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Abstract

The role of space charge field in transverse beam instability is revised

including beam coupling impedance calculation and Landau damping

analysis.

1 Introduction

Transverse space charge impedance is traditionally treated interchangeably
with any other beam coupling impedance, which statement is reflected in
handbook [1]. In fact it is rather peculiar, at least the space charge field is
evidently non-dipole, i.e. it essentially depends on coordinates in the beam
area – in contrast with resistive wall field, for example. Numerically the co-
herent space charge tune shift is identified with incoherent tune shift (with
opposite sign). Because the last typically depends on amplitude, the shift
of small incoherent oscillations is accepted without a strong substantiation.
Nonlinearity of the space charge field and its possible effect on Landau damp-
ing is another problem. Both of them are especially important because space
charge impedance dominates very frequently in a budget of impedances.
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2 Particle and beam betatron oscillations

In a smooth approximation, betatron oscillations of a particle are described
by the equation:

d2x

dt2
+ Ω2(p)Q2(p)x =

eE(x − xc)

mγ3
+ Axc (1)

where Ω(p) and Q(p) are momentum dependent angular velocity and beta-
tron tune of the particle, xc is position of the beam center, and Axc is a
contribution of other than space charge sources, first of all walls of the vac-
uum chamber including resistivity. It is assumed that these sources create
dipole field which is proportional to xc and does not depend on x. However, a
similar assumption is not acceptable to the space charge field E(x−xc) which
is a nonlinear function, with the exception of uniform elliptical beam.

Let us consider all particles with longitudinal momentum p denoting corre-
sponding normalized transverse distribution functions as F⊥(x − xp) where
xp is center of this group of particles, i.e. 1

xp =
∫

F⊥(x − xp) x dx (2)

(actual variables are shown only). Then averaging of Eq. (1) gives:

d2xp

dt2
+ Ω2(p)Q2(p)xp =

e

mγ3

∫

F⊥(x)E(x + xp − xc) dx + Axc (3)

Assuming both xp and xc are small, expand function E in Taylor series.
Then, taking into account that F⊥(x) and E(x) are even and odd functions,
one can bring Eq. (3) to the form:

d2xp

dt2
+ Ω2(p)Q2(p)xp = 2Ω2

c
Qc∆Q [ xp − xc ] + Axc (4)

where Ωc and Qc are central values and

2Ω2
c
Qc∆Q =

e

mγ3

∫

F⊥(x)E ′(x) dx (5)

1We assume that this function does not depend on p explicitly because similar depen-

dence would mean transverse-longitudinal correlation which is rather special case.
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Next we take into account that

d

dt
=

∂

∂t
+ Ω(p)

∂

∂θ
(6)

where θ is azimuth, and consider solution ∝ exp (ikθ − iωt). Relation of
amplitudes following from Eq. (4) can be written in the form:

xp =
[ 2Ω2

c
Qc∆Q − A ] xc

[ ω − kΩ(p) ]2 − Ω2(p)[ Q(p) − ∆Q ]2
(7)

Multiplying it on normalized distribution function of momentum F‖(p) and
integrating, one obtains dispersion equation of coherent oscillations

1 = [ 2Ω2
c
Qc∆Q − A ]

∞
∫

−∞

F‖(p) dp

[ ω − kΩ(p) ]2 − Ω2(p)[ Q(p) − ∆Q ]2
(8)

where the relation

xc =

∞
∫

−∞

F‖(p) xp dp (9)

is taken into account. With a reasonable accuracy, Eq. (8) can be represented
in more traditional form:

1 = ∓

[

Ωc∆Q −
A

2ΩcQc

]

∞
∫

−∞

F‖(p) dp

ω − Ω(p)
[

k ∓ [ Q(p) − ∆Q ]
] (10)

3 Beam coupling impedance

Comparison of Eq. (10) with known dispersion equation of transverse insta-
bility allows us to write following expression for space charge impedance:

Z(sc) =
iγZ0Qc∆Q

r0R0N ′
(11)

where Z0 = 4π/c ≃ 377 Ohm, r0 = e2/mc2 (1.535 × 10−16 cm for protons),
R0 is average radius, and N ′ is linear density of particles.
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Further we need to use some beam model to calculate the beam field E and
tune shift ∆Q. For a round beam with normalized space charge density
ρ(r), horizontal field strength is:

E =
4πeN ′x

r2

r
∫

0

ρ(r′)r′dr′ (12)

Therefore, using Eq. (5) one can represent the tune shift in the form:

∆Q =
2π2r0R

2
0N

′

β2γ3Qc

∞
∫

0

ρ2(r) rdr (13)

Two cases are considered below:

Uniform beam of radius a

ρ(r) =
1

πa2
at r < a (14)

Then

∆Q =
r0R

2
0N

′

β2γ3a2Qc

and Z(sc) =
iZ0R0

β2γ2a2
(15)

First of these expressions is incoherent tune shift (with opposite sign), which
does not depend on amplitude in this case. Second formula coincides with
usually used one [1].

Gaussian beam

ρ(r) =
1

2πσ2
exp (−

r2

2σ2
) (16)

Then

∆Q =
r0R

2
0N

′

4β2γ3σ2Qc

and Z(sc) =
iZ0R0

4β2γ2σ2
(17)

First of these expressions is exactly 2 times less of incoherent tune shift of
small oscillations, and beam coupling impedance is correspondingly twice less
of cited in Ref. [1].
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4 About Landau damping

Incoherent tune shift depends on amplitude of betatron oscillations excluding
unrealistic case of elliptical beam with constant density. However, it does not
manifest in dispersion equation (10) though the nonlinearity of the field E is
presumed in basic Eq. (1). It means that this nonlinearity does not contribute
to coherent effects and has not to be included to calculation of a tune spread
at the analysis of Landau damping. The reason is that this nonlinearity – in
contrast with external one – moves with the beam and cannot have an effect
on this coherent motion.
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