are the hypothetical magnetic
charges. The units for magnetic scalar potential are in
amperes.

From (4), (5), and (6), one can compute the corre-
sponding magnetic scalar potential at some observation
point given in cylindrical coordinates. This is written as

q)P (P» ¢7 =

s Z \/W Z mQum -y (€x) ®

m=0

cos [m (¢ — )], M)

2, 2 \2

where &, = uﬁ%ﬁ—. The magnetic field intensity at
any point in space external to the charged cylinder can be
found from

H= _V‘I,P (pv ¢7 z) ’ (8)

where the gradient is taken in cylindrical coordinates. The
magnetic components of Hp (p, ¢, z) can be tabulated for
quick reference as shown in Table 1

VALIDATION

EXAMPLE 1 : Consider a permanent magnet cen-
tered at the origin and oriented along the x-axis with a

magnetization given by M = M as shown Figure 4.
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FIGURE 4 A cylindrical charged source

This example is based upon the author’s research in
permanent magnet motors. In particular, it was shown
by Selvaggi et al. (2004) that the external field from per-
manent magnet motors can be determined by employing
charge simulation. If the magnet is cubic in shape, with
a side of length 0.1 m, and centered inside a hypothetical
cylinder(charge cylinder) then the application of charge
simulation will produce hypothetical magnetic charges at
selected grid points on the cylinder. In other words, the
magnet is replaced with an equivalent point charge distri-
bution on a cylinder and this charge distribution is used
to calculate the scalar potential using (7) on another hy-
pothetical cylinder (observation cylinder) located outside
and concentric to the charged cylinder. Employing (8)
gives the magnetic field intensity external to the charged
cylinder.

Let the charged cylinder have a maximum radius,
Pmax: Of 1 m, and a length, L, of 3.0 m, and let the
magnetization, |M|, of the magnet be 10> A/m in the
z-direction as shown in Figure 4. Figure 5 is a plot of
the magnetic scalar potential on the observation cylin-
der for the m = 1 term in (7). This cylinder has a
length of 3.5 m and a maximum radius of 1.5 m. The
m =1 component turns out to be the dominant contrib-
utor to the magnetic scalar potential. The components
m = 2, 3, 4 and higher contribute substantially less to
the total potential. Figures 6 — 8 are the components of
the magnetic field intensity for the m = 1 component.
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uniform current loop shown in Figure 9.
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FIGURE 9 Filamentary current loop
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FIGURE 10 Two filamentary current. loops

The differential magnetic vector potential at the field
point, P, is given by
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The magnetic vector potential at some arbitrary point in
space not. coincident with the current loop can be written

as
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where the unit vector, qSll, has been replaced by its Carte-
sian equivalent. Using (4), the denominator of (12) can be
written as

1
m = ﬂ-\/—’ﬁ'mZ—:O QO~- (1) e
cos [m (9 41)], (13)
where £; = M Substituting (13) into (12) yields:
1 oo
Al (p7 ¢7 Z) = ”OIa Z 6'l‘l'l/Qm—— (El) b
'm—O
27 . ,
/0 [( —sin(¢;) + jcos(¢1)) .
os[m (6 91)] ]das'l. (14)
Equation (14) is integrated to
R N
A(p,2) = 2 \/; Q) (€)3. (15)

Equation (15) is also derived in Snow (1954). Equation
(15) gives a mathematically alternative form for the mag-
netic vector potential valid for any arbitrary field point not
coincident with the source. Using (5) with m =1, Q1 (£)
can be represented by the series
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The magnetic vector potential is now given by
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compute the far field from a circular cylindrical magnetic
source where a purely finite element solution is known to
be inaccurate. Another simple example was introduced in
order to validate the toroidal expansion by comparing it
to the solution found by a more well-known formulation.
Specifically, the mutual inductance between two filamen-
tary current loops was used to compare the known solution
found in terms of an Elliptic integral with that found by
using a toroidal expansion.

This paper has concentrated on a magnetostatic for-
mulation, but there is a much wider range of topics for
which the Q-function is applicable. For example, the Q-
function can be applied to time-dependent magnetic field
problems. Also, boundary value problems have not been
studied in this paper. The Q-function formulation has
been applied to problems whose boundary is at infinity.
In fact, the free-space Green’s function was directly used
to formulate the inverse distance function in terms of a
Fourier series expansion. However, all free-space Green'’s
functions can be modified to handle finite boundaries. This
would allow one to use a Q-function formulation where
only a Bessel function approach existed. This adds an-
other tool to the engineer’s arsenal for tackling circular
cylindrical electromagnetic problems.

The range of engineering applications which involve
cylindrical geometries is immense. Areas such as elec-
trodynamics, acoustics, continuum mechanics, dynamics
of structures, and others can all benefit from adding an-
other powerful mathematical tool which can be used to
help solve problems which exhibit circular cylindrical sym-
metry. There is no theoretical reason prohibiting the ap-
plication of the Q-function to electrodynamic problems
such as electromagnetic radiation problems given in Over-
felt (1996) and Werner (2000), eddy current formulations
given in Hagel, Gong, and Unbehauen (1992), and Fawzi,
Ali, and Burke (1983), and Dodd and Deeds (1968). Also,
one could employ Q-functions for time varying electric and
magnetic field formulations given by Lahart (2004) and
Avilia (2003), etc. One could employ the Q-function for-
mulation for computing electromagnetic forces in cylindri-
cal coils shown in Kim et al. (1996) and Groom (1997).
The author has already applied the Q-function approach
to superconducting cylindrical disks given by Badia and
Freyhardt (1998). These are just a few of the research
areas which the author believes could benefit from a Q-
function formulation.
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