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Abstract

This article explores the interaction between a monochromatic plane wave
laser beam and a relativistic electron in the presence of a thin dielectric
transparent boundary. It is found that the sign of the interaction between
the laser and the electron in the downstream space is determined by the
optical phase delay of the laser caused by the boundary, and that it can add
to or cancel the interaction in the upstream space. Both the inverse-
transition radiation picture and the electric field path integral method show
this result.
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Introduction

The thin infinite boundary geometry for laser-driven particle acceleration is an effective
and simple method to satisfy the Lawson-Woodward theorem, and was successfully
employed in the first proof-of-principle experiment for laser acceleration in vacuum [1].
Although the interaction between the laser and the electron in this geometry is poor, due
to its simplicity the infinite thin boundary scheme is ideal for studying the basic physical
mechanisms for laser-driven particle acceleration in vacuum. In essence, different
materials for the thin boundary allow us to explore three different boundary conditions
for the electromagnetic field:

e Reflective

e Absorptive

e Transparent
Figure 1 illustrates the three cases of interest. For the proof-of-principle experiment a
reflective gold-coated Kapton tape was employed as a boundary, corresponding to Figure

1(a).
(a) (b) (c)
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Fig. 1: laser acceleration from a (a) reflective boundary, (b) absorptive
“black” boundary, and (c) a lossless transparent boundary

Cases (a) and (b) have been explored in a previous article [2], and it was found that for
relativistic electrons the expected energy gain from the laser is

qE,4

AU =
7 a’+1/y?

Ccos psin g, 1

where q is the electric charge of the particle, E, is the amplitude of the electric field of
the laser plane wave having the form E (F,t)= EOISL(p)cos(IZ-F—a)OH(pL), A is the laser

wavelength, « is the laser-electron beam crossing angle, o is the polarization angle of
the laser, and ¢, is the initial optical phase of the laser.

It was found that for the reflective boundary the Inverse Radiation method and the Path
Integral method predict the same electron energy gain of equation 1, regardless of the
boundary orientation. For the case of the absorbing boundary however, the Inverse
Radiation picture for calculating energy gain does not apply.
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In this article we analyze the expected energy gain for relativistic electrons from a
transparent boundary by both the Inverse Radiation method and the Path Integral method.
For simplicity we will focus at boundaries oriented at near-Brewster angle for the laser
plane wave, such that there is no reflected laser beam.

The Path Integral Method
For the analysis we will use the geometry depicted in Figure 2.
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Fig. 2: The laser-electron beam interaction in the presence of three
different dielectric layers

The three laser plane waves in media 1,2 and 3 are given by

E,(x,2,t) = (E,/&, )cos(kn, (sin 6,x + cos 6,z) - at + ¢,)
E,(x,2,t)=(E, /&, )cos(kn, (sin 8, +cos 6,2) - wt + ¢,) 2
E.(x,z,t)=(E,/&;)cos(kn,(sin 6,x +cos 6,z) - wt + ¢,

where E, is the amplitude of the electric field in vacuum and &; =1+ y; are the relative

dielectric permittivities. Here the indices of refraction are n; ~ \/;j(as commonly done, |

assume that the magnetic permeability of the dielectric material is no different from that
in vacuum; u; ~ x,). As shown in Figure 2, 6, is the angle of the plane wave in medium j

with respect to the z-axis. k is defined by k =27/1 = w/c where 4 is the wavelength in
vacuum. For continuity of the fields at the boundary z=0 we require that ¢, = ¢, and at
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z=a we require that ka-n,cosé, +¢, =ka-n,cosé, +¢,. Let the initial laser phase be
¢ = ¢, . The phase of the plane wave in medium 3 becomes

¢, = ka(n, cos@, —n, cosé, )+ ¢, 3

In our case we will assume vacuum both upstream and downstream of the plate. Hence
n=n=1 g=¢-=1, 6=6,=6_, and define n,=n, &, =¢,6, =6, . Therefore the
fields can be expressed as

E,(x,2,t)= E, cos(k(sin 6, x+cos 8, z)— wt + ¢, )
E,(x,2,t) = (E,/&)cos(kn(sin 8, x +c0s6,z)— at + 4, ) 4
E,(x,2,t)=E, cos(k(sin ,x +cos6,2)— ot + ¢, )

Interaction in the upstream space

From Figure 2 we can see that the electric field component parallel to the electron beam
trajectory is E, = —E;sina where a =6, —y . Therefore

E,(x(z),z,t) = —sin aE, cos(k(sin 6k + cos 2 )— wt + ¢, ) 5

z

The electron beam orbit is described by x(z): ztany . Therefore the parallel electric
field component is described by

E,(x(z),z,t) = —sinaE, cos(k(sin 6, tany +cos b, )z — at + ¢, ) 6

z

Assuming uniform electron velocity the time t can be expressed as t(z): z/ Bccosy .
This gives

‘ cosy

E,(x(z) z,t)=-sinaE, cos(kz(MjwﬁLj 7
Therefore the work done on the particle by this field is

AU, = j.'qEZ,(x(z),z,t)ds(z)z TqEZ,(z,t)dz/cosz//

=—(sinak, Tcos(kz(w] + ﬂ]i

cosy cosy

—00
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Using Iirrg_[cos(u +¢)e™du = —sing we find
0
AUl:—SInaSIn¢LqE° 9
k(cosa—1/p)
In the relativistic limit where B ~1-1/2y* and |a| <<1 AU becomes
gE,4 « :
AU, = sin 10
Yoo a1yt %

which is, not surprisingly, the same energy gain as the one calculated from the reflective
or absorptive boundary. At the optimum crossing angle of « = +1/y the energy gain has a
maximum value of

_ qEO/l]/ 11

I,max —
27

AU

Interaction in the medium

Inside the medium the electric field component parallel to the electron beam is

E,(x(z).z,t)=—sina,, E,/&cos(kn(sin 6, x +cos,z)— at + ¢, ) 12

A

where «,, =0, —y ,and @ is related to @ by Snell’s law. By analogy to the upstream
case the work done on the particle in this region is

AU, = [qE, (z,t)dz/cosy
’ . 13
= —gsina,, E(,/a;ﬂj'cos(kz(waﬁLJi

0

cosy cosy
which simplifies to

AU = gAsing,, Eo/g )(Sin¢L—Sin[k3(w]+¢L]J 14

?" 2z(ncosa,, -1/8 cosy

We assume that the laser crossing angle is optimized for the interaction in the vacuum
a =1/y . Then the interaction in the medium AU, has a maximum value of
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_ /&,

2,max

- 9% ¢y 15
T

AU

1 sing,,
g\ ncosa, ~VpB)

As shown in Figure 3 f(n) is smaller than 1 and drops with increasing index n. As can be
seen from the plots for y =50, » =100 and y =1000 f(n) shows only a very weak
dependence on y.
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Fig. 3: f(n) versus n for various values of y

Therefore under these circumstances AU, . ~ AU, . /¥ and the maximum interaction

in the medium is much smaller than the maximum interaction in the vacuum. Notice that
this value for the energy gain is independent of the thickness of the dielectric plate.

Interaction in the downstream space

Here the parallel electric field component is given by
E, (x(z),z,t) = —sin aE, cos(k(sin 6, x +cos 6, z) - wt + ¢, ) 16

A

and the work done on the particle is
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AU, = [4E, (x(2) 2.015(2)
= —qsin anjcos[kz(Mj + ¢3Ji
! cosy cosy
gsinaE, 7 cosa—1/f3
___gsina, du, A=ka| 22222 17
k(cosoz—J/[a’)IAcos(u+¢3)u a( cosy J
_ gsineE, . A
k(COSa—]/ﬂ)Sm( +4:)
~_quﬂ . o 2Sin(ka(w—}—ncos@m—C059j+¢|_j
r a’+lly cosy

The total energy gain is the sum of the interactions in the three regions
AU =AU, +AU, + AU,. However as observed before AU, . <<AU, .and the

contribution from the energy gain in the medium can be neglected. Hence the total energy
gain is approximately AU ~ AU, + AU, .

AU - 9EA_ @ {sin¢L—sin(ka[M+nC039m—0039]+¢Lj}18

1,max

T at+1/y? cosy

Notice that the energy gain still has the same linear dependence on the wavelength 1 and
on the electric field amplitude E,, and shows the same dependence on the laser-crossing
angle as the energy gain from the reflective or absorptive boundary of equation 1. The
difference lies in the term shown in brackets in equation 18. This term shows the
interference of two phase terms, one of which depends on the optical phase retardation
caused by the boundary. To illustrate this it is convenient to rewrite equation 17 as

Q4 «a

AU ~
r o’ +1/y?

{Sin¢L _Sin(¢ret +¢L)} 19
where the optical phase retardation term ¢, is

b = ka(M +ncosé, —Ccos6, J 20
cosy

Notice that ¢, is proportional to the relative plate thickness with respect to the
wavelength ¢, oc a/A. When « ~1/y the first term is very small and can be neglected.

.. ~ ka(ncos@, —cosé, ) 21
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Fig. 4: Comparison between the energy gain from a reflective boundary
(dashed line) and the energy gain from a transparent boundary (solid line)
as a function of the optical phase delay

Figure 4 illustrates the effect of the optical phase retardation on the energy gain from
transparent boundaries. Whenever the sign of the field is reversed the energy gain in the
upstream and in the downstream region add constructively. The maximum value for the
total energy gain is

AU (o =1/y) ~ 262 22

T
The Inverse-Radiation method

As discussed elsewhere [2] this method is based on Poynting’s Theorem and assumes no
transfer of energy from or to the medium itself. Under these circumstances the energy
gain can be shown to be [3,4]

AU = ——=— [§(E.(0)- E'(w))isd 23

where E_ is the laser field and E.is the particle’s wake field. In this instance E,
corresponds to the transition radiation from a dielectric plate. This particular transition
radiation problem has been analyzed by various authors in the past [5]. In our particular
case we are not interested in the most general expression of E.. and can derive a
simplified form for the field. Using the same approach as in [5] by performing a plane
wave decomposition of the fields to find the transition radiation field. First we find the

plane wave spectrum of the field of a uniformly moving particle of charge g. Inside a
medium the potentials have to satisfy
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Vx A— ped?A = —pd = — i 5(F —Vit) ”
V2D — —ped?® = — p/s =—q /& 5(F —Vt)
We perform a Fourier transformation on equation 24 and find that

R 2, )

kK°— o ue

5 25

b= U sy ok

k- ue

Using E =iwA—ik® we find for the plane wave spectrum of the particle’s electric field

~ _ av/c?—K/e, -
Ep,j :quZOCWZ/(:Z/é‘j5(w—Vk) 26

where ¢; =1+ y; and Z, = ucis the vacuum impedance. E_ ; represents the plane wave

spectrum of the particle’s field in the medium j. To match the boundary conditions at the
front and back interfaces of the dielectric plate we add a set of plane waves (the
homogeneous solutions to equation (24) as shown in Figure 5

Fig.5: Transition radiation from a plate; Plane wave field components

The plane waves satisfy V-E =0 or alternatively k- E=0. Furthermore their
amplitudes will be chosen such that the electric field boundary conditions at z=0 and at
z=a are satisfied. These are
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=0 27

In terms of the plane wave components these boundary conditions become

[&,(E, +E, . pdkdo

[&(E. +E, . B d%do

z=0 z=0

= [(E, +E, . k" ld*kdo

[(E, +E, . la%do

z=0 z=0

[(Ey +E, B d%da

[(E, +E,., ™ d%kdw

z=0 z=0

e(E, +E , BEtlq3kdae *
I 2( 2z p,ZZk

Z=a

[&(E, +E, . "l kdo

Z=a

[(Ey +E, , B e kdo

Z=a Z=a

[(Ey+E, o %o

[(E,y +E, B d%do

[(E, +E, 5 "l kdo

z=0 z=a

We are interested in the plane waves that will overlap with the laser field that is
horizontally polarized and traveling in the x-z plane. Hence we are not interested in the

values of E,, and E, . Furthermore only the horizontally traveling plane wave
components, for which k, =0, can overlap with the laser in the far field. Therefore for
this special set of plane waves the boundary conditions simplify to

= [&(E,. + E, . ok, dk,do

[&(E. +E, .. Bk dk,do

z=0 z=0

= [(E, +E, . "k, dk,doo

[(E,, +E, ., ok dk,do

z=0 z=0

29

Z=a

[ gs(lgaz+Epsz)ei(ﬁ'r‘“")dkxdkzdwzza = [&,(E,. +E, . Bk, dk,deo

Z=a

[Ept Epa B adida] = [(E,, +E, o Ik ok do

The plane waves are of the form E = f(lz,a))é(lz -k —a)z/czgj). Hence integrating over

k, eliminates the delta functions appearing in the field components and we obtain

10
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[alElm B (e dkdr = [&(E, 1)+ (e ) dkde

[IEs )+, )"k deo = [(Enr)+E, (s ™k c
[&(Eulc)e™ +E o (Pe B dkder = [E, ()™ +E,,, (e k" dkde »
[IEnli)e™ +E, (e ktldkdeo = [[E, (tr)e™ +E,, (e B dk o

where r=aw/v,-vk, /v, and &, :Ja)z/czgj —k? is the k, value where the delta

function 5(IZ~IZ—a)2/czgj) is zero. Since we assume that the plane wave fields Elz and

E,, are moving to the left (see Figure 5) we take only the negative root k, = —x; while
for the fields in the downstream space ESZ and E3X that are moving to the right we take

the positive root k, = +x,. For the fields inside the plate we have to assume that there are

components traveling in both directions. Therefore it will be convenient to label the plane
wave components in medium 2 separately

E‘2><(k><’a); kz = +K2)E E‘2p><(kx’a))
EZz(kx’a); kz =+K2)E E2pz(kx’a)) 31
EZx(kx’a); kz = _KZ) = Ean(kw 60)
E‘Zz(kx’CO; kz = _KZ) = Ean (kx’a))

The set of equations in 30 has to be valid for all x and t. This is satisfied when the
arguments of the Fourier transformations are equal for all k, and . Hence

81(Elz( KCI.)+Ep12( )) = SZ(Esz(Kz)+E2nz(_Kz) EpZZ( ))

B, (-15)+E, (1) = Ep(16)+ B 1)+ E, (1)

& (B, (i)™ +E, 5 (™) = 5B, (k)™ +E,, (- )™ +E,, (1))
E, ()™ +E,5 (1™ =B, (i)™ +E,,, (-1 )™ +E, ,, (1™

32

Since the homogeneous plane wave solutions satisfy k - E = 0 we can relate Ejz to ij by

E :_k_E 33
K,

)z

11
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Now we use the specific values of k, = +«; to express the planar field components and

keep track of the sign of k, manually, depending on the direction of the plane wave
component. We have

E =+k /Kl 1X
E = _kx/KS 3x 34
E2nz = +kx/K2 E2nx
E = _kx/KZ E2p><
It is convenient to define the following
b. = 2mgZ,c 1
. v, Kk +r’-o?/c’e,
hy = QK 35
v, o VK,
S;=—5— +

c* v,E &V,

where r = /v, -vk, /v, (as defined before). With these definitions and the relation of
the components of equation 34 the boundary conditions of equation 32 become

ek, = &K,
Slbl‘gl +[ : 2 jElx = Szbzgz + (2—2)( EZ pX + Ean)

2k, 2K,
hlbl + (%} Elx = hzbz + (i]("‘ E2 ox T Ean)

K, 2K, 36
53b383eiar _( Ssk); JngeiaKa — 32L.)Z‘gzeiar + ( 8 k j( Esze|a;c2 + EZnXe Iafcz)

2K, 2K,
iar 1 |z iax; iar 1 iax, —iax,

h,b.e J{Z_Ks] E,e = hb,e +[2K2 j(+ E,,& "+ Ezhxe )

We now have a set of four linear equations and four unknowns. Using the first pair we
can express E, . and E, intermsof E,,

2 px 2nx

~ [ &)k, &k g, &
EZpX( 2 J ( sibe — Szbzgz)"'(z2 Xj(mbl_hzbz)"' - [ 2 - lj
/{2 K, 2K\ K, K

Ean[€2k j ( Sibig; - Szbzgz) [2 ](hlbl hb) ZkK [Ii +%j

l

iy
>

37

l

-
>

Ky

12
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We can do a similar thing with the second pair of boundary conditions and express E
and E

2 px

in terms of E,, .

2nx

Ep{fjﬁ*){—(sgbses—szbzez){%](hsbs—hzbz)Je‘**”+ (—%%}E&‘*"M

ke
- 38
Ez[k J =(+(s3b383 —szbzez)+[“"2kx }habs —hzbz)]e“““fz) %[

&
K
é _é c eia(’%+K2)
2K B
K 5 K K

Combining equations 36 and 37 and eliminating E, and E, ~we can find the

2px 2nx

amplitudes E,, and E,, . For E;, we find

£ _2xe™ E (p+ )l —1}—E (- p+q)e™) -1
3 k E+2e—ial(2 _ E_2e+ia1<2

X

39

where E, = &,/x,+¢,/K,,p=Sbe, —S,b,e,, and q = ‘gzz—kx(hlb1 —h,b,).
K

Special case

We are interested in a special case where the angle of the laser and the electron trajectory
are near Brewster’s angle. This ensures full transmission of the laser field to the
downstream space and hence maximizes the energy gain of the electron beam within the
suitable phase conditions. Also, although equation 38 is general we will focus on the
relativistic limit for the particle’s velocity and will assume a small angle difference
between the laser propagation direction and the electron’s trajectory.

We use the same notation for the angles of interest as in Fig. 2. At Brewster’s angle, and
assuming that mediums 1 and 3 are vacuum tan@ =n and tané, =1/n. We introduce a

new angle «' =60 -y and since we are interested in the field overlapping with the laser
we are interested in the region where |a'| <<1. Since we defined k =w/c the x-
components of the k-vectors in the different media are k, ; = kn;sing, where n; = \/?jis

the index of refraction of the medium in question. With these definitions we also find the
z-components x; =kn; cos 9, .

=+tand Elx
=—tand E3X

=+tang, E

M my

N

40

2nx

= —tang, E

2p2 —

2nz

M M

2 px

13
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With these definitions we find that

e tand —tand)E, — (s tand. +tan O™ E, =2k (- p+e,q)e ™) —1
( m m ) 1x ( m m )e 3X 1( p Zq){

(e, tan g, +tan O)E,, — (&, tan 6, —tan O)e"E,,, = 2, (+ p + £,q)e" 1] “
We can find small-angle approximations for p and q. These are

p=sbe —s,be, Zfﬂzo e f;/yz tan 6 "

£,q= ‘922"; (hb,—hb,) ~ — 27;‘? — f;/yz g, tand,

where fc=vis the speed of the particle and Z;is the vacuum impedance. Using the
Brewster angle conditions we can substitute ¢, tané, +tand=n=n and the values of p
and g and x; = k cos & we obtain for equation 41

OElx - zneia(KrKZ)Em ~ 2K, ZZBZO o j_ll/j/z (_ Zn){eia(rﬂ(Z) _1} 43

ZnElX - OESX - 2K1(+ O){eia(r+,(2) _1}

which simplifies to

E?:X = 2COSH 271120 5 @ > {eia(r”(z) _l}e*ia(lq—lcz)
a +]7/7/ 14

For relativistic particles where g ~1 and for small laser crossing angle 8 =y +«,
|| <<1 the coefficient r becomes

r:ﬂ—V—kazk[
vV, V

z z

—tany coséd |~ kcoséd ~ k; 45
pcosy

where, as assumed elsewhere in this paperk = w/c is the wavenumber in vacuum. Note

that in the medium 1, vacuum, «, =k’ -1—k?cos@ =ksin@. Since the total plane wave
amplitude at angle & is E, = E,, /cosé@ equation 44 becomes

14
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I-53"22 {1_ KlKZ}

B o +J/7 46

This is a curious result that says that at Brewster’s angle there is no reflected transition
radiation component. Intuitively one would expect this since the p-polarized plane wave
components from the particle’s field should suffer no reflection from the boundaries at
Brewster’s angle.

In the far field, at a location (R — o0,a',#) the electric field is related to the plane wave
spectrum ES of equation 46 by

- ie ~ ,
E(F,0)=- = E.(k,a,4,0) 47

Evaluating equation 47 we get

- R eikR 7 ' il
ETR(r1y:01a))~_ R qz; a'zfﬁl/j/z {l_e s 2)} 48

As in the previous section we define the laser-crossing angle as « =6, —y and assume
that |a| << 1. For the plane wave laser field in the downstream region given by equation 2
the far-field is

= 27AE
(F.0)

o)=-—0 °§(a—a',f)é(5(a)—a)o)ei(kR'“”L)—5(a)+a)0)e R, ) 49

Now we can use the overlap integral of equation 23 to find the energy gain predicted by
the inverse-radiation picture and find that

AU = 272' "¢3 —ge i(~¢ralk—n,)) _ +'¢3 _ei(%Jra(Ker)) 50
AEO)( 2ﬂja 241y 2{ }

but since a(x, —x,) = ka(ncosd, —cosé, )~ 4

. (See equation 21) and ¢, =4, + ¢, (See
equation 3)

AU — /1q EO 5 a > L {e_i(¢ret+¢L) _ ei(_¢rel_¢L+¢ret) _ e*i(¢rel+ﬁ) _ e_i(_¢ret_ﬁ+¢rel)} 51
7 a’+1/y* 2

which becomes

15
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AQE,

AU =
r a’+1/y?

{sing_—sin(g +4, )} 52

which is in agreement with the energy gain formula of equation 19 derived from the path
integral method.
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